1599923820
In Machine Learning, we often come across situations where we see outliers present in the data set. These outliers are nothing but extreme values present or we can say the values that do not follow the pattern in the data. The values that diverge from all other values are termed as outliers. These outliers can arise due to different factors like human error while preparing the data or internationally putting outliers in the data to test the model and many other different reasons. But are they beneficial for us while building predictive models? The answer is sometimes we have to drop these outliers and sometimes when we retain them as they hold some interesting meaning.
In this article, we will be discussing how we should detect outliers in the dataset and remove them using different ways. We will use a weight-height dataset that is available on Kaggle publicly. The data set contains weight and height values, we will search for outliers in the weight column.
What you will learn from this article?
#developers corner #outlier detection #outliers #z-score #python
1675304280
We are back with another exciting and much-talked-about Rails tutorial on how to use Hotwire with the Rails application. This Hotwire Rails tutorial is an alternate method for building modern web applications that consume a pinch of JavaScript.
Rails 7 Hotwire is the default front-end framework shipped with Rails 7 after it was launched. It is used to represent HTML over the wire in the Rails application. Previously, we used to add a hotwire-rails gem in our gem file and then run rails hotwire: install. However, with the introduction of Rails 7, the gem got deprecated. Now, we use turbo-rails and stimulus rails directly, which work as Hotwire’s SPA-like page accelerator and Hotwire’s modest JavaScript framework.
Hotwire is a package of different frameworks that help to build applications. It simplifies the developer’s work for writing web pages without the need to write JavaScript, and instead sending HTML code over the wire.
Introduction to The Hotwire Framework:
It uses simplified techniques to build web applications while decreasing the usage of JavaScript in the application. Turbo offers numerous handling methods for the HTML data sent over the wire and displaying the application’s data without actually loading the entire page. It helps to maintain the simplicity of web applications without destroying the single-page application experience by using the below techniques:
Turbo Frames: Turbo Frames help to load the different sections of our markup without any dependency as it divides the page into different contexts separately called frames and updates these frames individually.
Turbo Drive: Every link doesn’t have to make the entire page reload when clicked. Only the HTML contained within the tag will be displayed.
Turbo Streams: To add real-time features to the application, this technique is used. It helps to bring real-time data to the application using CRUD actions.
It represents the JavaScript framework, which is required when JS is a requirement in the application. The interaction with the HTML is possible with the help of a stimulus, as the controllers that help those interactions are written by a stimulus.
Not much information is available about Strada as it has not been officially released yet. However, it works with native applications, and by using HTML bridge attributes, interaction is made possible between web applications and native apps.
Simple diagrammatic representation of Hotwire Stack:
As we are implementing the Ruby on Rails Hotwire tutorial, make sure about the following installations before you can get started.
Looking for an enthusiastic team of ROR developers to shape the vision of your web project?
Contact Bacancy today and hire Ruby developers to start building your dream project!
Find the following commands to create a rails application.
mkdir ~/projects/railshotwire
cd ~/projects/railshotwire
echo "source 'https://rubygems.org'" > Gemfile
echo "gem 'rails', '~> 7.0.0'" >> Gemfile
bundle install
bundle exec rails new . --force -d=postgresql
Now create some files for the project, up till now no usage of Rails Hotwire can be seen.
Fire the following command in your terminal.
echo "class HomeController < ApplicationController" > app/controllers/home_controller.rb
echo "end" >> app/controllers/home_controller.rb
echo "class OtherController < ApplicationController" > app/controllers/other_controller.rb
echo "end" >> app/controllers/home_controller.rb
echo "Rails.application.routes.draw do" > config/routes.rb
echo ' get "home/index"' >> config/routes.rb
echo ' get "other/index"' >> config/routes.rb
echo ' root to: "home#index"' >> config/routes.rb
echo 'end' >> config/routes.rb
mkdir app/views/home
echo '<h1>This is Rails Hotwire homepage</h1>' > app/views/home/index.html.erb
echo '<div><%= link_to "Enter to other page", other_index_path %></div>' >> app/views/home/index.html.erb
mkdir app/views/other
echo '<h1>This is Another page</h1>' > app/views/other/index.html.erb
echo '<div><%= link_to "Enter to home page", root_path %></div>' >> app/views/other/index.html.erb
bin/rails db:create
bin/rails db:migrate
Additionally, you can clone the code and browse through the project. Here’s the source code of the repository: Rails 7 Hotwire application
Now, let’s see how Hotwire Rails can work its magic with various Turbo techniques.
Go to your localhost:3000 on your web browser and right-click on the Inspect and open a Network tab of the DevTools of the browser.
Now click on go to another page link that appears on the home page to redirect from the home page to another page. In our Network tab, we can see that this action of navigation is achieved via XHR. It appears only the part inside HTML is reloaded, here neither the CSS is reloaded nor the JS is reloaded when the navigation action is performed.
By performing this action we can see that Turbo Drive helps to represent the HTML response without loading the full page and only follows redirect and reindeer HTML responses which helps to make the application faster to access.
This technique helps to divide the current page into different sections called frames that can be updated separately independently when new data is added from the server.
Below we discuss the different use cases of Turbo frame like inline edition, sorting, searching, and filtering of data.
Let’s perform some practical actions to see the example of these use cases.
Make changes in the app/controllers/home_controller.rb file
#CODE
class HomeController < ApplicationController
def turbo_frame_form
end
def turbo_frame submit
extracted_anynumber = params[:any][:anynumber]
render :turbo_frame_form, status: :ok, locals: {anynumber: extracted_anynumber, comment: 'turbo_frame_submit ok' }
end
end
Add app/views/home/turbo_frame_form.html.erb file to the application and add this content inside the file.
#CODE
<section>
<%= turbo_frame_tag 'anyframe' do %>
<div>
<h2>Frame view</h2>
<%= form_with scope: :any, url: turbo_frame_submit_path, local: true do |form| %>
<%= form.label :anynumber, 'Type an integer (odd or even)', 'class' => 'my-0 d-inline' %>
<%= form.text_field :anynumber, type: 'number', 'required' => 'true', 'value' => "#{local_assigns[:anynumber] || 0}", 'aria-describedby' => 'anynumber' %>
<%= form.submit 'Submit this number', 'id' => 'submit-number' %>
<% end %>
</div>
<div>
<h2>Data of the view</h2>
<pre style="font-size: .7rem;"><%= JSON.pretty_generate(local_assigns) %></pre>
</div>
<% end %>
</section>
Make some adjustments in routes.rb
#CODE
Rails.application.routes.draw do
get 'home/index'
get 'other/index'
get '/home/turbo_frame_form' => 'home#turbo_frame_form', as: 'turbo_frame_form'
post '/home/turbo_frame_submit' => 'home#turbo_frame_submit', as: 'turbo_frame_submit'
root to: "home#index"
end
#CODE
<h1>This is Rails Hotwire home page</h1>
<div><%= link_to "Enter to other page", other_index_path %></div>
<%= turbo_frame_tag 'anyframe' do %>
<div>
<h2>Home view</h2>
<%= form_with scope: :any, url: turbo_frame_submit_path, local: true do |form| %>
<%= form.label :anynumber, 'Type an integer (odd or even)', 'class' => 'my-0 d-inline' %>
<%= form.text_field :anynumber, type: 'number', 'required' => 'true', 'value' => "#{local_assigns[:anynumber] || 0}", 'aria-describedby' => 'anynumber' %>
<%= form.submit 'Submit this number', 'id' => 'submit-number' %>
<% end %>
<div>
<% end %>
After making all the changes, restart the rails server and refresh the browser, the default view will appear on the browser.
Now in the field enter any digit, after entering the digit click on submit button, and as the submit button is clicked we can see the Turbo Frame in action in the below screen, we can observe that the frame part changed, the first title and first link didn’t move.
Turbo Streams deliver page updates over WebSocket, SSE or in response to form submissions by only using HTML and a series of CRUD-like operations, you are free to say that either
This transmit can be represented by a simple example.
#CODE
class OtherController < ApplicationController
def post_something
respond_to do |format|
format.turbo_stream { }
end
end
end
Add the below line in routes.rb file of the application
#CODE
post '/other/post_something' => 'other#post_something', as: 'post_something'
Superb! Rails will now attempt to locate the app/views/other/post_something.turbo_stream.erb template at any moment the ‘/other/post_something’ endpoint is reached.
For this, we need to add app/views/other/post_something.turbo_stream.erb template in the rails application.
#CODE
<turbo-stream action="append" target="messages">
<template>
<div id="message_1">This changes the existing message!</div>
</template>
</turbo-stream>
This states that the response will try to append the template of the turbo frame with ID “messages”.
Now change the index.html.erb file in app/views/other paths with the below content.
#CODE
<h1>This is Another page</h1>
<div><%= link_to "Enter to home page", root_path %></div>
<div style="margin-top: 3rem;">
<%= form_with scope: :any, url: post_something_path do |form| %>
<%= form.submit 'Post any message %>
<% end %>
<turbo-frame id="messages">
<div>An empty message</div>
</turbo-frame>
</div>
This action shows that after submitting the response, the Turbo Streams help the developer to append the message, without reloading the page.
Another use case we can test is that rather than appending the message, the developer replaces the message. For that, we need to change the content of app/views/other/post_something.turbo_stream.erb template file and change the value of the action attribute from append to replace and check the changes in the browser.
#CODE
<turbo-stream action="replace" target="messages">
<template>
<div id="message_1">This changes the existing message!</div>
</template>
</turbo-stream>
When we click on Post any message button, the message that appear below that button will get replaced with the message that is mentioned in the app/views/other/post_something.turbo_stream.erb template
There are some cases in an application where JS is needed, therefore to cover those scenarios we require Hotwire JS tool. Hotwire has a JS tool because in some scenarios Turbo-* tools are not sufficient. But as we know that Hotwire is used to reduce the usage of JS in an application, Stimulus considers HTML as the single source of truth. Consider the case where we have to give elements on a page some JavaScript attributes, such as data controller, data-action, and data target. For that, a stimulus controller that can access elements and receive events based on those characteristics will be created.
Make a change in app/views/other/index.html.erb template file in rails application
#CODE
<h1>This is Another page</h1>
<div><%= link_to "Enter to home page", root_path %></div>
<div style="margin-top: 2rem;">
<%= form_with scope: :any, url: post_something_path do |form| %>
<%= form.submit 'Post something' %>
<% end %>
<turbo-frame id="messages">
<div>An empty message</div>
</turbo-frame>
</div>
<div style="margin-top: 2rem;">
<h2>Stimulus</h2>
<div data-controller="hello">
<input data-hello-target="name" type="text">
<button data-action="click->hello#greet">
Greet
</button>
<span data-hello-target="output">
</span>
</div>
</div>
Make changes in the hello_controller.js in path app/JavaScript/controllers and add a stimulus controller in the file, which helps to bring the HTML into life.
#CODE
import { Controller } from "@hotwired/stimulus"
export default class extends Controller {
static targets = [ "name", "output" ]
greet() {
this.outputTarget.textContent =
`Hello, ${this.nameTarget.value}!`
}
}
Go to your browser after making the changes in the code and click on Enter to other page link which will navigate to the localhost:3000/other/index page there you can see the changes implemented by the stimulus controller that is designed to augment your HTML with just enough behavior to make it more responsive.
With just a little bit of work, Turbo and Stimulus together offer a complete answer for applications that are quick and compelling.
Using Rails 7 Hotwire helps to load the pages at a faster speed and allows you to render templates on the server, where you have access to your whole domain model. It is a productive development experience in ROR, without compromising any of the speed or responsiveness associated with SPA.
We hope you were satisfied with our Rails Hotwire tutorial. Write to us at service@bacancy.com for any query that you want to resolve, or if you want us to share a tutorial on your query.
For more such solutions on RoR, check out our Ruby on Rails Tutorials. We will always strive to amaze you and cater to your needs.
Original article source at: https://www.bacancytechnology.com/
1599923820
In Machine Learning, we often come across situations where we see outliers present in the data set. These outliers are nothing but extreme values present or we can say the values that do not follow the pattern in the data. The values that diverge from all other values are termed as outliers. These outliers can arise due to different factors like human error while preparing the data or internationally putting outliers in the data to test the model and many other different reasons. But are they beneficial for us while building predictive models? The answer is sometimes we have to drop these outliers and sometimes when we retain them as they hold some interesting meaning.
In this article, we will be discussing how we should detect outliers in the dataset and remove them using different ways. We will use a weight-height dataset that is available on Kaggle publicly. The data set contains weight and height values, we will search for outliers in the weight column.
What you will learn from this article?
#developers corner #outlier detection #outliers #z-score #python
1667425440
Perl script converts PDF files to Gerber format
Pdf2Gerb generates Gerber 274X photoplotting and Excellon drill files from PDFs of a PCB. Up to three PDFs are used: the top copper layer, the bottom copper layer (for 2-sided PCBs), and an optional silk screen layer. The PDFs can be created directly from any PDF drawing software, or a PDF print driver can be used to capture the Print output if the drawing software does not directly support output to PDF.
The general workflow is as follows:
Please note that Pdf2Gerb does NOT perform DRC (Design Rule Checks), as these will vary according to individual PCB manufacturer conventions and capabilities. Also note that Pdf2Gerb is not perfect, so the output files must always be checked before submitting them. As of version 1.6, Pdf2Gerb supports most PCB elements, such as round and square pads, round holes, traces, SMD pads, ground planes, no-fill areas, and panelization. However, because it interprets the graphical output of a Print function, there are limitations in what it can recognize (or there may be bugs).
See docs/Pdf2Gerb.pdf for install/setup, config, usage, and other info.
#Pdf2Gerb config settings:
#Put this file in same folder/directory as pdf2gerb.pl itself (global settings),
#or copy to another folder/directory with PDFs if you want PCB-specific settings.
#There is only one user of this file, so we don't need a custom package or namespace.
#NOTE: all constants defined in here will be added to main namespace.
#package pdf2gerb_cfg;
use strict; #trap undef vars (easier debug)
use warnings; #other useful info (easier debug)
##############################################################################################
#configurable settings:
#change values here instead of in main pfg2gerb.pl file
use constant WANT_COLORS => ($^O !~ m/Win/); #ANSI colors no worky on Windows? this must be set < first DebugPrint() call
#just a little warning; set realistic expectations:
#DebugPrint("${\(CYAN)}Pdf2Gerb.pl ${\(VERSION)}, $^O O/S\n${\(YELLOW)}${\(BOLD)}${\(ITALIC)}This is EXPERIMENTAL software. \nGerber files MAY CONTAIN ERRORS. Please CHECK them before fabrication!${\(RESET)}", 0); #if WANT_DEBUG
use constant METRIC => FALSE; #set to TRUE for metric units (only affect final numbers in output files, not internal arithmetic)
use constant APERTURE_LIMIT => 0; #34; #max #apertures to use; generate warnings if too many apertures are used (0 to not check)
use constant DRILL_FMT => '2.4'; #'2.3'; #'2.4' is the default for PCB fab; change to '2.3' for CNC
use constant WANT_DEBUG => 0; #10; #level of debug wanted; higher == more, lower == less, 0 == none
use constant GERBER_DEBUG => 0; #level of debug to include in Gerber file; DON'T USE FOR FABRICATION
use constant WANT_STREAMS => FALSE; #TRUE; #save decompressed streams to files (for debug)
use constant WANT_ALLINPUT => FALSE; #TRUE; #save entire input stream (for debug ONLY)
#DebugPrint(sprintf("${\(CYAN)}DEBUG: stdout %d, gerber %d, want streams? %d, all input? %d, O/S: $^O, Perl: $]${\(RESET)}\n", WANT_DEBUG, GERBER_DEBUG, WANT_STREAMS, WANT_ALLINPUT), 1);
#DebugPrint(sprintf("max int = %d, min int = %d\n", MAXINT, MININT), 1);
#define standard trace and pad sizes to reduce scaling or PDF rendering errors:
#This avoids weird aperture settings and replaces them with more standardized values.
#(I'm not sure how photoplotters handle strange sizes).
#Fewer choices here gives more accurate mapping in the final Gerber files.
#units are in inches
use constant TOOL_SIZES => #add more as desired
(
#round or square pads (> 0) and drills (< 0):
.010, -.001, #tiny pads for SMD; dummy drill size (too small for practical use, but needed so StandardTool will use this entry)
.031, -.014, #used for vias
.041, -.020, #smallest non-filled plated hole
.051, -.025,
.056, -.029, #useful for IC pins
.070, -.033,
.075, -.040, #heavier leads
# .090, -.043, #NOTE: 600 dpi is not high enough resolution to reliably distinguish between .043" and .046", so choose 1 of the 2 here
.100, -.046,
.115, -.052,
.130, -.061,
.140, -.067,
.150, -.079,
.175, -.088,
.190, -.093,
.200, -.100,
.220, -.110,
.160, -.125, #useful for mounting holes
#some additional pad sizes without holes (repeat a previous hole size if you just want the pad size):
.090, -.040, #want a .090 pad option, but use dummy hole size
.065, -.040, #.065 x .065 rect pad
.035, -.040, #.035 x .065 rect pad
#traces:
.001, #too thin for real traces; use only for board outlines
.006, #minimum real trace width; mainly used for text
.008, #mainly used for mid-sized text, not traces
.010, #minimum recommended trace width for low-current signals
.012,
.015, #moderate low-voltage current
.020, #heavier trace for power, ground (even if a lighter one is adequate)
.025,
.030, #heavy-current traces; be careful with these ones!
.040,
.050,
.060,
.080,
.100,
.120,
);
#Areas larger than the values below will be filled with parallel lines:
#This cuts down on the number of aperture sizes used.
#Set to 0 to always use an aperture or drill, regardless of size.
use constant { MAX_APERTURE => max((TOOL_SIZES)) + .004, MAX_DRILL => -min((TOOL_SIZES)) + .004 }; #max aperture and drill sizes (plus a little tolerance)
#DebugPrint(sprintf("using %d standard tool sizes: %s, max aper %.3f, max drill %.3f\n", scalar((TOOL_SIZES)), join(", ", (TOOL_SIZES)), MAX_APERTURE, MAX_DRILL), 1);
#NOTE: Compare the PDF to the original CAD file to check the accuracy of the PDF rendering and parsing!
#for example, the CAD software I used generated the following circles for holes:
#CAD hole size: parsed PDF diameter: error:
# .014 .016 +.002
# .020 .02267 +.00267
# .025 .026 +.001
# .029 .03167 +.00267
# .033 .036 +.003
# .040 .04267 +.00267
#This was usually ~ .002" - .003" too big compared to the hole as displayed in the CAD software.
#To compensate for PDF rendering errors (either during CAD Print function or PDF parsing logic), adjust the values below as needed.
#units are pixels; for example, a value of 2.4 at 600 dpi = .0004 inch, 2 at 600 dpi = .0033"
use constant
{
HOLE_ADJUST => -0.004 * 600, #-2.6, #holes seemed to be slightly oversized (by .002" - .004"), so shrink them a little
RNDPAD_ADJUST => -0.003 * 600, #-2, #-2.4, #round pads seemed to be slightly oversized, so shrink them a little
SQRPAD_ADJUST => +0.001 * 600, #+.5, #square pads are sometimes too small by .00067, so bump them up a little
RECTPAD_ADJUST => 0, #(pixels) rectangular pads seem to be okay? (not tested much)
TRACE_ADJUST => 0, #(pixels) traces seemed to be okay?
REDUCE_TOLERANCE => .001, #(inches) allow this much variation when reducing circles and rects
};
#Also, my CAD's Print function or the PDF print driver I used was a little off for circles, so define some additional adjustment values here:
#Values are added to X/Y coordinates; units are pixels; for example, a value of 1 at 600 dpi would be ~= .002 inch
use constant
{
CIRCLE_ADJUST_MINX => 0,
CIRCLE_ADJUST_MINY => -0.001 * 600, #-1, #circles were a little too high, so nudge them a little lower
CIRCLE_ADJUST_MAXX => +0.001 * 600, #+1, #circles were a little too far to the left, so nudge them a little to the right
CIRCLE_ADJUST_MAXY => 0,
SUBST_CIRCLE_CLIPRECT => FALSE, #generate circle and substitute for clip rects (to compensate for the way some CAD software draws circles)
WANT_CLIPRECT => TRUE, #FALSE, #AI doesn't need clip rect at all? should be on normally?
RECT_COMPLETION => FALSE, #TRUE, #fill in 4th side of rect when 3 sides found
};
#allow .012 clearance around pads for solder mask:
#This value effectively adjusts pad sizes in the TOOL_SIZES list above (only for solder mask layers).
use constant SOLDER_MARGIN => +.012; #units are inches
#line join/cap styles:
use constant
{
CAP_NONE => 0, #butt (none); line is exact length
CAP_ROUND => 1, #round cap/join; line overhangs by a semi-circle at either end
CAP_SQUARE => 2, #square cap/join; line overhangs by a half square on either end
CAP_OVERRIDE => FALSE, #cap style overrides drawing logic
};
#number of elements in each shape type:
use constant
{
RECT_SHAPELEN => 6, #x0, y0, x1, y1, count, "rect" (start, end corners)
LINE_SHAPELEN => 6, #x0, y0, x1, y1, count, "line" (line seg)
CURVE_SHAPELEN => 10, #xstart, ystart, x0, y0, x1, y1, xend, yend, count, "curve" (bezier 2 points)
CIRCLE_SHAPELEN => 5, #x, y, 5, count, "circle" (center + radius)
};
#const my %SHAPELEN =
#Readonly my %SHAPELEN =>
our %SHAPELEN =
(
rect => RECT_SHAPELEN,
line => LINE_SHAPELEN,
curve => CURVE_SHAPELEN,
circle => CIRCLE_SHAPELEN,
);
#panelization:
#This will repeat the entire body the number of times indicated along the X or Y axes (files grow accordingly).
#Display elements that overhang PCB boundary can be squashed or left as-is (typically text or other silk screen markings).
#Set "overhangs" TRUE to allow overhangs, FALSE to truncate them.
#xpad and ypad allow margins to be added around outer edge of panelized PCB.
use constant PANELIZE => {'x' => 1, 'y' => 1, 'xpad' => 0, 'ypad' => 0, 'overhangs' => TRUE}; #number of times to repeat in X and Y directions
# Set this to 1 if you need TurboCAD support.
#$turboCAD = FALSE; #is this still needed as an option?
#CIRCAD pad generation uses an appropriate aperture, then moves it (stroke) "a little" - we use this to find pads and distinguish them from PCB holes.
use constant PAD_STROKE => 0.3; #0.0005 * 600; #units are pixels
#convert very short traces to pads or holes:
use constant TRACE_MINLEN => .001; #units are inches
#use constant ALWAYS_XY => TRUE; #FALSE; #force XY even if X or Y doesn't change; NOTE: needs to be TRUE for all pads to show in FlatCAM and ViewPlot
use constant REMOVE_POLARITY => FALSE; #TRUE; #set to remove subtractive (negative) polarity; NOTE: must be FALSE for ground planes
#PDF uses "points", each point = 1/72 inch
#combined with a PDF scale factor of .12, this gives 600 dpi resolution (1/72 * .12 = 600 dpi)
use constant INCHES_PER_POINT => 1/72; #0.0138888889; #multiply point-size by this to get inches
# The precision used when computing a bezier curve. Higher numbers are more precise but slower (and generate larger files).
#$bezierPrecision = 100;
use constant BEZIER_PRECISION => 36; #100; #use const; reduced for faster rendering (mainly used for silk screen and thermal pads)
# Ground planes and silk screen or larger copper rectangles or circles are filled line-by-line using this resolution.
use constant FILL_WIDTH => .01; #fill at most 0.01 inch at a time
# The max number of characters to read into memory
use constant MAX_BYTES => 10 * M; #bumped up to 10 MB, use const
use constant DUP_DRILL1 => TRUE; #FALSE; #kludge: ViewPlot doesn't load drill files that are too small so duplicate first tool
my $runtime = time(); #Time::HiRes::gettimeofday(); #measure my execution time
print STDERR "Loaded config settings from '${\(__FILE__)}'.\n";
1; #last value must be truthful to indicate successful load
#############################################################################################
#junk/experiment:
#use Package::Constants;
#use Exporter qw(import); #https://perldoc.perl.org/Exporter.html
#my $caller = "pdf2gerb::";
#sub cfg
#{
# my $proto = shift;
# my $class = ref($proto) || $proto;
# my $settings =
# {
# $WANT_DEBUG => 990, #10; #level of debug wanted; higher == more, lower == less, 0 == none
# };
# bless($settings, $class);
# return $settings;
#}
#use constant HELLO => "hi there2"; #"main::HELLO" => "hi there";
#use constant GOODBYE => 14; #"main::GOODBYE" => 12;
#print STDERR "read cfg file\n";
#our @EXPORT_OK = Package::Constants->list(__PACKAGE__); #https://www.perlmonks.org/?node_id=1072691; NOTE: "_OK" skips short/common names
#print STDERR scalar(@EXPORT_OK) . " consts exported:\n";
#foreach(@EXPORT_OK) { print STDERR "$_\n"; }
#my $val = main::thing("xyz");
#print STDERR "caller gave me $val\n";
#foreach my $arg (@ARGV) { print STDERR "arg $arg\n"; }
Author: swannman
Source Code: https://github.com/swannman/pdf2gerb
License: GPL-3.0 license
1626775355
No programming language is pretty much as diverse as Python. It enables building cutting edge applications effortlessly. Developers are as yet investigating the full capability of end-to-end Python development services in various areas.
By areas, we mean FinTech, HealthTech, InsureTech, Cybersecurity, and that's just the beginning. These are New Economy areas, and Python has the ability to serve every one of them. The vast majority of them require massive computational abilities. Python's code is dynamic and powerful - equipped for taking care of the heavy traffic and substantial algorithmic capacities.
Programming advancement is multidimensional today. Endeavor programming requires an intelligent application with AI and ML capacities. Shopper based applications require information examination to convey a superior client experience. Netflix, Trello, and Amazon are genuine instances of such applications. Python assists with building them effortlessly.
Python can do such numerous things that developers can't discover enough reasons to admire it. Python application development isn't restricted to web and enterprise applications. It is exceptionally adaptable and superb for a wide range of uses.
Robust frameworks
Python is known for its tools and frameworks. There's a structure for everything. Django is helpful for building web applications, venture applications, logical applications, and mathematical processing. Flask is another web improvement framework with no conditions.
Web2Py, CherryPy, and Falcon offer incredible capabilities to customize Python development services. A large portion of them are open-source frameworks that allow quick turn of events.
Simple to read and compose
Python has an improved sentence structure - one that is like the English language. New engineers for Python can undoubtedly understand where they stand in the development process. The simplicity of composing allows quick application building.
The motivation behind building Python, as said by its maker Guido Van Rossum, was to empower even beginner engineers to comprehend the programming language. The simple coding likewise permits developers to roll out speedy improvements without getting confused by pointless subtleties.
Utilized by the best
Alright - Python isn't simply one more programming language. It should have something, which is the reason the business giants use it. Furthermore, that too for different purposes. Developers at Google use Python to assemble framework organization systems, parallel information pusher, code audit, testing and QA, and substantially more. Netflix utilizes Python web development services for its recommendation algorithm and media player.
Massive community support
Python has a steadily developing community that offers enormous help. From amateurs to specialists, there's everybody. There are a lot of instructional exercises, documentation, and guides accessible for Python web development solutions.
Today, numerous universities start with Python, adding to the quantity of individuals in the community. Frequently, Python designers team up on various tasks and help each other with algorithmic, utilitarian, and application critical thinking.
Progressive applications
Python is the greatest supporter of data science, Machine Learning, and Artificial Intelligence at any enterprise software development company. Its utilization cases in cutting edge applications are the most compelling motivation for its prosperity. Python is the second most well known tool after R for data analytics.
The simplicity of getting sorted out, overseeing, and visualizing information through unique libraries makes it ideal for data based applications. TensorFlow for neural networks and OpenCV for computer vision are two of Python's most well known use cases for Machine learning applications.
Thinking about the advances in programming and innovation, Python is a YES for an assorted scope of utilizations. Game development, web application development services, GUI advancement, ML and AI improvement, Enterprise and customer applications - every one of them uses Python to its full potential.
The disadvantages of Python web improvement arrangements are regularly disregarded by developers and organizations because of the advantages it gives. They focus on quality over speed and performance over blunders. That is the reason it's a good idea to utilize Python for building the applications of the future.
#python development services #python development company #python app development #python development #python in web development #python software development
1619533440
Writing python code is one thing and writing the code in a good format is another thing. Most of the time especially junior coders/programmers focus on making sure the codes are working and forget to format their codes.
If you write a small program (with 1000 lines of codes) you could get away without formatting your code, but as programs get more and more complex, they get harder and harder to understand and at some point (around 15,000 lines of code), it becomes harder to understand the code that you yourself wrote.
The difference between working on well-formatted code and working on badly formatted code is like the difference between living in a palace and living in a dirty house.
#programming #python #python-programming #python-tutorials #python-tips #python-developers #code-quality #clean-code