Zara  Bryant

Zara Bryant

1622600462

Scaling DevSecOps with GitHub and Azure

Adopting DevSecOps practices at scale requires that development teams can quickly and securely go from code to cloud. Learn how GitHub Actions for Azure and GitHub integrations with Azure Services can help your team build workflows that enable continuous delivery while integrating security and governance best practices and get all your questions answered.

Check out more episodes on-demand at https://aka.ms/ATEonLearnTV

#devsecops #github #azure #cloud

What is GEEK

Buddha Community

Scaling DevSecOps with GitHub and Azure
Nabunya  Jane

Nabunya Jane

1624939448

A side-by-side comparison of Azure DevOps and GitHub

Collaboration is a crucial element in software development; having the right collaboration tools can make a difference and boost the entire team’s productivity. Microsoft introduced its Application Lifecycle Management product with Team Foundation Server (aka TFS) on March 16th, 2006. This software had to be installed on a server within your network and had a user-based license. To reduce the complexity of setting up and maintaining the server, Microsoft released Visual Studio Online–an Azure-based, server-hosted version of TFS. Microsoft manages and administers the servers as well as taking care of backups. To clarify its commitment to agile and DevOps, Microsoft rebranded Visual Studio Online in 2015 as Visual Studio Team Services and later as Azure DevOps in 2018.

Since its beginning, this platform has changed significantly. For example, it introduced a customizable, task-based build service, release gates, and much more. Many organizations across the world made a significant investment to run their businesses on Azure DevOps. For this reason, after Microsoft announced the acquisition of GitHub in mid-2018, GitHub announced its automated workflow system, which is much like Azure Pipelines. It’s called GitHub Actions. Due to the switch, some companies became afraid of having to migrate their practices again. In the past few months, I have gotten several questions about whether it is still worth starting new projects on Azure DevOps, especially after the release of features like GitHub Advanced Security and GitHub Codespaces (similar to Visual Studio Codespaces). In this article, I’ll clarify the differences between these two platforms, and I’ll give you some advice on how you should be using them to your advantage.

Data Residency

To meet the needs of companies that want to keep their data within their network, both GitHub and Azure DevOps provide a server version of their platform. GitHub version is called GitHub Enterprise Server, and the Azure DevOps version is called Azure DevOps Server. Both versions require the client to install and maintain both software and machine.

On the other hand, there is a critical difference between their cloud-hosted version. While Azure DevOps Service allows you to choose the Azure region, which is closes to your organization’s location, to decrease the eventuality of networking latency during the creation of your organization (collection of projects). GitHub doesn’t provide this feature.

Project management and bug tracking

GitHub

At the core of GitHub project management, we can find the issues. This task can be used to track any work item, from feature to bugs, and can be sorted into a Kanban-style board for easy consultation. The issue’s description also supports markdown syntax. Adding a specific keyword #issue-number (ex: #3) can associate the issue with another one. Each issue can be assigned to multiple developers, be linked to pull requests, and have various labels assigned to it. One can link a pull request to an issue to show that a fix is in progress and automatically close the issue when someone merges the pull request.

GitHub Kanban board

  • Lastly, multiple issues can be grouped into milestones that will give immediate feedback about the completion percentage. Milestones can also include a due date.

#azure-devops #microsoft #azure #github #azure devops #azure devops and github

Zara  Bryant

Zara Bryant

1622600462

Scaling DevSecOps with GitHub and Azure

Adopting DevSecOps practices at scale requires that development teams can quickly and securely go from code to cloud. Learn how GitHub Actions for Azure and GitHub integrations with Azure Services can help your team build workflows that enable continuous delivery while integrating security and governance best practices and get all your questions answered.

Check out more episodes on-demand at https://aka.ms/ATEonLearnTV

#devsecops #github #azure #cloud

Zara  Bryant

Zara Bryant

1622107620

Scaling DevSecOps with GitHub and Azure

Adopting DevSecOps practices at scale requires that development teams can quickly and securely go from code to cloud. Learn how GitHub Actions for Azure and GitHub integrations with Azure Services can help your team build workflows that enable continuous delivery while integrating security and governance best practices like policy compliance, container scanning etc. The end-to-end traceability enabled through the integrations alerts developers to issues faster and improves remediation time.

Explore Deeper Content and Training – https://aka.ms/learnatbuild
Latest news: Developer Velocity – https://aka.ms/Build21-DevVelocityBlog

Microsoft Build 2021

#microsoft #developer #azure #github #devsecops

Eric  Bukenya

Eric Bukenya

1624713540

Learn NoSQL in Azure: Diving Deeper into Azure Cosmos DB

This article is a part of the series – Learn NoSQL in Azure where we explore Azure Cosmos DB as a part of the non-relational database system used widely for a variety of applications. Azure Cosmos DB is a part of Microsoft’s serverless databases on Azure which is highly scalable and distributed across all locations that run on Azure. It is offered as a platform as a service (PAAS) from Azure and you can develop databases that have a very high throughput and very low latency. Using Azure Cosmos DB, customers can replicate their data across multiple locations across the globe and also across multiple locations within the same region. This makes Cosmos DB a highly available database service with almost 99.999% availability for reads and writes for multi-region modes and almost 99.99% availability for single-region modes.

In this article, we will focus more on how Azure Cosmos DB works behind the scenes and how can you get started with it using the Azure Portal. We will also explore how Cosmos DB is priced and understand the pricing model in detail.

How Azure Cosmos DB works

As already mentioned, Azure Cosmos DB is a multi-modal NoSQL database service that is geographically distributed across multiple Azure locations. This helps customers to deploy the databases across multiple locations around the globe. This is beneficial as it helps to reduce the read latency when the users use the application.

As you can see in the figure above, Azure Cosmos DB is distributed across the globe. Let’s suppose you have a web application that is hosted in India. In that case, the NoSQL database in India will be considered as the master database for writes and all the other databases can be considered as a read replicas. Whenever new data is generated, it is written to the database in India first and then it is synchronized with the other databases.

Consistency Levels

While maintaining data over multiple regions, the most common challenge is the latency as when the data is made available to the other databases. For example, when data is written to the database in India, users from India will be able to see that data sooner than users from the US. This is due to the latency in synchronization between the two regions. In order to overcome this, there are a few modes that customers can choose from and define how often or how soon they want their data to be made available in the other regions. Azure Cosmos DB offers five levels of consistency which are as follows:

  • Strong
  • Bounded staleness
  • Session
  • Consistent prefix
  • Eventual

In most common NoSQL databases, there are only two levels – Strong and EventualStrong being the most consistent level while Eventual is the least. However, as we move from Strong to Eventual, consistency decreases but availability and throughput increase. This is a trade-off that customers need to decide based on the criticality of their applications. If you want to read in more detail about the consistency levels, the official guide from Microsoft is the easiest to understand. You can refer to it here.

Azure Cosmos DB Pricing Model

Now that we have some idea about working with the NoSQL database – Azure Cosmos DB on Azure, let us try to understand how the database is priced. In order to work with any cloud-based services, it is essential that you have a sound knowledge of how the services are charged, otherwise, you might end up paying something much higher than your expectations.

If you browse to the pricing page of Azure Cosmos DB, you can see that there are two modes in which the database services are billed.

  • Database Operations – Whenever you execute or run queries against your NoSQL database, there are some resources being used. Azure terms these usages in terms of Request Units or RU. The amount of RU consumed per second is aggregated and billed
  • Consumed Storage – As you start storing data in your database, it will take up some space in order to store that data. This storage is billed per the standard SSD-based storage across any Azure locations globally

Let’s learn about this in more detail.

#azure #azure cosmos db #nosql #azure #nosql in azure #azure cosmos db

Zara  Bryant

Zara Bryant

1622771415

Tools for DevSecOps on GitHub and Azure

Supporting security for your DevOps people, processes and products is a challenge in any organization. Learn how using GitHub Actions and GitHub integration with Azure Services can help your team build workflows that enable continuous delivery while integrating security and governance. We’ll cover best practices like policy compliance and container scanning, and show you some new tools and services that can support them.

Guest: Steven Murawski
Steven Murawski is a Principal Cloud Advocate and leader of the DevOps advocacy team. Steven has worked on both the Dev and Ops sides of the house, most recently as a Principal Engineer at Chef, building tools for operating applications and infrastructure at scale and velocity.

View more Launch Space episodes at https://aka.ms/thelaunchspace

#github #devsecops #azure #security