Amara  Reichel

Amara Reichel

1596415320

Firestore objects for Swift Struct and Back, Enums and Arrays

Within our app written in Swift and using SwiftUI, we needed a way to read our data from Google Firestore into the app, and then write some data back into Firestore.

Initially, I followed this guide from the Firestore documentation, although it involved a lot of mapping dictionary key/values to the type I was after. Writing data was much the same. For each property in my Swift class I had to specify the name of the corresponding Firestore field, and then assign the appropriate value to the field. I knew there must be a better way.

Fortunately, the Firestore documentation recognises this problem and offers a way to bring your document into a Swift class, and allow you to use it as you would any other piece of data. This is through the use of the Pod FirebaseFirestoreSwift , which adds an extension method to the document.data() call so you can specify what type the data is coming in as. There is also a similar method on the document.setData() method for converting your Swift object back to a Firestore object.

#ios #firestore #swift #enums

What is GEEK

Buddha Community

Firestore objects for Swift Struct and Back, Enums and Arrays
Sasha  Lee

Sasha Lee

1650636000

Dl4clj: Clojure Wrapper for Deeplearning4j.

dl4clj

Port of deeplearning4j to clojure

Contact info

If you have any questions,

  • my email is will@yetanalytics.com
  • I'm will_hoyt in the clojurians slack
  • twitter is @FeLungz (don't check very often)

TODO

  • update examples dir
  • finish README
    • add in examples using Transfer Learning
  • finish tests
    • eval is missing regression tests, roc tests
    • nn-test is missing regression tests
    • spark tests need to be redone
    • need dl4clj.core tests
  • revist spark for updates
  • write specs for user facing functions
    • this is very important, match isnt strict for maps
    • provides 100% certianty of the input -> output flow
    • check the args as they come in, dispatch once I know its safe, test the pure output
  • collapse overlapping api namespaces
  • add to core use case flows

Features

Stable Features with tests

  • Neural Networks DSL
  • Early Stopping Training
  • Transfer Learning
  • Evaluation
  • Data import

Features being worked on for 0.1.0

  • Clustering (testing in progress)
  • Spark (currently being refactored)
  • Front End (maybe current release, maybe future release. Not sure yet)
  • Version of dl4j is 0.0.8 in this project. Current dl4j version is 0.0.9
  • Parallelism
  • Kafka support
  • Other items mentioned in TODO

Features being worked on for future releases

  • NLP
  • Computational Graphs
  • Reinforement Learning
  • Arbiter

Artifacts

NOT YET RELEASED TO CLOJARS

  • fork or clone to try it out

If using Maven add the following repository definition to your pom.xml:

<repository>
  <id>clojars.org</id>
  <url>http://clojars.org/repo</url>
</repository>

Latest release

With Leiningen:

n/a

With Maven:

n/a

<dependency>
  <groupId>_</groupId>
  <artifactId>_</artifactId>
  <version>_</version>
</dependency>

Usage

Things you need to know

All functions for creating dl4j objects return code by default

  • All of these functions have an option to return the dl4j object
    • :as-code? = false
  • This because all builders require the code representation of dl4j objects
    • this requirement is not going to change
  • INDarray creation fns default to objects, this is for convenience
    • :as-code? is still respected

API functions return code when all args are provided as code

API functions return the value of calling the wrapped method when args are provided as a mixture of objects and code or just objects

The tests are there to help clarify behavior, if you are unsure of how to use a fn, search the tests

  • for questions about spark, refer to the spark section bellow

Example of obj/code duality

(ns my.ns
  (:require [dl4clj.nn.conf.builders.layers :as l]))

;; as code (the default)

(l/dense-layer-builder
 :activation-fn :relu
 :learning-rate 0.006
 :weight-init :xavier
 :layer-name "example layer"
 :n-in 10
 :n-out 1)

;; =>

(doto
 (org.deeplearning4j.nn.conf.layers.DenseLayer$Builder.)
 (.nOut 1)
 (.activation (dl4clj.constants/value-of {:activation-fn :relu}))
 (.weightInit (dl4clj.constants/value-of {:weight-init :xavier}))
 (.nIn 10)
 (.name "example layer")
 (.learningRate 0.006))

;; as an object

(l/dense-layer-builder
 :activation-fn :relu
 :learning-rate 0.006
 :weight-init :xavier
 :layer-name "example layer"
 :n-in 10
 :n-out 1
 :as-code? false)

;; =>

#object[org.deeplearning4j.nn.conf.layers.DenseLayer 0x69d7d160 "DenseLayer(super=FeedForwardLayer(super=Layer(layerName=example layer, activationFn=relu, weightInit=XAVIER, biasInit=NaN, dist=null, learningRate=0.006, biasLearningRate=NaN, learningRateSchedule=null, momentum=NaN, momentumSchedule=null, l1=NaN, l2=NaN, l1Bias=NaN, l2Bias=NaN, dropOut=NaN, updater=null, rho=NaN, epsilon=NaN, rmsDecay=NaN, adamMeanDecay=NaN, adamVarDecay=NaN, gradientNormalization=null, gradientNormalizationThreshold=NaN), nIn=10, nOut=1))"]

General usage examples

Importing data

Loading data from a file (here its a csv)


(ns my.ns
 (:require [dl4clj.datasets.input-splits :as s]
           [dl4clj.datasets.record-readers :as rr]
           [dl4clj.datasets.api.record-readers :refer :all]
           [dl4clj.datasets.iterators :as ds-iter]
           [dl4clj.datasets.api.iterators :refer :all]
           [dl4clj.helpers :refer [data-from-iter]]))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; file splits (convert the data to records)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(def poker-path "resources/poker-hand-training.csv")
;; this is not a complete dataset, it is just here to sever as an example

(def file-split (s/new-filesplit :path poker-path))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; record readers, (read the records created by the file split)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(def csv-rr (initialize-rr! :rr (rr/new-csv-record-reader :skip-n-lines 0 :delimiter ",")
                                 :input-split file-split))

;; lets look at some data
(println (next-record! :rr csv-rr :as-code? false))
;; => #object[java.util.ArrayList 0x2473e02d [1, 10, 1, 11, 1, 13, 1, 12, 1, 1, 9]]
;; this is our first line from the csv


;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; record readers dataset iterators (turn our writables into a dataset)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(def rr-ds-iter (ds-iter/new-record-reader-dataset-iterator
                 :record-reader csv-rr
                 :batch-size 1
                 :label-idx 10
                 :n-possible-labels 10))

;; we use our record reader created above
;; we want to see one example per dataset obj returned (:batch-size = 1)
;; we know our label is at the last index, so :label-idx = 10
;; there are 10 possible types of poker hands so :n-possible-labels = 10
;; you can also set :label-idx to -1 to use the last index no matter the size of the seq

(def other-rr-ds-iter (ds-iter/new-record-reader-dataset-iterator
                       :record-reader csv-rr
                       :batch-size 1
                       :label-idx -1
                       :n-possible-labels 10))

(str (next-example! :iter rr-ds-iter :as-code? false))
;; =>
;;===========INPUT===================
;;[1.00, 10.00, 1.00, 11.00, 1.00, 13.00, 1.00, 12.00, 1.00, 1.00]
;;=================OUTPUT==================
;;[0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00]


;; and to show that :label-idx = -1 gives us the same output

(= (next-example! :iter rr-ds-iter :as-code? false)
   (next-example! :iter other-rr-ds-iter :as-code? false)) ;; => true

INDArrays and Datasets from clojure data structures


(ns my.ns
  (:require [nd4clj.linalg.factory.nd4j :refer [vec->indarray matrix->indarray
                                                indarray-of-zeros indarray-of-ones
                                                indarray-of-rand vec-or-matrix->indarray]]
            [dl4clj.datasets.new-datasets :refer [new-ds]]
            [dl4clj.datasets.api.datasets :refer [as-list]]
            [dl4clj.datasets.iterators :refer [new-existing-dataset-iterator]]
            [dl4clj.datasets.api.iterators :refer :all]
            [dl4clj.datasets.pre-processors :as ds-pp]
            [dl4clj.datasets.api.pre-processors :refer :all]
            [dl4clj.core :as c]))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; INDArray creation
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;TODO: consider defaulting to code

;; can create from a vector

(vec->indarray [1 2 3 4])
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0x269df212 [1.00, 2.00, 3.00, 4.00]]

;; or from a matrix

(matrix->indarray [[1 2 3 4] [2 4 6 8]])
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0x20aa7fe1
;; [[1.00, 2.00, 3.00, 4.00], [2.00, 4.00, 6.00, 8.00]]]


;; will fill in spareness with zeros

(matrix->indarray [[1 2 3 4] [2 4 6 8] [10 12]])
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0x8b7796c
;;[[1.00, 2.00, 3.00, 4.00],
;; [2.00, 4.00, 6.00, 8.00],
;; [10.00, 12.00, 0.00, 0.00]]]

;; can create an indarray of all zeros with specified shape
;; defaults to :rows = 1 :columns = 1

(indarray-of-zeros :rows 3 :columns 2)
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0x6f586a7e
;;[[0.00, 0.00],
;; [0.00, 0.00],
;; [0.00, 0.00]]]

(indarray-of-zeros) ;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0xe59ffec 0.00]

;; and if only one is supplied, will get a vector of specified length

(indarray-of-zeros :rows 2)
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0x2899d974 [0.00, 0.00]]

(indarray-of-zeros :columns 2)
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0xa5b9782 [0.00, 0.00]]

;; same considerations/defaults for indarray-of-ones and indarray-of-rand

(indarray-of-ones :rows 2 :columns 3)
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0x54f08662 [[1.00, 1.00, 1.00], [1.00, 1.00, 1.00]]]

(indarray-of-rand :rows 2 :columns 3)
;; all values are greater than 0 but less than 1
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0x2f20293b [[0.85, 0.86, 0.13], [0.94, 0.04, 0.36]]]



;; vec-or-matrix->indarray is built into all functions which require INDArrays
;; so that you can use clojure data structures
;; but you still have the option of passing existing INDArrays

(def example-array (vec-or-matrix->indarray [1 2 3 4]))
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0x5c44c71f [1.00, 2.00, 3.00, 4.00]]

(vec-or-matrix->indarray example-array)
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0x607b03b0 [1.00, 2.00, 3.00, 4.00]]

(vec-or-matrix->indarray (indarray-of-rand :rows 2))
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0x49143b08 [0.76, 0.92]]

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; data-set creation
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(def ds-with-single-example (new-ds :input [1 2 3 4]
                                    :output [0.0 1.0 0.0]))

(as-list :ds ds-with-single-example :as-code? false)
;; =>
;; #object[java.util.ArrayList 0x5d703d12
;;[===========INPUT===================
;;[1.00, 2.00, 3.00, 4.00]
;;=================OUTPUT==================
;;[0.00, 1.00, 0.00]]]

(def ds-with-multiple-examples (new-ds
                                :input [[1 2 3 4] [2 4 6 8]]
                                :output [[0.0 1.0 0.0] [0.0 0.0 1.0]]))

(as-list :ds ds-with-multiple-examples :as-code? false)
;; =>
;;#object[java.util.ArrayList 0x29c7a9e2
;;[===========INPUT===================
;;[1.00, 2.00, 3.00, 4.00]
;;=================OUTPUT==================
;;[0.00, 1.00, 0.00],
;;===========INPUT===================
;;[2.00, 4.00, 6.00, 8.00]
;;=================OUTPUT==================
;;[0.00, 0.00, 1.00]]]

;; we can create a dataset iterator from the code which creates datasets
;; and set the labels for our outputs (optional)

(def ds-with-multiple-examples
  (new-ds
   :input [[1 2 3 4] [2 4 6 8]]
   :output [[0.0 1.0 0.0] [0.0 0.0 1.0]]))

;; iterator
(def training-rr-ds-iter
  (new-existing-dataset-iterator
   :dataset ds-with-multiple-examples
   :labels ["foo" "baz" "foobaz"]))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; data-set normalization
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; this gathers statistics on the dataset and normalizes the data
;; and applies the transformation to all dataset objects in the iterator
(def train-iter-normalized
  (c/normalize-iter! :iter training-rr-ds-iter
                     :normalizer (ds-pp/new-standardize-normalization-ds-preprocessor)
                     :as-code? false))

;; above returns the normalized iterator
;; to get fit normalizer

(def the-normalizer
  (get-pre-processor train-iter-normalized))

Model configuration

Creating a neural network configuration with singe and multiple layers

(ns my.ns
  (:require [dl4clj.nn.conf.builders.layers :as l]
            [dl4clj.nn.conf.builders.nn :as nn]
            [dl4clj.nn.conf.distributions :as dist]
            [dl4clj.nn.conf.input-pre-processor :as pp]
            [dl4clj.nn.conf.step-fns :as s-fn]))

;; nn/builder has 3 types of args
;; 1) args which set network configuration params
;; 2) args which set default values for layers
;; 3) args which set multi layer network configuration params

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; single layer nn configuration
;; here we are setting network configuration
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(nn/builder :optimization-algo :stochastic-gradient-descent
            :seed 123
            :iterations 1
            :minimize? true
            :use-drop-connect? false
            :lr-score-based-decay-rate 0.002
            :regularization? false
            :step-fn :default-step-fn
            :layers {:dense-layer {:activation-fn :relu
                                   :updater :adam
                                   :adam-mean-decay 0.2
                                   :adam-var-decay 0.1
                                   :learning-rate 0.006
                                   :weight-init :xavier
                                   :layer-name "single layer model example"
                                   :n-in 10
                                   :n-out 20}})

;; there are several options within a nn-conf map which can be configuration maps
;; or calls to fns
;; It doesn't matter which option you choose and you don't have to stay consistent
;; the list of params which can be passed as config maps or fn calls will
;; be enumerated at a later date

(nn/builder :optimization-algo :stochastic-gradient-descent
            :seed 123
            :iterations 1
            :minimize? true
            :use-drop-connect? false
            :lr-score-based-decay-rate 0.002
            :regularization? false
            :step-fn (s-fn/new-default-step-fn)
            :build? true
            ;; dont need to specify layer order, theres only one
            :layers (l/dense-layer-builder
                    :activation-fn :relu
                    :updater :adam
                    :adam-mean-decay 0.2
                    :adam-var-decay 0.1
                    :dist (dist/new-normal-distribution :mean 0 :std 1)
                    :learning-rate 0.006
                    :weight-init :xavier
                    :layer-name "single layer model example"
                    :n-in 10
                    :n-out 20))

;; these configurations are the same

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; multi-layer configuration
;; here we are also setting layer defaults
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; defaults will apply to layers which do not specify those value in their config

(nn/builder
 :optimization-algo :stochastic-gradient-descent
 :seed 123
 :iterations 1
 :minimize? true
 :use-drop-connect? false
 :lr-score-based-decay-rate 0.002
 :regularization? false
 :default-activation-fn :sigmoid
 :default-weight-init :uniform

 ;; we need to specify the layer order
 :layers {0 (l/activation-layer-builder
             :activation-fn :relu
             :updater :adam
             :adam-mean-decay 0.2
             :adam-var-decay 0.1
             :learning-rate 0.006
             :weight-init :xavier
             :layer-name "example first layer"
             :n-in 10
             :n-out 20)
          1 {:output-layer {:n-in 20
                            :n-out 2
                            :loss-fn :mse
                            :layer-name "example output layer"}}})

;; specifying multi-layer config params

(nn/builder
 ;; network args
 :optimization-algo :stochastic-gradient-descent
 :seed 123
 :iterations 1
 :minimize? true
 :use-drop-connect? false
 :lr-score-based-decay-rate 0.002
 :regularization? false

 ;; layer defaults
 :default-activation-fn :sigmoid
 :default-weight-init :uniform

 ;; the layers
 :layers {0 (l/activation-layer-builder
             :activation-fn :relu
             :updater :adam
             :adam-mean-decay 0.2
             :adam-var-decay 0.1
             :learning-rate 0.006
             :weight-init :xavier
             :layer-name "example first layer"
             :n-in 10
             :n-out 20)
          1 {:output-layer {:n-in 20
                            :n-out 2
                            :loss-fn :mse
                            :layer-name "example output layer"}}}
 ;; multi layer network args
 :backprop? true
 :backprop-type :standard
 :pretrain? false
 :input-pre-processors {0 (pp/new-zero-mean-pre-pre-processor)
                        1 {:unit-variance-processor {}}})

Configuration to Trained models

Multi Layer models

(ns my.ns
  (:require [dl4clj.datasets.iterators :as iter]
            [dl4clj.datasets.input-splits :as split]
            [dl4clj.datasets.record-readers :as rr]
            [dl4clj.optimize.listeners :as listener]
            [dl4clj.nn.conf.builders.nn :as nn]
            [dl4clj.nn.multilayer.multi-layer-network :as mln]
            [dl4clj.nn.api.model :refer [init! set-listeners!]]
            [dl4clj.nn.api.multi-layer-network :refer [evaluate-classification]]
            [dl4clj.datasets.api.record-readers :refer [initialize-rr!]]
            [dl4clj.eval.api.eval :refer [get-stats get-accuracy]]
            [dl4clj.core :as c]))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; nn-conf -> multi-layer-network
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(def nn-conf
  (nn/builder
   ;; network args
   :optimization-algo :stochastic-gradient-descent
   :seed 123 :iterations 1 :regularization? true

   ;; setting layer defaults
   :default-activation-fn :relu :default-l2 7.5e-6
   :default-weight-init :xavier :default-learning-rate 0.0015
   :default-updater :nesterovs :default-momentum 0.98

   ;; setting layer configuration
   :layers {0 {:dense-layer
               {:layer-name "example first layer"
                :n-in 784 :n-out 500}}
            1 {:dense-layer
               {:layer-name "example second layer"
                :n-in 500 :n-out 100}}
            2 {:output-layer
               {:n-in 100 :n-out 10
                ;; layer specific params
                :loss-fn :negativeloglikelihood
                :activation-fn :softmax
                :layer-name "example output layer"}}}

   ;; multi layer args
   :backprop? true
   :pretrain? false))

(def multi-layer-network (c/model-from-conf nn-conf))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; local cpu training with dl4j pre-built iterators
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; lets use the pre-built Mnist data set iterator

(def train-mnist-iter
  (iter/new-mnist-data-set-iterator
   :batch-size 64
   :train? true
   :seed 123))

(def test-mnist-iter
  (iter/new-mnist-data-set-iterator
   :batch-size 64
   :train? false
   :seed 123))

;; and lets set a listener so we can know how training is going

(def score-listener (listener/new-score-iteration-listener :print-every-n 5))

;; and attach it to our model

;; TODO: listeners are broken, look into log4j warnning
(def mln-with-listener (set-listeners! :model multi-layer-network
                                       :listeners [score-listener]))

(def trained-mln (mln/train-mln-with-ds-iter! :mln mln-with-listener
                                              :iter train-mnist-iter
                                              :n-epochs 15
                                              :as-code? false))

;; training happens because :as-code? = false
;; if it was true, we would still just have a data structure
;; we now have a trained model that has seen the training dataset 15 times
;; time to evaluate our model

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;Create an evaluation object
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(def eval-obj (evaluate-classification :mln trained-mln
                                       :iter test-mnist-iter))

;; always remember that these objects are stateful, dont use the same eval-obj
;; to eval two different networks
;; we trained the model on a training dataset.  We evaluate on a test set

(println (get-stats :evaler eval-obj))
;; this will print the stats to standard out for each feature/label pair

;;Examples labeled as 0 classified by model as 0: 968 times
;;Examples labeled as 0 classified by model as 1: 1 times
;;Examples labeled as 0 classified by model as 2: 1 times
;;Examples labeled as 0 classified by model as 3: 1 times
;;Examples labeled as 0 classified by model as 5: 1 times
;;Examples labeled as 0 classified by model as 6: 3 times
;;Examples labeled as 0 classified by model as 7: 1 times
;;Examples labeled as 0 classified by model as 8: 2 times
;;Examples labeled as 0 classified by model as 9: 2 times
;;Examples labeled as 1 classified by model as 1: 1126 times
;;Examples labeled as 1 classified by model as 2: 2 times
;;Examples labeled as 1 classified by model as 3: 1 times
;;Examples labeled as 1 classified by model as 5: 1 times
;;Examples labeled as 1 classified by model as 6: 2 times
;;Examples labeled as 1 classified by model as 7: 1 times
;;Examples labeled as 1 classified by model as 8: 2 times
;;Examples labeled as 2 classified by model as 0: 3 times
;;Examples labeled as 2 classified by model as 1: 2 times
;;Examples labeled as 2 classified by model as 2: 1006 times
;;Examples labeled as 2 classified by model as 3: 2 times
;;Examples labeled as 2 classified by model as 4: 3 times
;;Examples labeled as 2 classified by model as 6: 3 times
;;Examples labeled as 2 classified by model as 7: 7 times
;;Examples labeled as 2 classified by model as 8: 6 times
;;Examples labeled as 3 classified by model as 2: 4 times
;;Examples labeled as 3 classified by model as 3: 990 times
;;Examples labeled as 3 classified by model as 5: 3 times
;;Examples labeled as 3 classified by model as 7: 3 times
;;Examples labeled as 3 classified by model as 8: 3 times
;;Examples labeled as 3 classified by model as 9: 7 times
;;Examples labeled as 4 classified by model as 2: 2 times
;;Examples labeled as 4 classified by model as 3: 1 times
;;Examples labeled as 4 classified by model as 4: 967 times
;;Examples labeled as 4 classified by model as 6: 4 times
;;Examples labeled as 4 classified by model as 7: 1 times
;;Examples labeled as 4 classified by model as 9: 7 times
;;Examples labeled as 5 classified by model as 0: 2 times
;;Examples labeled as 5 classified by model as 3: 6 times
;;Examples labeled as 5 classified by model as 4: 1 times
;;Examples labeled as 5 classified by model as 5: 874 times
;;Examples labeled as 5 classified by model as 6: 3 times
;;Examples labeled as 5 classified by model as 7: 1 times
;;Examples labeled as 5 classified by model as 8: 3 times
;;Examples labeled as 5 classified by model as 9: 2 times
;;Examples labeled as 6 classified by model as 0: 4 times
;;Examples labeled as 6 classified by model as 1: 3 times
;;Examples labeled as 6 classified by model as 3: 2 times
;;Examples labeled as 6 classified by model as 4: 4 times
;;Examples labeled as 6 classified by model as 5: 4 times
;;Examples labeled as 6 classified by model as 6: 939 times
;;Examples labeled as 6 classified by model as 7: 1 times
;;Examples labeled as 6 classified by model as 8: 1 times
;;Examples labeled as 7 classified by model as 1: 7 times
;;Examples labeled as 7 classified by model as 2: 4 times
;;Examples labeled as 7 classified by model as 3: 3 times
;;Examples labeled as 7 classified by model as 7: 1005 times
;;Examples labeled as 7 classified by model as 8: 2 times
;;Examples labeled as 7 classified by model as 9: 7 times
;;Examples labeled as 8 classified by model as 0: 3 times
;;Examples labeled as 8 classified by model as 2: 3 times
;;Examples labeled as 8 classified by model as 3: 2 times
;;Examples labeled as 8 classified by model as 4: 4 times
;;Examples labeled as 8 classified by model as 5: 3 times
;;Examples labeled as 8 classified by model as 6: 2 times
;;Examples labeled as 8 classified by model as 7: 4 times
;;Examples labeled as 8 classified by model as 8: 947 times
;;Examples labeled as 8 classified by model as 9: 6 times
;;Examples labeled as 9 classified by model as 0: 2 times
;;Examples labeled as 9 classified by model as 1: 2 times
;;Examples labeled as 9 classified by model as 3: 4 times
;;Examples labeled as 9 classified by model as 4: 8 times
;;Examples labeled as 9 classified by model as 6: 1 times
;;Examples labeled as 9 classified by model as 7: 4 times
;;Examples labeled as 9 classified by model as 8: 2 times
;;Examples labeled as 9 classified by model as 9: 986 times

;;==========================Scores========================================
;; Accuracy:        0.9808
;; Precision:       0.9808
;; Recall:          0.9807
;; F1 Score:        0.9807
;;========================================================================

;; can get the stats that are printed via fns in the evaluation namespace
;; after running eval-model-whole-ds

(get-accuracy :evaler evaler-with-stats) ;; => 0.9808

Model Tuning

Early Stopping (controlling training)

it is recommened you start here when designing models

using dl4clj.core


(ns my.ns
  (:require [dl4clj.earlystopping.termination-conditions :refer :all]
            [dl4clj.earlystopping.model-saver :refer [new-in-memory-saver]]
            [dl4clj.nn.api.multi-layer-network :refer [evaluate-classification]]
            [dl4clj.eval.api.eval :refer [get-stats]]
            [dl4clj.nn.conf.builders.nn :as nn]
            [dl4clj.datasets.iterators :as iter]
            [dl4clj.core :as c]))

(def nn-conf
  (nn/builder
   ;; network args
   :optimization-algo :stochastic-gradient-descent
   :seed 123
   :iterations 1
   :regularization? true

   ;; setting layer defaults
   :default-activation-fn :relu
   :default-l2 7.5e-6
   :default-weight-init :xavier
   :default-learning-rate 0.0015
   :default-updater :nesterovs
   :default-momentum 0.98

   ;; setting layer configuration
   :layers {0 {:dense-layer
               {:layer-name "example first layer"
                :n-in 784 :n-out 500}}
            1 {:dense-layer
               {:layer-name "example second layer"
                :n-in 500 :n-out 100}}
            2 {:output-layer
               {:n-in 100 :n-out 10
                ;; layer specific params
                :loss-fn :negativeloglikelihood
                :activation-fn :softmax
                :layer-name "example output layer"}}}

   ;; multi layer args
   :backprop? true
   :pretrain? false))

(def train-iter
  (iter/new-mnist-data-set-iterator
   :batch-size 64
   :train? true
   :seed 123))

(def test-iter
  (iter/new-mnist-data-set-iterator
   :batch-size 64
   :train? false
   :seed 123))

(def invalid-score-condition (new-invalid-score-iteration-termination-condition))

(def max-score-condition (new-max-score-iteration-termination-condition
                          :max-score 20.0))

(def max-time-condition (new-max-time-iteration-termination-condition
                         :max-time-val 10
                         :max-time-unit :minutes))

(def score-doesnt-improve-condition (new-score-improvement-epoch-termination-condition
                                     :max-n-epoch-no-improve 5))

(def target-score-condition (new-best-score-epoch-termination-condition
                             :best-expected-score 0.009))

(def max-number-epochs-condition (new-max-epochs-termination-condition :max-n 20))

(def in-mem-saver (new-in-memory-saver))

(def trained-mln
;; defaults to returning the model
  (c/train-with-early-stopping
   :nn-conf nn-conf
   :training-iter train-mnist-iter
   :testing-iter test-mnist-iter
   :eval-every-n-epochs 1
   :iteration-termination-conditions [invalid-score-condition
                                      max-score-condition
                                      max-time-condition]
   :epoch-termination-conditions [score-doesnt-improve-condition
                                  target-score-condition
                                  max-number-epochs-condition]
   :save-last-model? true
   :model-saver in-mem-saver
   :as-code? false))

(def model-evaler
  (evaluate-classification :mln trained-mln :iter test-mnist-iter))

(println (get-stats :evaler model-evaler))
  • explicit, step by step way of doing this
(ns my.ns
  (:require [dl4clj.earlystopping.early-stopping-config :refer [new-early-stopping-config]]
            [dl4clj.earlystopping.termination-conditions :refer :all]
            [dl4clj.earlystopping.model-saver :refer [new-in-memory-saver new-local-file-model-saver]]
            [dl4clj.earlystopping.score-calc :refer [new-ds-loss-calculator]]
            [dl4clj.earlystopping.early-stopping-trainer :refer [new-early-stopping-trainer]]
            [dl4clj.earlystopping.api.early-stopping-trainer :refer [fit-trainer!]]
            [dl4clj.nn.conf.builders.nn :as nn]
            [dl4clj.nn.multilayer.multi-layer-network :as mln]
            [dl4clj.utils :refer [load-model!]]
            [dl4clj.datasets.iterators :as iter]
            [dl4clj.core :as c]))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; start with our network config
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(def nn-conf
  (nn/builder
   ;; network args
   :optimization-algo :stochastic-gradient-descent
   :seed 123 :iterations 1 :regularization? true
   ;; setting layer defaults
   :default-activation-fn :relu :default-l2 7.5e-6
   :default-weight-init :xavier :default-learning-rate 0.0015
   :default-updater :nesterovs :default-momentum 0.98
   ;; setting layer configuration
   :layers {0 {:dense-layer
               {:layer-name "example first layer"
                :n-in 784 :n-out 500}}
            1 {:dense-layer
               {:layer-name "example second layer"
                :n-in 500 :n-out 100}}
            2 {:output-layer
               {:n-in 100 :n-out 10
                ;; layer specific params
                :loss-fn :negativeloglikelihood
                :activation-fn :softmax
                :layer-name "example output layer"}}}
   ;; multi layer args
   :backprop? true
   :pretrain? false))

(def mln (c/model-from-conf nn-conf))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; the training/testing data
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(def train-iter
  (iter/new-mnist-data-set-iterator
   :batch-size 64
   :train? true
   :seed 123))

(def test-iter
  (iter/new-mnist-data-set-iterator
   :batch-size 64
   :train? false
   :seed 123))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; we are going to need termination conditions
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; these allow us to control when we exit training

;; this can be based off of iterations or epochs

;; iteration termination conditions

(def invalid-score-condition (new-invalid-score-iteration-termination-condition))

(def max-score-condition (new-max-score-iteration-termination-condition
                          :max-score 20.0))

(def max-time-condition (new-max-time-iteration-termination-condition
                         :max-time-val 10
                         :max-time-unit :minutes))

;; epoch termination conditions

(def score-doesnt-improve-condition (new-score-improvement-epoch-termination-condition
                                     :max-n-epoch-no-improve 5))

(def target-score-condition (new-best-score-epoch-termination-condition :best-expected-score 0.009))

(def max-number-epochs-condition (new-max-epochs-termination-condition :max-n 20))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; we also need a way to save our model
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; can be in memory or to a local directory

(def in-mem-saver (new-in-memory-saver))

(def local-file-saver (new-local-file-model-saver :directory "resources/tmp/readme/"))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; set up your score calculator
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(def score-calcer (new-ds-loss-calculator :iter test-iter
                                          :average? true))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; create an early stopping configuration
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; termination conditions
;; a way to save our model
;; a way to calculate the score of our model on the dataset

(def early-stopping-conf
  (new-early-stopping-config
   :epoch-termination-conditions [score-doesnt-improve-condition
                                  target-score-condition
                                  max-number-epochs-condition]
   :iteration-termination-conditions [invalid-score-condition
                                      max-score-condition
                                      max-time-condition]
   :eval-every-n-epochs 5
   :model-saver local-file-saver
   :save-last-model? true
   :score-calculator score-calcer))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; create an early stopping trainer from our data, model and early stopping conf
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(def es-trainer (new-early-stopping-trainer :early-stopping-conf early-stopping-conf
                                            :mln mln
                                            :iter train-iter))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; fit and use our early stopping trainer
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(def es-trainer-fitted (fit-trainer! es-trainer :as-code? false))

;; when the trainer terminates, you will see something like this
;;[nREPL-worker-24] BaseEarlyStoppingTrainer INFO  Completed training epoch 14
;;[nREPL-worker-24] BaseEarlyStoppingTrainer INFO  New best model: score = 0.005225599372851298,
;;                                                   epoch = 14 (previous: score = 0.018243224899038346, epoch = 7)
;;[nREPL-worker-24] BaseEarlyStoppingTrainer INFO Hit epoch termination condition at epoch 14.
;;                                           Details: BestScoreEpochTerminationCondition(0.009)

;; and if we look at the es-trainer-fitted object we see

;;#object[org.deeplearning4j.earlystopping.EarlyStoppingResult 0x5ab74f27 EarlyStoppingResult
;;(terminationReason=EpochTerminationCondition,details=BestScoreEpochTerminationCondition(0.009),
;; bestModelEpoch=14,bestModelScore=0.005225599372851298,totalEpochs=15)]

;; and our model has been saved to /resources/tmp/readme/bestModel.bin
;; there we have our model config, model params and our updater state

;; we can then load this model to use it or continue refining it

(def loaded-model (load-model! :path "resources/tmp/readme/bestModel.bin"
                               :load-updater? true))

Transfer Learning (freezing layers)


;; TODO: need to write up examples

Spark Training

dl4j Spark usage

How it is done in dl4clj

  • Uses dl4clj.core
    • This example uses a fn which takes care of most steps for you
      • allows you to pass args as code bc the fn accounts for the multiple spark contexts issue encountered when everything is just a data structure

(ns my.ns
  (:require [dl4clj.nn.conf.builders.layers :as l]
            [dl4clj.nn.conf.builders.nn :as nn]
            [dl4clj.datasets.iterators :refer [new-iris-data-set-iterator]]
            [dl4clj.eval.api.eval :refer [get-stats]]
            [dl4clj.spark.masters.param-avg :as master]
            [dl4clj.spark.data.java-rdd :refer [new-java-spark-context
                                                java-rdd-from-iter]]
            [dl4clj.spark.api.dl4j-multi-layer :refer [eval-classification-spark-mln
                                                       get-spark-context]]
            [dl4clj.core :as c]))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 1, create your model config
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(def mln-conf
  (nn/builder
   :optimization-algo :stochastic-gradient-descent
   :default-learning-rate 0.006
   :layers {0 (l/dense-layer-builder :n-in 4 :n-out 2 :activation-fn :relu)
            1 {:output-layer
               {:loss-fn :negativeloglikelihood
                :n-in 2 :n-out 3
                :activation-fn :soft-max
                :weight-init :xavier}}}
   :backprop? true
   :backprop-type :standard))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 2, training master
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(def training-master
  (master/new-parameter-averaging-training-master
   :build? true
   :rdd-n-examples 10
   :n-workers 4
   :averaging-freq 10
   :batch-size-per-worker 2
   :export-dir "resources/spark/master/"
   :rdd-training-approach :direct
   :repartition-data :always
   :repartition-strategy :balanced
   :seed 1234
   :save-updater? true
   :storage-level :none))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 3, spark context
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(def your-spark-context
  (new-java-spark-context :app-name "example app"))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 4, training data
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(def iris-iter
  (new-iris-data-set-iterator
   :batch-size 1
   :n-examples 5))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 5, spark mln
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(def fitted-spark-mln
  (c/train-with-spark :spark-context your-spark-context
                      :mln-conf mln-conf
                      :training-master training-master
                      :iter iris-iter
                      :n-epochs 1
                      :as-code? false))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 5, use spark context from spark-mln to create rdd
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; TODO: eliminate this step

(def our-rdd
  (let [sc (get-spark-context fitted-spark-mln :as-code? false)]
    (java-rdd-from-iter :spark-context sc
                        :iter iris-iter)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 6, evaluation model and print stats (poor performance of model expected)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(def eval-obj
  (eval-classification-spark-mln
   :spark-mln fitted-spark-mln
   :rdd our-rdd))

(println (get-stats :evaler eval-obj))

  • this example demonstrates the dl4j workflow
    • NOTE: unlike the previous example, this one requires dl4j objects to be used
      • this is becaues spark only wants you to have one spark context at a time
(ns my.ns
  (:require [dl4clj.nn.conf.builders.layers :as l]
            [dl4clj.nn.conf.builders.nn :as nn]
            [dl4clj.datasets.iterators :refer [new-iris-data-set-iterator]]
            [dl4clj.eval.api.eval :refer [get-stats]]
            [dl4clj.spark.masters.param-avg :as master]
            [dl4clj.spark.data.java-rdd :refer [new-java-spark-context java-rdd-from-iter]]
            [dl4clj.spark.dl4j-multi-layer :as spark-mln]
            [dl4clj.spark.api.dl4j-multi-layer :refer [fit-spark-mln!
                                                       eval-classification-spark-mln]]))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 1, create your model
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(def mln-conf
  (nn/builder
   :optimization-algo :stochastic-gradient-descent
   :default-learning-rate 0.006
   :layers {0 (l/dense-layer-builder :n-in 4 :n-out 2 :activation-fn :relu)
            1 {:output-layer
               {:loss-fn :negativeloglikelihood
                :n-in 2 :n-out 3
                :activation-fn :soft-max
                :weight-init :xavier}}}
   :backprop? true
   :as-code? false
   :backprop-type :standard))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 2, create a training master
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; not all options specified, but most are

(def training-master
  (master/new-parameter-averaging-training-master
   :build? true
   :rdd-n-examples 10
   :n-workers 4
   :averaging-freq 10
   :batch-size-per-worker 2
   :export-dir "resources/spark/master/"
   :rdd-training-approach :direct
   :repartition-data :always
   :repartition-strategy :balanced
   :seed 1234
   :as-code? false
   :save-updater? true
   :storage-level :none))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 3, create a Spark Multi Layer Network
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(def your-spark-context
  (new-java-spark-context :app-name "example app" :as-code? false))

;; new-java-spark-context will turn an existing spark-configuration into a java spark context
;; or create a new java spark context with master set to "local[*]" and the app name
;; set to :app-name


(def spark-mln
  (spark-mln/new-spark-multi-layer-network
   :spark-context your-spark-context
   :mln mln-conf
   :training-master training-master
   :as-code? false))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 4, load your data
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; one way is via a dataset-iterator
;; can make one directly from a dataset (iterator data-set)
;; see: nd4clj.linalg.dataset.api.data-set and nd4clj.linalg.dataset.data-set
;; we are going to use a pre-built one

(def iris-iter
  (new-iris-data-set-iterator
   :batch-size 1
   :n-examples 5
   :as-code? false))

;; now lets convert the data into a javaRDD

(def our-rdd
  (java-rdd-from-iter :spark-context your-spark-context
                      :iter iris-iter))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 5, fit and evaluate the model
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(def fitted-spark-mln
  (fit-spark-mln!
   :spark-mln spark-mln
   :rdd our-rdd
   :n-epochs 1))
;; this fn also has the option to supply :path-to-data instead of :rdd
;; that path should point to a directory containing a number of dataset objects

(def eval-obj
  (eval-classification-spark-mln
   :spark-mln fitted-spark-mln
   :rdd our-rdd))
;; we would want to have different testing and training rdd's but here we are using
;; the data we trained on

;; lets get the stats for how our model performed

(println (get-stats :evaler eval-obj))

Terminology

Coming soon

Packages to come back to:

Implement ComputationGraphs and the classes which use them

NLP

Parallelism

TSNE

UI


Author: yetanalytics
Source Code: https://github.com/yetanalytics/dl4clj
License: BSD-2-Clause License

#machine-learning #deep-learning 

Arvel  Parker

Arvel Parker

1591611780

How to Find Ulimit For user on Linux

How can I find the correct ulimit values for a user account or process on Linux systems?

For proper operation, we must ensure that the correct ulimit values set after installing various software. The Linux system provides means of restricting the number of resources that can be used. Limits set for each Linux user account. However, system limits are applied separately to each process that is running for that user too. For example, if certain thresholds are too low, the system might not be able to server web pages using Nginx/Apache or PHP/Python app. System resource limits viewed or set with the NA command. Let us see how to use the ulimit that provides control over the resources available to the shell and processes.

#[object object] #[object object] #[object object] #[object object] #[object object] #[object object] #[object object] #[object object] #[object object] #[object object]

Connor Mills

Connor Mills

1670560264

Understanding Arrays in Python

Learn how to use Python arrays. Create arrays in Python using the array module. You'll see how to define them and the different methods commonly used for performing operations on them.
 

The artcile covers arrays that you create by importing the array module. We won't cover NumPy arrays here.

Table of Contents

  1. Introduction to Arrays
    1. The differences between Lists and Arrays
    2. When to use arrays
  2. How to use arrays
    1. Define arrays
    2. Find the length of arrays
    3. Array indexing
    4. Search through arrays
    5. Loop through arrays
    6. Slice an array
  3. Array methods for performing operations
    1. Change an existing value
    2. Add a new value
    3. Remove a value
  4. Conclusion

Let's get started!


What are Python Arrays?

Arrays are a fundamental data structure, and an important part of most programming languages. In Python, they are containers which are able to store more than one item at the same time.

Specifically, they are an ordered collection of elements with every value being of the same data type. That is the most important thing to remember about Python arrays - the fact that they can only hold a sequence of multiple items that are of the same type.

What's the Difference between Python Lists and Python Arrays?

Lists are one of the most common data structures in Python, and a core part of the language.

Lists and arrays behave similarly.

Just like arrays, lists are an ordered sequence of elements.

They are also mutable and not fixed in size, which means they can grow and shrink throughout the life of the program. Items can be added and removed, making them very flexible to work with.

However, lists and arrays are not the same thing.

Lists store items that are of various data types. This means that a list can contain integers, floating point numbers, strings, or any other Python data type, at the same time. That is not the case with arrays.

As mentioned in the section above, arrays store only items that are of the same single data type. There are arrays that contain only integers, or only floating point numbers, or only any other Python data type you want to use.

When to Use Python Arrays

Lists are built into the Python programming language, whereas arrays aren't. Arrays are not a built-in data structure, and therefore need to be imported via the array module in order to be used.

Arrays of the array module are a thin wrapper over C arrays, and are useful when you want to work with homogeneous data.

They are also more compact and take up less memory and space which makes them more size efficient compared to lists.

If you want to perform mathematical calculations, then you should use NumPy arrays by importing the NumPy package. Besides that, you should just use Python arrays when you really need to, as lists work in a similar way and are more flexible to work with.

How to Use Arrays in Python

In order to create Python arrays, you'll first have to import the array module which contains all the necassary functions.

There are three ways you can import the array module:

  1. By using import array at the top of the file. This includes the module array. You would then go on to create an array using array.array().
import array

#how you would create an array
array.array()
  1. Instead of having to type array.array() all the time, you could use import array as arr at the top of the file, instead of import array alone. You would then create an array by typing arr.array(). The arr acts as an alias name, with the array constructor then immediately following it.
import array as arr

#how you would create an array
arr.array()
  1. Lastly, you could also use from array import *, with * importing all the functionalities available. You would then create an array by writing the array() constructor alone.
from array import *

#how you would create an array
array()

How to Define Arrays in Python

Once you've imported the array module, you can then go on to define a Python array.

The general syntax for creating an array looks like this:

variable_name = array(typecode,[elements])

Let's break it down:

  • variable_name would be the name of the array.
  • The typecode specifies what kind of elements would be stored in the array. Whether it would be an array of integers, an array of floats or an array of any other Python data type. Remember that all elements should be of the same data type.
  • Inside square brackets you mention the elements that would be stored in the array, with each element being separated by a comma. You can also create an empty array by just writing variable_name = array(typecode) alone, without any elements.

Below is a typecode table, with the different typecodes that can be used with the different data types when defining Python arrays:

TYPECODEC TYPEPYTHON TYPESIZE
'b'signed charint1
'B'unsigned charint1
'u'wchar_tUnicode character2
'h'signed shortint2
'H'unsigned shortint2
'i'signed intint2
'I'unsigned intint2
'l'signed longint4
'L'unsigned longint4
'q'signed long longint8
'Q'unsigned long longint8
'f'floatfloat4
'd'doublefloat8

Tying everything together, here is an example of how you would define an array in Python:

import array as arr 

numbers = arr.array('i',[10,20,30])


print(numbers)

#output

#array('i', [10, 20, 30])

Let's break it down:

  • First we included the array module, in this case with import array as arr .
  • Then, we created a numbers array.
  • We used arr.array() because of import array as arr .
  • Inside the array() constructor, we first included i, for signed integer. Signed integer means that the array can include positive and negative values. Unsigned integer, with H for example, would mean that no negative values are allowed.
  • Lastly, we included the values to be stored in the array in square brackets.

Keep in mind that if you tried to include values that were not of i typecode, meaning they were not integer values, you would get an error:

import array as arr 

numbers = arr.array('i',[10.0,20,30])


print(numbers)

#output

#Traceback (most recent call last):
# File "/Users/dionysialemonaki/python_articles/demo.py", line 14, in <module>
#   numbers = arr.array('i',[10.0,20,30])
#TypeError: 'float' object cannot be interpreted as an integer

In the example above, I tried to include a floating point number in the array. I got an error because this is meant to be an integer array only.

Another way to create an array is the following:

from array import *

#an array of floating point values
numbers = array('d',[10.0,20.0,30.0])

print(numbers)

#output

#array('d', [10.0, 20.0, 30.0])

The example above imported the array module via from array import * and created an array numbers of float data type. This means that it holds only floating point numbers, which is specified with the 'd' typecode.

How to Find the Length of an Array in Python

To find out the exact number of elements contained in an array, use the built-in len() method.

It will return the integer number that is equal to the total number of elements in the array you specify.

import array as arr 

numbers = arr.array('i',[10,20,30])


print(len(numbers))

#output
# 3

In the example above, the array contained three elements – 10, 20, 30 – so the length of numbers is 3.

Array Indexing and How to Access Individual Items in an Array in Python

Each item in an array has a specific address. Individual items are accessed by referencing their index number.

Indexing in Python, and in all programming languages and computing in general, starts at 0. It is important to remember that counting starts at 0 and not at 1.

To access an element, you first write the name of the array followed by square brackets. Inside the square brackets you include the item's index number.

The general syntax would look something like this:

array_name[index_value_of_item]

Here is how you would access each individual element in an array:

import array as arr 

numbers = arr.array('i',[10,20,30])

print(numbers[0]) # gets the 1st element
print(numbers[1]) # gets the 2nd element
print(numbers[2]) # gets the 3rd element

#output

#10
#20
#30

Remember that the index value of the last element of an array is always one less than the length of the array. Where n is the length of the array, n - 1 will be the index value of the last item.

Note that you can also access each individual element using negative indexing.

With negative indexing, the last element would have an index of -1, the second to last element would have an index of -2, and so on.

Here is how you would get each item in an array using that method:

import array as arr 

numbers = arr.array('i',[10,20,30])

print(numbers[-1]) #gets last item
print(numbers[-2]) #gets second to last item
print(numbers[-3]) #gets first item
 
#output

#30
#20
#10

How to Search Through an Array in Python

You can find out an element's index number by using the index() method.

You pass the value of the element being searched as the argument to the method, and the element's index number is returned.

import array as arr 

numbers = arr.array('i',[10,20,30])

#search for the index of the value 10
print(numbers.index(10))

#output

#0

If there is more than one element with the same value, the index of the first instance of the value will be returned:

import array as arr 


numbers = arr.array('i',[10,20,30,10,20,30])

#search for the index of the value 10
#will return the index number of the first instance of the value 10
print(numbers.index(10))

#output

#0

How to Loop through an Array in Python

You've seen how to access each individual element in an array and print it out on its own.

You've also seen how to print the array, using the print() method. That method gives the following result:

import array as arr 

numbers = arr.array('i',[10,20,30])

print(numbers)

#output

#array('i', [10, 20, 30])

What if you want to print each value one by one?

This is where a loop comes in handy. You can loop through the array and print out each value, one-by-one, with each loop iteration.

For this you can use a simple for loop:

import array as arr 

numbers = arr.array('i',[10,20,30])

for number in numbers:
    print(number)
    
#output
#10
#20
#30

You could also use the range() function, and pass the len() method as its parameter. This would give the same result as above:

import array as arr  

values = arr.array('i',[10,20,30])

#prints each individual value in the array
for value in range(len(values)):
    print(values[value])

#output

#10
#20
#30

How to Slice an Array in Python

To access a specific range of values inside the array, use the slicing operator, which is a colon :.

When using the slicing operator and you only include one value, the counting starts from 0 by default. It gets the first item, and goes up to but not including the index number you specify.


import array as arr 

#original array
numbers = arr.array('i',[10,20,30])

#get the values 10 and 20 only
print(numbers[:2])  #first to second position

#output

#array('i', [10, 20])

When you pass two numbers as arguments, you specify a range of numbers. In this case, the counting starts at the position of the first number in the range, and up to but not including the second one:

import array as arr 

#original array
numbers = arr.array('i',[10,20,30])


#get the values 20 and 30 only
print(numbers[1:3]) #second to third position

#output

#rray('i', [20, 30])

Methods For Performing Operations on Arrays in Python

Arrays are mutable, which means they are changeable. You can change the value of the different items, add new ones, or remove any you don't want in your program anymore.

Let's see some of the most commonly used methods which are used for performing operations on arrays.

How to Change the Value of an Item in an Array

You can change the value of a specific element by speficying its position and assigning it a new value:

import array as arr 

#original array
numbers = arr.array('i',[10,20,30])

#change the first element
#change it from having a value of 10 to having a value of 40
numbers[0] = 40

print(numbers)

#output

#array('i', [40, 20, 30])

How to Add a New Value to an Array

To add one single value at the end of an array, use the append() method:

import array as arr 

#original array
numbers = arr.array('i',[10,20,30])

#add the integer 40 to the end of numbers
numbers.append(40)

print(numbers)

#output

#array('i', [10, 20, 30, 40])

Be aware that the new item you add needs to be the same data type as the rest of the items in the array.

Look what happens when I try to add a float to an array of integers:

import array as arr 

#original array
numbers = arr.array('i',[10,20,30])

#add the integer 40 to the end of numbers
numbers.append(40.0)

print(numbers)

#output

#Traceback (most recent call last):
#  File "/Users/dionysialemonaki/python_articles/demo.py", line 19, in <module>
#   numbers.append(40.0)
#TypeError: 'float' object cannot be interpreted as an integer

But what if you want to add more than one value to the end an array?

Use the extend() method, which takes an iterable (such as a list of items) as an argument. Again, make sure that the new items are all the same data type.

import array as arr 

#original array
numbers = arr.array('i',[10,20,30])

#add the integers 40,50,60 to the end of numbers
#The numbers need to be enclosed in square brackets

numbers.extend([40,50,60])

print(numbers)

#output

#array('i', [10, 20, 30, 40, 50, 60])

And what if you don't want to add an item to the end of an array? Use the insert() method, to add an item at a specific position.

The insert() function takes two arguments: the index number of the position the new element will be inserted, and the value of the new element.

import array as arr 

#original array
numbers = arr.array('i',[10,20,30])

#add the integer 40 in the first position
#remember indexing starts at 0

numbers.insert(0,40)

print(numbers)

#output

#array('i', [40, 10, 20, 30])

How to Remove a Value from an Array

To remove an element from an array, use the remove() method and include the value as an argument to the method.

import array as arr 

#original array
numbers = arr.array('i',[10,20,30])

numbers.remove(10)

print(numbers)

#output

#array('i', [20, 30])

With remove(), only the first instance of the value you pass as an argument will be removed.

See what happens when there are more than one identical values:


import array as arr 

#original array
numbers = arr.array('i',[10,20,30,10,20])

numbers.remove(10)

print(numbers)

#output

#array('i', [20, 30, 10, 20])

Only the first occurence of 10 is removed.

You can also use the pop() method, and specify the position of the element to be removed:

import array as arr 

#original array
numbers = arr.array('i',[10,20,30,10,20])

#remove the first instance of 10
numbers.pop(0)

print(numbers)

#output

#array('i', [20, 30, 10, 20])

Conclusion

And there you have it - you now know the basics of how to create arrays in Python using the array module. Hopefully you found this guide helpful.

You'll start from the basics and learn in an interacitve and beginner-friendly way. You'll also build five projects at the end to put into practice and help reinforce what you learned.

Thanks for reading and happy coding!

Original article source at https://www.freecodecamp.org

#python 

How to Create Arrays in Python

In this tutorial, you'll know the basics of how to create arrays in Python using the array module. Learn how to use Python arrays. You'll see how to define them and the different methods commonly used for performing operations on them.

This tutorialvideo on 'Arrays in Python' will help you establish a strong hold on all the fundamentals in python programming language. Below are the topics covered in this video:  
1:15 What is an array?
2:53 Is python list same as an array?
3:48  How to create arrays in python?
7:19 Accessing array elements
9:59 Basic array operations
        - 10:33  Finding the length of an array
        - 11:44  Adding Elements
        - 15:06  Removing elements
        - 18:32  Array concatenation
       - 20:59  Slicing
       - 23:26  Looping  


Python Array Tutorial – Define, Index, Methods

In this article, you'll learn how to use Python arrays. You'll see how to define them and the different methods commonly used for performing operations on them.

The artcile covers arrays that you create by importing the array module. We won't cover NumPy arrays here.

Table of Contents

  1. Introduction to Arrays
    1. The differences between Lists and Arrays
    2. When to use arrays
  2. How to use arrays
    1. Define arrays
    2. Find the length of arrays
    3. Array indexing
    4. Search through arrays
    5. Loop through arrays
    6. Slice an array
  3. Array methods for performing operations
    1. Change an existing value
    2. Add a new value
    3. Remove a value
  4. Conclusion

Let's get started!

What are Python Arrays?

Arrays are a fundamental data structure, and an important part of most programming languages. In Python, they are containers which are able to store more than one item at the same time.

Specifically, they are an ordered collection of elements with every value being of the same data type. That is the most important thing to remember about Python arrays - the fact that they can only hold a sequence of multiple items that are of the same type.

What's the Difference between Python Lists and Python Arrays?

Lists are one of the most common data structures in Python, and a core part of the language.

Lists and arrays behave similarly.

Just like arrays, lists are an ordered sequence of elements.

They are also mutable and not fixed in size, which means they can grow and shrink throughout the life of the program. Items can be added and removed, making them very flexible to work with.

However, lists and arrays are not the same thing.

Lists store items that are of various data types. This means that a list can contain integers, floating point numbers, strings, or any other Python data type, at the same time. That is not the case with arrays.

As mentioned in the section above, arrays store only items that are of the same single data type. There are arrays that contain only integers, or only floating point numbers, or only any other Python data type you want to use.

When to Use Python Arrays

Lists are built into the Python programming language, whereas arrays aren't. Arrays are not a built-in data structure, and therefore need to be imported via the array module in order to be used.

Arrays of the array module are a thin wrapper over C arrays, and are useful when you want to work with homogeneous data.

They are also more compact and take up less memory and space which makes them more size efficient compared to lists.

If you want to perform mathematical calculations, then you should use NumPy arrays by importing the NumPy package. Besides that, you should just use Python arrays when you really need to, as lists work in a similar way and are more flexible to work with.

How to Use Arrays in Python

In order to create Python arrays, you'll first have to import the array module which contains all the necassary functions.

There are three ways you can import the array module:

  • By using import array at the top of the file. This includes the module array. You would then go on to create an array using array.array().
import array

#how you would create an array
array.array()
  • Instead of having to type array.array() all the time, you could use import array as arr at the top of the file, instead of import array alone. You would then create an array by typing arr.array(). The arr acts as an alias name, with the array constructor then immediately following it.
import array as arr

#how you would create an array
arr.array()
  • Lastly, you could also use from array import *, with * importing all the functionalities available. You would then create an array by writing the array() constructor alone.
from array import *

#how you would create an array
array()

How to Define Arrays in Python

Once you've imported the array module, you can then go on to define a Python array.

The general syntax for creating an array looks like this:

variable_name = array(typecode,[elements])

Let's break it down:

  • variable_name would be the name of the array.
  • The typecode specifies what kind of elements would be stored in the array. Whether it would be an array of integers, an array of floats or an array of any other Python data type. Remember that all elements should be of the same data type.
  • Inside square brackets you mention the elements that would be stored in the array, with each element being separated by a comma. You can also create an empty array by just writing variable_name = array(typecode) alone, without any elements.

Below is a typecode table, with the different typecodes that can be used with the different data types when defining Python arrays:

TYPECODEC TYPEPYTHON TYPESIZE
'b'signed charint1
'B'unsigned charint1
'u'wchar_tUnicode character2
'h'signed shortint2
'H'unsigned shortint2
'i'signed intint2
'I'unsigned intint2
'l'signed longint4
'L'unsigned longint4
'q'signed long longint8
'Q'unsigned long longint8
'f'floatfloat4
'd'doublefloat8

Tying everything together, here is an example of how you would define an array in Python:

import array as arr 

numbers = arr.array('i',[10,20,30])


print(numbers)

#output

#array('i', [10, 20, 30])

Let's break it down:

  • First we included the array module, in this case with import array as arr .
  • Then, we created a numbers array.
  • We used arr.array() because of import array as arr .
  • Inside the array() constructor, we first included i, for signed integer. Signed integer means that the array can include positive and negative values. Unsigned integer, with H for example, would mean that no negative values are allowed.
  • Lastly, we included the values to be stored in the array in square brackets.

Keep in mind that if you tried to include values that were not of i typecode, meaning they were not integer values, you would get an error:

import array as arr 

numbers = arr.array('i',[10.0,20,30])


print(numbers)

#output

#Traceback (most recent call last):
# File "/Users/dionysialemonaki/python_articles/demo.py", line 14, in <module>
#   numbers = arr.array('i',[10.0,20,30])
#TypeError: 'float' object cannot be interpreted as an integer

In the example above, I tried to include a floating point number in the array. I got an error because this is meant to be an integer array only.

Another way to create an array is the following:

from array import *

#an array of floating point values
numbers = array('d',[10.0,20.0,30.0])

print(numbers)

#output

#array('d', [10.0, 20.0, 30.0])

The example above imported the array module via from array import * and created an array numbers of float data type. This means that it holds only floating point numbers, which is specified with the 'd' typecode.

How to Find the Length of an Array in Python

To find out the exact number of elements contained in an array, use the built-in len() method.

It will return the integer number that is equal to the total number of elements in the array you specify.

import array as arr 

numbers = arr.array('i',[10,20,30])


print(len(numbers))

#output
# 3

In the example above, the array contained three elements – 10, 20, 30 – so the length of numbers is 3.

Array Indexing and How to Access Individual Items in an Array in Python

Each item in an array has a specific address. Individual items are accessed by referencing their index number.

Indexing in Python, and in all programming languages and computing in general, starts at 0. It is important to remember that counting starts at 0 and not at 1.

To access an element, you first write the name of the array followed by square brackets. Inside the square brackets you include the item's index number.

The general syntax would look something like this:

array_name[index_value_of_item]

Here is how you would access each individual element in an array:

import array as arr 

numbers = arr.array('i',[10,20,30])

print(numbers[0]) # gets the 1st element
print(numbers[1]) # gets the 2nd element
print(numbers[2]) # gets the 3rd element

#output

#10
#20
#30

Remember that the index value of the last element of an array is always one less than the length of the array. Where n is the length of the array, n - 1 will be the index value of the last item.

Note that you can also access each individual element using negative indexing.

With negative indexing, the last element would have an index of -1, the second to last element would have an index of -2, and so on.

Here is how you would get each item in an array using that method:

import array as arr 

numbers = arr.array('i',[10,20,30])

print(numbers[-1]) #gets last item
print(numbers[-2]) #gets second to last item
print(numbers[-3]) #gets first item
 
#output

#30
#20
#10

How to Search Through an Array in Python

You can find out an element's index number by using the index() method.

You pass the value of the element being searched as the argument to the method, and the element's index number is returned.

import array as arr 

numbers = arr.array('i',[10,20,30])

#search for the index of the value 10
print(numbers.index(10))

#output

#0

If there is more than one element with the same value, the index of the first instance of the value will be returned:

import array as arr 


numbers = arr.array('i',[10,20,30,10,20,30])

#search for the index of the value 10
#will return the index number of the first instance of the value 10
print(numbers.index(10))

#output

#0

How to Loop through an Array in Python

You've seen how to access each individual element in an array and print it out on its own.

You've also seen how to print the array, using the print() method. That method gives the following result:

import array as arr 

numbers = arr.array('i',[10,20,30])

print(numbers)

#output

#array('i', [10, 20, 30])

What if you want to print each value one by one?

This is where a loop comes in handy. You can loop through the array and print out each value, one-by-one, with each loop iteration.

For this you can use a simple for loop:

import array as arr 

numbers = arr.array('i',[10,20,30])

for number in numbers:
    print(number)
    
#output
#10
#20
#30

You could also use the range() function, and pass the len() method as its parameter. This would give the same result as above:

import array as arr  

values = arr.array('i',[10,20,30])

#prints each individual value in the array
for value in range(len(values)):
    print(values[value])

#output

#10
#20
#30

How to Slice an Array in Python

To access a specific range of values inside the array, use the slicing operator, which is a colon :.

When using the slicing operator and you only include one value, the counting starts from 0 by default. It gets the first item, and goes up to but not including the index number you specify.

import array as arr 

#original array
numbers = arr.array('i',[10,20,30])

#get the values 10 and 20 only
print(numbers[:2])  #first to second position

#output

#array('i', [10, 20])

When you pass two numbers as arguments, you specify a range of numbers. In this case, the counting starts at the position of the first number in the range, and up to but not including the second one:

import array as arr 

#original array
numbers = arr.array('i',[10,20,30])


#get the values 20 and 30 only
print(numbers[1:3]) #second to third position

#output

#rray('i', [20, 30])

Methods For Performing Operations on Arrays in Python

Arrays are mutable, which means they are changeable. You can change the value of the different items, add new ones, or remove any you don't want in your program anymore.

Let's see some of the most commonly used methods which are used for performing operations on arrays.

How to Change the Value of an Item in an Array

You can change the value of a specific element by speficying its position and assigning it a new value:

import array as arr 

#original array
numbers = arr.array('i',[10,20,30])

#change the first element
#change it from having a value of 10 to having a value of 40
numbers[0] = 40

print(numbers)

#output

#array('i', [40, 20, 30])

How to Add a New Value to an Array

To add one single value at the end of an array, use the append() method:

import array as arr 

#original array
numbers = arr.array('i',[10,20,30])

#add the integer 40 to the end of numbers
numbers.append(40)

print(numbers)

#output

#array('i', [10, 20, 30, 40])

Be aware that the new item you add needs to be the same data type as the rest of the items in the array.

Look what happens when I try to add a float to an array of integers:

import array as arr 

#original array
numbers = arr.array('i',[10,20,30])

#add the integer 40 to the end of numbers
numbers.append(40.0)

print(numbers)

#output

#Traceback (most recent call last):
#  File "/Users/dionysialemonaki/python_articles/demo.py", line 19, in <module>
#   numbers.append(40.0)
#TypeError: 'float' object cannot be interpreted as an integer

But what if you want to add more than one value to the end an array?

Use the extend() method, which takes an iterable (such as a list of items) as an argument. Again, make sure that the new items are all the same data type.

import array as arr 

#original array
numbers = arr.array('i',[10,20,30])

#add the integers 40,50,60 to the end of numbers
#The numbers need to be enclosed in square brackets

numbers.extend([40,50,60])

print(numbers)

#output

#array('i', [10, 20, 30, 40, 50, 60])

And what if you don't want to add an item to the end of an array? Use the insert() method, to add an item at a specific position.

The insert() function takes two arguments: the index number of the position the new element will be inserted, and the value of the new element.

import array as arr 

#original array
numbers = arr.array('i',[10,20,30])

#add the integer 40 in the first position
#remember indexing starts at 0

numbers.insert(0,40)

print(numbers)

#output

#array('i', [40, 10, 20, 30])

How to Remove a Value from an Array

To remove an element from an array, use the remove() method and include the value as an argument to the method.

import array as arr 

#original array
numbers = arr.array('i',[10,20,30])

numbers.remove(10)

print(numbers)

#output

#array('i', [20, 30])

With remove(), only the first instance of the value you pass as an argument will be removed.

See what happens when there are more than one identical values:

import array as arr 

#original array
numbers = arr.array('i',[10,20,30,10,20])

numbers.remove(10)

print(numbers)

#output

#array('i', [20, 30, 10, 20])

Only the first occurence of 10 is removed.

You can also use the pop() method, and specify the position of the element to be removed:

import array as arr 

#original array
numbers = arr.array('i',[10,20,30,10,20])

#remove the first instance of 10
numbers.pop(0)

print(numbers)

#output

#array('i', [20, 30, 10, 20])

Conclusion

And there you have it - you now know the basics of how to create arrays in Python using the array module. Hopefully you found this guide helpful.

Thanks for reading and happy coding!

#python #programming 

MEAN Stack Tutorial MongoDB ExpressJS AngularJS NodeJS

We are going to build a full stack Todo App using the MEAN (MongoDB, ExpressJS, AngularJS and NodeJS). This is the last part of three-post series tutorial.

MEAN Stack tutorial series:

AngularJS tutorial for beginners (Part I)
Creating RESTful APIs with NodeJS and MongoDB Tutorial (Part II)
MEAN Stack Tutorial: MongoDB, ExpressJS, AngularJS and NodeJS (Part III) 👈 you are here
Before completing the app, let’s cover some background about the this stack. If you rather jump to the hands-on part click here to get started.

#[object object] #[object object] #[object object] #[object object] #[object object] #[object object] #[object object] #[object object]