1602338400
NVIDIA has announced that the Centre for Development of Advanced Computing (C-DAC) will commission India’s largest HPC-AI supercomputer — ‘PARAM Siddhi – AI.’
This HPC-AI supercomputer is a machine with 210 AI Petaflops (6.5 Petaflops Peak DP), which is based on the NVIDIA DGX SuperPOD reference architecture comprising of — 42 NVIDIA DGX A100 systems; connected with NVIDIA Mellanox HDR InfiniBand networking along with indigenously developed HPC-AI engine; Software Frameworks; and cloud platform by C-DAC.
With the approval of Ravi Shankar Prasad, Union Minister of Electronics and IT and Law & Justice; Shri Ajay Prakash Sawhney, secretary at MeitY; Ashutosh Sharma, secretary at DST; and recommendation of National Supercomputing Mission’s technical advisory committee chaired by Dr V K Saraswat, this initiative will put India’s leadership on top of global AI supercomputing research and innovation.
The initiative has been lead by Abhishek Das, an innovative young scientist and program director at C-DAC, who has conceived the idea, designed the architecture of the largest HPC-AI Infrastructure in India. Hemant Darbari, the director-general of C-DAC said, “PARAM Siddhi – AI, the State-of-the-Art large-scale HPC-AI scalable infrastructure, will be established under National Supercomputing Mission at the Centre for Development of Advanced Computing (C-DAC) with support from Niti Aayog.”d.
#news #c-dac #supercomputers india #ai
1602338400
NVIDIA has announced that the Centre for Development of Advanced Computing (C-DAC) will commission India’s largest HPC-AI supercomputer — ‘PARAM Siddhi – AI.’
This HPC-AI supercomputer is a machine with 210 AI Petaflops (6.5 Petaflops Peak DP), which is based on the NVIDIA DGX SuperPOD reference architecture comprising of — 42 NVIDIA DGX A100 systems; connected with NVIDIA Mellanox HDR InfiniBand networking along with indigenously developed HPC-AI engine; Software Frameworks; and cloud platform by C-DAC.
With the approval of Ravi Shankar Prasad, Union Minister of Electronics and IT and Law & Justice; Shri Ajay Prakash Sawhney, secretary at MeitY; Ashutosh Sharma, secretary at DST; and recommendation of National Supercomputing Mission’s technical advisory committee chaired by Dr V K Saraswat, this initiative will put India’s leadership on top of global AI supercomputing research and innovation.
The initiative has been lead by Abhishek Das, an innovative young scientist and program director at C-DAC, who has conceived the idea, designed the architecture of the largest HPC-AI Infrastructure in India. Hemant Darbari, the director-general of C-DAC said, “PARAM Siddhi – AI, the State-of-the-Art large-scale HPC-AI scalable infrastructure, will be established under National Supercomputing Mission at the Centre for Development of Advanced Computing (C-DAC) with support from Niti Aayog.”d.
#news #c-dac #supercomputers india #ai
1598373180
While conventionally, vector processing was reserved for powerful supercomputers of the world, the current advancements in vector processors have made it accessible for developing less expensive and smaller supercomputers for AI and ML tasks. Not only it helps in developing supercomputers leveraging less computing power, but also empties the scalar processors for even critical workloads, making it a preferred choice for computing engines.
Thus, Japanese IT giant, NEC has developed an AI platform — SX-Aurora TSUBASA, which will allow NEC’s vector processors applicable for AI and ML workloads. NEC has been renowned for its vector processors which is preferred while addressing massive amounts of statistical data and complex ML applications.
#opinions #nec supercomputer #nec technology #nvidia #nvidia supercomputer #smallest supercomputer #supercomputer #supercomputers india
1601975156
NVIDIA has announced that the Centre for Development of Advanced Computing (C-DAC) will commission India’s largest HPC-AI supercomputer — ‘PARAM Siddhi – AI.’
Read more: https://analyticsindiamag.com/c-dac-to-commission-indias-fastest-hpc-ai-supercomputer-with-nvidia/
#gtc2020 #nvidia #gpu #artificial-intelligence #technews
1656151740
Flutter Console Coverage Test
This small dart tools is used to generate Flutter Coverage Test report to console
Add a line like this to your package's pubspec.yaml (and run an implicit flutter pub get):
dev_dependencies:
test_cov_console: ^0.2.2
flutter pub get
Running "flutter pub get" in coverage... 0.5s
flutter test --coverage
00:02 +1: All tests passed!
flutter pub run test_cov_console
---------------------------------------------|---------|---------|---------|-------------------|
File |% Branch | % Funcs | % Lines | Uncovered Line #s |
---------------------------------------------|---------|---------|---------|-------------------|
lib/src/ | | | | |
print_cov.dart | 100.00 | 100.00 | 88.37 |...,149,205,206,207|
print_cov_constants.dart | 0.00 | 0.00 | 0.00 | no unit testing|
lib/ | | | | |
test_cov_console.dart | 0.00 | 0.00 | 0.00 | no unit testing|
---------------------------------------------|---------|---------|---------|-------------------|
All files with unit testing | 100.00 | 100.00 | 88.37 | |
---------------------------------------------|---------|---------|---------|-------------------|
If not given a FILE, "coverage/lcov.info" will be used.
-f, --file=<FILE> The target lcov.info file to be reported
-e, --exclude=<STRING1,STRING2,...> A list of contains string for files without unit testing
to be excluded from report
-l, --line It will print Lines & Uncovered Lines only
Branch & Functions coverage percentage will not be printed
-i, --ignore It will not print any file without unit testing
-m, --multi Report from multiple lcov.info files
-c, --csv Output to CSV file
-o, --output=<CSV-FILE> Full path of output CSV file
If not given, "coverage/test_cov_console.csv" will be used
-t, --total Print only the total coverage
Note: it will ignore all other option (if any), except -m
-p, --pass=<MINIMUM> Print only the whether total coverage is passed MINIMUM value or not
If the value >= MINIMUM, it will print PASSED, otherwise FAILED
Note: it will ignore all other option (if any), except -m
-h, --help Show this help
flutter pub run test_cov_console --file=coverage/lcov.info --exclude=_constants,_mock
---------------------------------------------|---------|---------|---------|-------------------|
File |% Branch | % Funcs | % Lines | Uncovered Line #s |
---------------------------------------------|---------|---------|---------|-------------------|
lib/src/ | | | | |
print_cov.dart | 100.00 | 100.00 | 88.37 |...,149,205,206,207|
lib/ | | | | |
test_cov_console.dart | 0.00 | 0.00 | 0.00 | no unit testing|
---------------------------------------------|---------|---------|---------|-------------------|
All files with unit testing | 100.00 | 100.00 | 88.37 | |
---------------------------------------------|---------|---------|---------|-------------------|
It support to run for multiple lcov.info files with the followings directory structures:
1. No root module
<root>/<module_a>
<root>/<module_a>/coverage/lcov.info
<root>/<module_a>/lib/src
<root>/<module_b>
<root>/<module_b>/coverage/lcov.info
<root>/<module_b>/lib/src
...
2. With root module
<root>/coverage/lcov.info
<root>/lib/src
<root>/<module_a>
<root>/<module_a>/coverage/lcov.info
<root>/<module_a>/lib/src
<root>/<module_b>
<root>/<module_b>/coverage/lcov.info
<root>/<module_b>/lib/src
...
You must run test_cov_console on <root> dir, and the report would be grouped by module, here is
the sample output for directory structure 'with root module':
flutter pub run test_cov_console --file=coverage/lcov.info --exclude=_constants,_mock --multi
---------------------------------------------|---------|---------|---------|-------------------|
File |% Branch | % Funcs | % Lines | Uncovered Line #s |
---------------------------------------------|---------|---------|---------|-------------------|
lib/src/ | | | | |
print_cov.dart | 100.00 | 100.00 | 88.37 |...,149,205,206,207|
lib/ | | | | |
test_cov_console.dart | 0.00 | 0.00 | 0.00 | no unit testing|
---------------------------------------------|---------|---------|---------|-------------------|
All files with unit testing | 100.00 | 100.00 | 88.37 | |
---------------------------------------------|---------|---------|---------|-------------------|
---------------------------------------------|---------|---------|---------|-------------------|
File - module_a - |% Branch | % Funcs | % Lines | Uncovered Line #s |
---------------------------------------------|---------|---------|---------|-------------------|
lib/src/ | | | | |
print_cov.dart | 100.00 | 100.00 | 88.37 |...,149,205,206,207|
lib/ | | | | |
test_cov_console.dart | 0.00 | 0.00 | 0.00 | no unit testing|
---------------------------------------------|---------|---------|---------|-------------------|
All files with unit testing | 100.00 | 100.00 | 88.37 | |
---------------------------------------------|---------|---------|---------|-------------------|
---------------------------------------------|---------|---------|---------|-------------------|
File - module_b - |% Branch | % Funcs | % Lines | Uncovered Line #s |
---------------------------------------------|---------|---------|---------|-------------------|
lib/src/ | | | | |
print_cov.dart | 100.00 | 100.00 | 88.37 |...,149,205,206,207|
lib/ | | | | |
test_cov_console.dart | 0.00 | 0.00 | 0.00 | no unit testing|
---------------------------------------------|---------|---------|---------|-------------------|
All files with unit testing | 100.00 | 100.00 | 88.37 | |
---------------------------------------------|---------|---------|---------|-------------------|
flutter pub run test_cov_console -c --output=coverage/test_coverage.csv
#### sample CSV output file:
File,% Branch,% Funcs,% Lines,Uncovered Line #s
lib/,,,,
test_cov_console.dart,0.00,0.00,0.00,no unit testing
lib/src/,,,,
parser.dart,100.00,100.00,97.22,"97"
parser_constants.dart,100.00,100.00,100.00,""
print_cov.dart,100.00,100.00,82.91,"29,49,51,52,171,174,177,180,183,184,185,186,187,188,279,324,325,387,388,389,390,391,392,393,394,395,398"
print_cov_constants.dart,0.00,0.00,0.00,no unit testing
All files with unit testing,100.00,100.00,86.07,""
You can install the package from the command line:
dart pub global activate test_cov_console
The package has the following executables:
$ test_cov_console
Run this command:
With Dart:
$ dart pub add test_cov_console
With Flutter:
$ flutter pub add test_cov_console
This will add a line like this to your package's pubspec.yaml (and run an implicit dart pub get
):
dependencies:
test_cov_console: ^0.2.2
Alternatively, your editor might support dart pub get
or flutter pub get
. Check the docs for your editor to learn more.
Now in your Dart code, you can use:
import 'package:test_cov_console/test_cov_console.dart';
example/lib/main.dart
import 'package:flutter/material.dart';
void main() {
runApp(MyApp());
}
class MyApp extends StatelessWidget {
// This widget is the root of your application.
@override
Widget build(BuildContext context) {
return MaterialApp(
title: 'Flutter Demo',
theme: ThemeData(
// This is the theme of your application.
//
// Try running your application with "flutter run". You'll see the
// application has a blue toolbar. Then, without quitting the app, try
// changing the primarySwatch below to Colors.green and then invoke
// "hot reload" (press "r" in the console where you ran "flutter run",
// or simply save your changes to "hot reload" in a Flutter IDE).
// Notice that the counter didn't reset back to zero; the application
// is not restarted.
primarySwatch: Colors.blue,
// This makes the visual density adapt to the platform that you run
// the app on. For desktop platforms, the controls will be smaller and
// closer together (more dense) than on mobile platforms.
visualDensity: VisualDensity.adaptivePlatformDensity,
),
home: MyHomePage(title: 'Flutter Demo Home Page'),
);
}
}
class MyHomePage extends StatefulWidget {
MyHomePage({Key? key, required this.title}) : super(key: key);
// This widget is the home page of your application. It is stateful, meaning
// that it has a State object (defined below) that contains fields that affect
// how it looks.
// This class is the configuration for the state. It holds the values (in this
// case the title) provided by the parent (in this case the App widget) and
// used by the build method of the State. Fields in a Widget subclass are
// always marked "final".
final String title;
@override
_MyHomePageState createState() => _MyHomePageState();
}
class _MyHomePageState extends State<MyHomePage> {
int _counter = 0;
void _incrementCounter() {
setState(() {
// This call to setState tells the Flutter framework that something has
// changed in this State, which causes it to rerun the build method below
// so that the display can reflect the updated values. If we changed
// _counter without calling setState(), then the build method would not be
// called again, and so nothing would appear to happen.
_counter++;
});
}
@override
Widget build(BuildContext context) {
// This method is rerun every time setState is called, for instance as done
// by the _incrementCounter method above.
//
// The Flutter framework has been optimized to make rerunning build methods
// fast, so that you can just rebuild anything that needs updating rather
// than having to individually change instances of widgets.
return Scaffold(
appBar: AppBar(
// Here we take the value from the MyHomePage object that was created by
// the App.build method, and use it to set our appbar title.
title: Text(widget.title),
),
body: Center(
// Center is a layout widget. It takes a single child and positions it
// in the middle of the parent.
child: Column(
// Column is also a layout widget. It takes a list of children and
// arranges them vertically. By default, it sizes itself to fit its
// children horizontally, and tries to be as tall as its parent.
//
// Invoke "debug painting" (press "p" in the console, choose the
// "Toggle Debug Paint" action from the Flutter Inspector in Android
// Studio, or the "Toggle Debug Paint" command in Visual Studio Code)
// to see the wireframe for each widget.
//
// Column has various properties to control how it sizes itself and
// how it positions its children. Here we use mainAxisAlignment to
// center the children vertically; the main axis here is the vertical
// axis because Columns are vertical (the cross axis would be
// horizontal).
mainAxisAlignment: MainAxisAlignment.center,
children: <Widget>[
Text(
'You have pushed the button this many times:',
),
Text(
'$_counter',
style: Theme.of(context).textTheme.headline4,
),
],
),
),
floatingActionButton: FloatingActionButton(
onPressed: _incrementCounter,
tooltip: 'Increment',
child: Icon(Icons.add),
), // This trailing comma makes auto-formatting nicer for build methods.
);
}
}
Author: DigitalKatalis
Source Code: https://github.com/DigitalKatalis/test_cov_console
License: BSD-3-Clause license
1597323600
India is currently in a vital phase of its infrastructure, energy, and mobility development, which nicely sets the stage to leapfrog current or existing practices. According to sources, an estimated 40% of its population will be living in urban areas by 2025, and they will account for over 60% of the consumption of resources.
Moreover, transportation in India is highly fragmented, disorganised across modes with poor infrastructure, congestion and low public transport density. Riders and drivers have to undertake multiple challenges daily such as lack of availability, reliability, quality, consistent pricing, safety etc.
To know more about the current space and transportation in India, Analytics India Magazine caught up with Shirish Andhare, Director, Program Management, Uber India and South Asia.
“Our goal is to change the Indian mindset and help people replace their car with their phone by offering a range of mobility options — whether cars, bikes, autos or public transport — all in the Uber app. By putting more people in fewer cars, we have the potential to build smarter and more liveable cities,” said Andhare.
Using technology, Uber India has been trying to transform the mobility landscape and change how people move around in the country by playing a transformational role in addressing pain points for riders and adding efficiency into the system.
With its multi-modal vision for mobility in India, Uber wants to make a variety of options available to help commuters get where they want to go at a price point that works for them. To that end, Uber has announced partnerships across airports and Metros in Delhi and Hyderabad to provide last-mile connectivity.
Andhare said that about seven years ago, Uber launched in Bangalore with just three employees. Today, Uber India has tech teams across Bangalore and Hyderabad. It continues its exponential growth journey, focusing on facilitating affordable, reliable and convenient transportation to millions of riders and livelihood opportunities for hundreds of thousands of driver-partners.
The company has doubled its engineering team in India this year. The R&D teams located in Hyderabad and Bangalore continue to grow and currently host over a dozen global charters including rider, maps, customer obsession, infrastructure, money, and eats. These teams are driving global impact for Uber based on several India-first product innovations.
Andhare said, “With over a billion trips in India and South Asia and counting, along with a large driver-partner base, we are focused on winning hearts and minds in the market. We plan to do this by doubling down on products that can solve for low network connectivity, congestion and pollution, as well as enable multiple price points with a varied set of offerings. Uber’s success is deeply tied to our success in India, we are in a strong position in India, and we are committed to serving the market.”
He added, “As we gear up to deliver the next billion rides in the region, we remain focused on providing convenient, affordable rides to millions of riders and stable and sustainable earning opportunities to driver-partners.”
Andhare stated that technology provides an incredible opportunity to improve road safety in new and innovative ways before, during and after every ride. At every step, Uber is maximising the usage of technology to bring transparency and accountability through features such as two-way feedback and ratings, telematics and GPS, among others. These will have a positive impact on furthering trust and empathy between riders and driver-partners.
Uber’s Engineering Centre in Bangalore and Hyderabad are engaged in cutting-edge basic and applied technology solutions in areas that include rider growth, driver growth, digital payments, mapping, telematics, vehicle tracking/safety and fleet management, and the Uber core experience.
Some of the India-first innovations include the in-app emergency feature, arrears handling, driver inbound phone support, cash trips, Uber Rentals for longer trips and UberGO. The company is investing heavily in research and resources.
Some of the technologies used at Uber include computer vision, automation, Machine Learning(ML), Optical character recognition (OCR), and Artificial Intelligence (AI) techniques, NLP etc. These technologies are used in areas such as onboarding restaurant menus onto Uber marketplace, enabling earnings opportunities and more. It is also crucial to perform other tasks such as better routing, matching, fraud detection, document processing, maps editing, machine translations, customer support, and more.
#people #ai at uber #ai used in uber #interview with shirish andhare director program management of uber india #shirish andhare interview #technologies at uber india #uber ai #uber director interview #uber india #uber india ai