Trung  Nguyen

Trung Nguyen

1658640600

7 Nhà Cung Cấp Xác Thực Hàng Đầu Để Xây Dựng ứng Dụng Với JWT (2022)

“Nhà cung cấp dịch vụ xác thực” đề cập đến một tổ chức cung cấp dịch vụ xác thực. Nhà cung cấp xác thực tóm tắt sự phức tạp của việc triển khai hệ thống xác thực theo cách thủ công từ đầu để bạn có thể tập trung vào các tác vụ quan trọng hơn.

Bài viết này trình bày những lợi ích và hạn chế của việc sử dụng Nhà cung cấp xác thực và so sánh những nhà cung cấp hiện có hỗ trợ tích hợp JWT.

Ưu và nhược điểm của nhà cung cấp xác thực

Trước khi chọn Nhà cung cấp dịch vụ xác thực, điều cần thiết là phải đánh giá những lợi ích và hạn chế của việc sử dụng một Nhà cung cấp dịch vụ xác thực.

Chuyên nghiệp: Độ phức tạp trừu tượng

Việc sử dụng Nhà cung cấp dịch vụ xác thực sẽ tóm tắt sự phức tạp của việc tự triển khai hệ thống xác thực. Xây dựng một hệ thống như vậy là một quá trình phức tạp, kéo dài, đòi hỏi nhiều nguồn lực.

Bạn có thể sử dụng một giải pháp hiện có để giải phóng các tài nguyên đó cho các nhiệm vụ khác, quan trọng hơn.

Chuyên nghiệp: Không có bộ nhớ thông tin người dùng

Lưu trữ thông tin bí mật về mọi người không phải là điều gì đó xem nhẹ. Chọn sử dụng một nhà cung cấp có nghĩa là bạn không phải lo lắng về việc lưu trữ thông tin chi tiết của người dùng trên máy chủ của mình.

Pro: Tận dụng Đăng nhập xã hội

Bạn có thể kích hoạt đăng nhập xã hội với nỗ lực tối thiểu khi sử dụng Nhà cung cấp dịch vụ xác thực. Đăng nhập mạng xã hội đề cập đến việc đăng nhập bằng tài khoản mạng xã hội hiện có như Twitter, GitHub, Google, v.v.

Việc thực hiện từng nhà cung cấp xã hội riêng lẻ đòi hỏi nỗ lực và nguồn lực. Khi sử dụng Nhà cung cấp xác thực, việc thêm thông tin đăng nhập trên mạng xã hội trở nên dễ dàng và nhanh chóng hơn.

Pro: Bảo mật tốt hơn

Chọn sử dụng Nhà cung cấp xác thực có nghĩa là bảo mật tốt hơn. Toàn bộ trọng tâm của Nhà cung cấp xác thực là xác thực và ủy quyền. Điều đó có nghĩa là họ được đào tạo và trang bị tốt hơn để bảo mật thông tin của người dùng.

Nhược điểm: Khó di chuyển

Sau khi bạn chọn Nhà cung cấp dịch vụ xác thực, có thể khó di chuyển. Việc thay đổi sang nhà cung cấp khác hoặc chuyển sang sử dụng một hệ thống độc quyền có thể khó khăn.

Điều cần thiết là phải quyết định xem việc sử dụng Nhà cung cấp xác thực có hợp lý hay không. Nếu bạn chọn làm điều đó, hãy chắc chắn rằng bạn chọn nhà cung cấp phù hợp với nhu cầu và yêu cầu của bạn.

Nhược điểm: Khóa nhà cung cấp

Một nhược điểm khác là bạn có thể trở nên quá phụ thuộc vào nhà cung cấp bạn đang sử dụng. Lý do có thể là việc triển khai của bạn quá cụ thể đối với nhà cung cấp đó hoặc gần như không thể xuất dữ liệu người dùng hiện tại của bạn.

Việc di chuyển sang nhà cung cấp khác có thể trở nên quá tốn kém và mất thời gian, vì vậy bạn bị khóa với nhà cung cấp hiện tại.

Nhược điểm: Chi phí

Ban đầu, chi phí có thể không phải là vấn đề. Tuy nhiên, sau khi ứng dụng phát triển lớn hơn và có nhiều người dùng hơn, chi phí có thể trở thành một vấn đề.

Nhiều Nhà cung cấp xác thực tính phí dựa trên số lượng người dùng hoạt động hàng tháng. Bạn càng có nhiều người dùng, hóa đơn càng lớn.

Sự kết luận

Bạn nên sử dụng Nhà cung cấp dịch vụ xác thực hay triển khai hệ thống độc quyền? Không có câu trả lời dứt khoát.

Quyết định sử dụng Nhà cung cấp hay không phụ thuộc vào nhiều yếu tố. Đối với một số người, sử dụng Nhà cung cấp xác thực là giải pháp thích hợp, trong khi đối với những người khác thì không.

Trong trường hợp bạn quyết định sử dụng, hãy tiếp tục đọc để tìm hiểu về các Nhà cung cấp Dịch vụ Xác thực khác nhau hiện có.

Chọn nhà cung cấp xác thực

Bài viết so sánh các Nhà cung cấp Dịch vụ Xác thực sau:

  • auth0
  • Xác thực Firebase
  • Nhân viên văn phòng
  • KeyCloak
  • Đã học
  • SuperTokens
  • Nhost

Các nhà cung cấp xác thực này được đánh giá dựa trên sáu tiêu chí đánh giá.

1. Nguồn mở

Một dự án mã nguồn mở đi kèm với một số lợi ích. Một lợi ích sẽ là tiết kiệm chi phí. Vì chúng là mã nguồn mở nên chúng không yêu cầu phí cấp phép hoặc phí sử dụng.

Một lợi ích khác là tính linh hoạt. Nếu các yêu cầu kinh doanh thay đổi hoặc bạn cần các tính năng bổ sung, bạn có thể tự sửa đổi và mở rộng mã. Bạn không cần phải yêu cầu nhà cung cấp thay đổi hoặc thay đổi hoàn toàn.

Điều quan trọng là phải đề cập đến tính minh bạch. Mã có sẵn cho mọi người xem. Vì rất nhiều chuyên gia có quyền truy cập vào mã, họ có thể làm cho phần mềm tốt hơn và an toàn hơn.

Có những lợi ích khác của việc sử dụng nhà cung cấp xác thực nguồn mở, nhưng những lợi ích này thúc đẩy điểm về nhà.

2. Tuyên bố JWT tùy chỉnh

Khi tích hợp bất kỳ Nhà cung cấp dịch vụ xác thực nào với Hasura, điều quan trọng là phải đảm bảo họ hỗ trợ các xác nhận quyền sở hữu JWT tùy chỉnh.

Hasura kiểm tra các tuyên bố JWT tùy chỉnh để tìm hiểu về vai trò của người dùng đưa ra yêu cầu. Do đó, Hasura có thể áp dụng các quy tắc ủy quyền phù hợp.

{
    'x-hasura-default-role': 'user',
    'x-hasura-allowed-roles': ['user'],
    'x-hasura-user-id': user.user_id
};

Đoạn mã trên cho thấy một ví dụ về xác nhận quyền sở hữu JWT tùy chỉnh. Nó chứa thông tin cần thiết về yêu cầu.

3. Hỗ trợ Đăng nhập Một lần (SSO)

Theo thuật ngữ đơn giản nhất, SSO đề cập đến loại xác thực trong đó người dùng đăng nhập vào nhiều nền tảng bằng một bộ thông tin xác thực.

Một ví dụ là SSO xã hội, trong đó người dùng sử dụng tài khoản mạng xã hội như tài khoản Google để đăng nhập vào ứng dụng.

4. Xác thực máy với máy

Không phải lúc nào người dùng cũng đưa ra yêu cầu. Có những tình huống mà hai máy giao tiếp giữa chúng. Không có người dùng để nhập thông tin đăng nhập, vì vậy máy khách (máy khác) cần được xác thực theo cách khác.

Xác thực máy với máy (M2M) đề cập đến việc xác thực máy mà không cần người dùng nhập. Điều đó có thể thực hiện được bằng cách sử dụng Luồng thông tin xác thực ứng dụng khách OAuth 2.0. Thông tin xác thực bao gồm dấu client_idclient_secret, được sử dụng để xác thực khách hàng.

5. Bậc miễn phí

Tất cả các nhà cung cấp xác thực từ bài viết này đều có một cấp miễn phí. Sự khác biệt nằm ở những gì họ cung cấp trong cấp đó.

Họ đo lường người dùng hoạt động hàng tháng (MAU) và tính phí dựa trên đó. Do đó, một số nhà cung cấp cung cấp cấp miễn phí với hàng nghìn MAU, trong khi một số nhà cung cấp chỉ cung cấp vài trăm MAU.

6. Dễ dàng hội nhập

Việc tích hợp nhà cung cấp dịch vụ xác thực phụ thuộc vào nhiều yếu tố. Thật khó để trình bày mức độ dễ dàng hay khó khăn khi tích hợp một nhà cung cấp.

Tuy nhiên, có một số điểm có thể chỉ ra mức độ khó khăn của việc triển khai, chẳng hạn như:

  • chất lượng của tài liệu
  • SDK có sẵn
  • số lượng cấu hình yêu cầu
  • vật liệu có sẵn

So sánh nhà cung cấp

Hình ảnh minh họa sự so sánh giữa các Nhà cung cấp xác thực được trình bày trong bài viết này.

So sánh nhà cung cấp dịch vụ xác thực

auth0

Auth0 là một giải pháp được thiết lập tốt và phổ biến cho các dịch vụ xác thực. Nó đi kèm với một cấp miễn phí phong phú và có hỗ trợ cho hầu hết những thứ bạn cần.

MÃ NGUỒN MỞKHÔNG
SaaSĐúng
Hỗ trợ SSOĐúng
Tuyên bố tùy chỉnh JWTĐúng
Xác thực máy với máyĐúng
Gói miễn phíCó - lên đến 7000 MAU

Khi nói đến sự dễ dàng tích hợp, Auth0 không dễ cũng không khó để tích hợp. Vì đây là một giải pháp được thiết lập tốt và phổ biến, nên rất nhiều tài liệu có sẵn để giúp bạn tích hợp. Số lượng cấu hình bạn cần thực hiện tùy thuộc vào loại và độ phức tạp của ứng dụng của bạn.

Xác thực Firebase

Xác thực Firebase là một dịch vụ xác thực phổ biến khác cho phép bạn thêm xác thực vào các ứng dụng của mình.

Firebase cho phép bạn thêm các phương thức đăng nhập như:

  • các nhà cung cấp danh tính như Google, Facebook và các nhà cung cấp khác
  • email và mật khẩu
  • điện thoại
MÃ NGUỒN MỞKHÔNG
SaaSKhông
Hỗ trợ SSOĐúng
Tuyên bố tùy chỉnh JWTĐúng
Xác thực máy với máyĐúng
Gói miễn phíMiễn phí ngoại trừ Xác thực Điện thoại

Số lượng tài nguyên có sẵn làm cho quá trình tích hợp trở nên đơn giản hơn. Cộng đồng Firebase tạo ra nhiều tài nguyên mã nguồn mở mà bạn có thể sử dụng. Đây cũng là một nhà cung cấp có uy tín lâu năm, có nghĩa là bạn có khả năng tìm ra giải pháp cho hầu hết mọi vấn đề.

Cuối cùng, nó có tài liệu chuyên sâu về cách triển khai Firebase Auth trong cả ứng dụng web và ứng dụng di động.

Nhân viên văn phòng

So với các nhà cung cấp khác, Clerk là nhà cung cấp mới nhất. Thư ký cho phép bạn triển khai đăng ký, đăng nhập và hồ sơ người dùng vào các ứng dụng của mình. Theo trang web của họ, họ là một "nền tảng nhận dạng khách hàng hoàn chỉnh".

Thư ký cũng đi kèm với sự hỗ trợ của Hasura. Họ có một phần tài liệu đặc biệt giới thiệu cách tích hợp Clerk với Hasura.

MÃ NGUỒN MỞKHÔNG
SaaSĐúng
Hỗ trợ SSOSSO xã hội
Tuyên bố tùy chỉnh JWTĐúng
Xác thực máy với máyKhông
Gói miễn phíCó - lên đến 500 MAU

Vì nó tương đối mới, bạn có thể gặp phải các vấn đề chưa được ghi chép / giải quyết. Ngoài ra, Clerk có tài liệu chuyên sâu, phong phú.

Cấu hình cần thiết để tích hợp Clerk với ứng dụng của bạn là tối thiểu. Bạn cần có tài khoản Thư ký và sau đó bạn có thể sử dụng SDK và các thành phần do họ cung cấp.

Móc khóa

Keycloak là một nhà cung cấp dịch vụ xác thực mã nguồn mở phổ biến. Vì nó là mã nguồn mở, bạn có thể tự lưu trữ nó, có nghĩa là nó miễn phí bất kể số lượng người dùng hoạt động hàng tháng.

Mặc dù nó là mã nguồn mở và mở cho tất cả mọi người đóng góp, dự án vẫn được duy trì bởi Red Hat. Điều đó có nghĩa là bạn có thể tin tưởng vào dự án.

Keycloak hỗ trợ hầu hết các trường hợp sử dụng xác thực và nó cũng miễn phí, vì vậy nó có thể là một lựa chọn tuyệt vời.

MÃ NGUỒN MỞVÂNG
SaaSKhông
Hỗ trợ SSOĐúng
Tuyên bố tùy chỉnh JWTĐúng
Xác thực máy với máyĐúng
Gói miễn phíMiễn phí cho người dùng không giới hạn

Keycloak có mức độ khó triển khai vừa phải. Bên cạnh việc tích hợp Keycloak vào các ứng dụng của bạn, bạn cũng phải quan tâm đến việc triển khai và bảo trì.

Mặc dù nó có thể trông phức tạp ngay từ cái nhìn đầu tiên, nhưng bạn có thể nhanh chóng làm quen với Keycloak. Nó cũng là một sản phẩm đã được thành lập, có nghĩa là bạn có khả năng tìm ra giải pháp cho hầu hết các vấn đề của mình. Cuối cùng, nó có tài liệu tốt.

Đã học

Cognito là sản phẩm của Amazon để xử lý xác thực. Nó cho phép bạn triển khai xác thực vào các ứng dụng web và di động của mình.

Cognito là một trong những nhà cung cấp xác thực hào phóng nhất, cung cấp cho bạn gói miễn phí với tối đa 50.000 người dùng hoạt động hàng tháng. Nếu chi phí là một mối quan tâm và bạn muốn một giải pháp được quản lý, Cognito là một lựa chọn tuyệt vời.

MÃ NGUỒN MỞKHÔNG
SaaSKhông
Hỗ trợ SSOĐúng
Tuyên bố tùy chỉnh JWTĐúng
Xác thực máy với máyĐúng
Gói miễn phíMiễn phí tới 50000 người dùng hoạt động hàng tháng (những người đăng nhập trực tiếp vào Cognito User Pools)

Về tính dễ dàng tích hợp, Amazon Cognito có thể gặp khá nhiều khó khăn để triển khai so với các nhà cung cấp khác. Cognito yêu cầu một thiết lập phức tạp, ngay cả đối với các ứng dụng cơ bản.

Tuy nhiên, có nhiều tài liệu chính thức và cộng đồng để giúp bạn tích hợp Cognito với ứng dụng của mình. Một số SDK và ứng dụng mẫu cũng có sẵn để trợ giúp và truyền cảm hứng cho bạn.

Tìm hiểu cách tích hợp Cognito với Hasura

SuperTokens

SuperTokens là một dịch vụ tương đối mới. Nó đi kèm với sự hỗ trợ cho hầu hết mọi thứ bạn cần và nó cũng là mã nguồn mở. Điều đó có nghĩa là bạn có thể tự lưu trữ nó và tránh phải trả thêm phí. Nếu bạn chọn tự lưu trữ, nó miễn phí vĩnh viễn cho người dùng không giới hạn.

SuperTokens đi kèm với hỗ trợ Hasura, có một phần đặc biệt về cách tích hợp SuperTokens với Hasura.

MÃ NGUỒN MỞVÂNG
SaaSĐúng
Hỗ trợ SSOĐúng
Tuyên bố tùy chỉnh JWTĐúng
Xác thực máy với máyĐúng
Gói miễn phíGiải phóng cho người dùng không giới hạn (Tự lưu trữ) và lên đến 5000 MAU (SaaS)

Khi nói đến sự dễ dàng tích hợp, bạn có thể gặp một số khó khăn khi cố gắng tích hợp nó với ứng dụng của mình. Lý do là vì đó là một dịch vụ mới và không có nhiều tài liệu có sẵn trên internet vào lúc này.

Về cấu hình, thật dễ dàng để bắt đầu với SuperTokens vì tài liệu cung cấp tất cả các cài đặt và thông tin bạn cần.

SuperTokens cũng có hướng dẫn về việc tích hợp SuperTokens với Hasura và các ứng dụng demo SuperTokens + Hasura mẫu.

Xác thực nhỏ

Nhost Authentication là một dịch vụ xác thực mã nguồn mở cho Hasura. Với Xác thực Nhỏ, mọi người có thể đăng nhập bằng:

  • Email và mật khẩu
  • Các nhà cung cấp OAuth như GitHub, Google, Apple, Facebook, Twitter, LinkedIn và các nhà cung cấp khác
  • Liên kết ma thuật
  • tin nhắn

Vì đây là một dự án mã nguồn mở, bạn có thể tự lưu trữ nó và tránh phải trả thêm phí khi sử dụng dịch vụ được quản lý.

MÃ NGUỒN MỞVÂNG
SaaSKhông
Hỗ trợ SSOĐúng
Tuyên bố tùy chỉnh JWTĐúng
Xác thực máy với máyKhông
Gói miễn phíMiễn phí cho người dùng không giới hạn

Khi nói đến sự dễ dàng tích hợp, Nhost Authentication khá dễ dàng để tích hợp với các ứng dụng Hasura. Bạn có thể tạo một ứng dụng thông qua Nhost, ứng dụng này cung cấp cho bạn một chương trình phụ trợ độc lập với Hasura, Hasura Auth và Postgres hoặc bạn có thể sử dụng hình ảnh Nhost Authentication Docker để tự lưu trữ nó.

Bạn có thể kiểm tra Xác thực Nhost tại đây .

Lưu ý về khả năng mở rộng

Khả năng mở rộng đề cập đến khả năng của dịch vụ xác thực trong việc xử lý sự phát triển ứng dụng của bạn và những thay đổi trong yêu cầu kinh doanh. Dịch vụ xác thực phải theo kịp với sự phát triển của người dùng và các yêu cầu thay đổi mà không ảnh hưởng đến ứng dụng của bạn.

Nếu bạn quyết định sử dụng giải pháp tự lưu trữ, bạn có toàn bộ trách nhiệm khi nói đến việc mở rộng quy mô. Bạn cần quản lý cơ sở dữ liệu, máy chủ và toàn bộ cơ sở hạ tầng. Bạn có trách nhiệm đảm bảo mọi thứ hoạt động trơn tru.

Khi bạn sử dụng giải pháp được quản lý, nhà cung cấp xác thực sẽ quan tâm đến việc tăng và giảm quy mô. Nhà cung cấp xác thực có các giới hạn và hạn ngạch tỷ lệ được xác định trước, họ sử dụng để mở rộng quy mô.

Sự kết luận

Tất cả các nhà cung cấp được trình bày trong bài viết này đều là những lựa chọn tuyệt vời, nhưng không có một câu trả lời chung nào. Việc chọn Nhà cung cấp dịch vụ xác thực phụ thuộc vào nhu cầu và yêu cầu của mỗi người.

SuperTokens và Clerk là hai nhà cung cấp đáng chú ý hỗ trợ Hasura chính thức. “Hỗ trợ” có nghĩa là họ có một phần đặc biệt trong tài liệu minh họa cách tích hợp chúng với Hasura. Đó là một điểm cộng và nó sẽ giúp ích rất nhiều khi tích hợp bất kỳ mục nào trong số chúng với Hasura.

Điều quan trọng cần lưu ý là đây không phải là một danh sách đầy đủ. Có những nhà cung cấp khác có sẵn mà không có trong bài viết. Tuy nhiên, bài báo sẽ được cập nhật đôi khi và các nhà cung cấp mới sẽ được thêm vào.

Nguồn: https://hasura.io/blog/top-authentication-providers-building-apps-jwt/

  #jwt #authentication #hasura 

What is GEEK

Buddha Community

7 Nhà Cung Cấp Xác Thực Hàng Đầu Để Xây Dựng ứng Dụng Với JWT (2022)
Trung  Nguyen

Trung Nguyen

1658640600

7 Nhà Cung Cấp Xác Thực Hàng Đầu Để Xây Dựng ứng Dụng Với JWT (2022)

“Nhà cung cấp dịch vụ xác thực” đề cập đến một tổ chức cung cấp dịch vụ xác thực. Nhà cung cấp xác thực tóm tắt sự phức tạp của việc triển khai hệ thống xác thực theo cách thủ công từ đầu để bạn có thể tập trung vào các tác vụ quan trọng hơn.

Bài viết này trình bày những lợi ích và hạn chế của việc sử dụng Nhà cung cấp xác thực và so sánh những nhà cung cấp hiện có hỗ trợ tích hợp JWT.

Ưu và nhược điểm của nhà cung cấp xác thực

Trước khi chọn Nhà cung cấp dịch vụ xác thực, điều cần thiết là phải đánh giá những lợi ích và hạn chế của việc sử dụng một Nhà cung cấp dịch vụ xác thực.

Chuyên nghiệp: Độ phức tạp trừu tượng

Việc sử dụng Nhà cung cấp dịch vụ xác thực sẽ tóm tắt sự phức tạp của việc tự triển khai hệ thống xác thực. Xây dựng một hệ thống như vậy là một quá trình phức tạp, kéo dài, đòi hỏi nhiều nguồn lực.

Bạn có thể sử dụng một giải pháp hiện có để giải phóng các tài nguyên đó cho các nhiệm vụ khác, quan trọng hơn.

Chuyên nghiệp: Không có bộ nhớ thông tin người dùng

Lưu trữ thông tin bí mật về mọi người không phải là điều gì đó xem nhẹ. Chọn sử dụng một nhà cung cấp có nghĩa là bạn không phải lo lắng về việc lưu trữ thông tin chi tiết của người dùng trên máy chủ của mình.

Pro: Tận dụng Đăng nhập xã hội

Bạn có thể kích hoạt đăng nhập xã hội với nỗ lực tối thiểu khi sử dụng Nhà cung cấp dịch vụ xác thực. Đăng nhập mạng xã hội đề cập đến việc đăng nhập bằng tài khoản mạng xã hội hiện có như Twitter, GitHub, Google, v.v.

Việc thực hiện từng nhà cung cấp xã hội riêng lẻ đòi hỏi nỗ lực và nguồn lực. Khi sử dụng Nhà cung cấp xác thực, việc thêm thông tin đăng nhập trên mạng xã hội trở nên dễ dàng và nhanh chóng hơn.

Pro: Bảo mật tốt hơn

Chọn sử dụng Nhà cung cấp xác thực có nghĩa là bảo mật tốt hơn. Toàn bộ trọng tâm của Nhà cung cấp xác thực là xác thực và ủy quyền. Điều đó có nghĩa là họ được đào tạo và trang bị tốt hơn để bảo mật thông tin của người dùng.

Nhược điểm: Khó di chuyển

Sau khi bạn chọn Nhà cung cấp dịch vụ xác thực, có thể khó di chuyển. Việc thay đổi sang nhà cung cấp khác hoặc chuyển sang sử dụng một hệ thống độc quyền có thể khó khăn.

Điều cần thiết là phải quyết định xem việc sử dụng Nhà cung cấp xác thực có hợp lý hay không. Nếu bạn chọn làm điều đó, hãy chắc chắn rằng bạn chọn nhà cung cấp phù hợp với nhu cầu và yêu cầu của bạn.

Nhược điểm: Khóa nhà cung cấp

Một nhược điểm khác là bạn có thể trở nên quá phụ thuộc vào nhà cung cấp bạn đang sử dụng. Lý do có thể là việc triển khai của bạn quá cụ thể đối với nhà cung cấp đó hoặc gần như không thể xuất dữ liệu người dùng hiện tại của bạn.

Việc di chuyển sang nhà cung cấp khác có thể trở nên quá tốn kém và mất thời gian, vì vậy bạn bị khóa với nhà cung cấp hiện tại.

Nhược điểm: Chi phí

Ban đầu, chi phí có thể không phải là vấn đề. Tuy nhiên, sau khi ứng dụng phát triển lớn hơn và có nhiều người dùng hơn, chi phí có thể trở thành một vấn đề.

Nhiều Nhà cung cấp xác thực tính phí dựa trên số lượng người dùng hoạt động hàng tháng. Bạn càng có nhiều người dùng, hóa đơn càng lớn.

Sự kết luận

Bạn nên sử dụng Nhà cung cấp dịch vụ xác thực hay triển khai hệ thống độc quyền? Không có câu trả lời dứt khoát.

Quyết định sử dụng Nhà cung cấp hay không phụ thuộc vào nhiều yếu tố. Đối với một số người, sử dụng Nhà cung cấp xác thực là giải pháp thích hợp, trong khi đối với những người khác thì không.

Trong trường hợp bạn quyết định sử dụng, hãy tiếp tục đọc để tìm hiểu về các Nhà cung cấp Dịch vụ Xác thực khác nhau hiện có.

Chọn nhà cung cấp xác thực

Bài viết so sánh các Nhà cung cấp Dịch vụ Xác thực sau:

  • auth0
  • Xác thực Firebase
  • Nhân viên văn phòng
  • KeyCloak
  • Đã học
  • SuperTokens
  • Nhost

Các nhà cung cấp xác thực này được đánh giá dựa trên sáu tiêu chí đánh giá.

1. Nguồn mở

Một dự án mã nguồn mở đi kèm với một số lợi ích. Một lợi ích sẽ là tiết kiệm chi phí. Vì chúng là mã nguồn mở nên chúng không yêu cầu phí cấp phép hoặc phí sử dụng.

Một lợi ích khác là tính linh hoạt. Nếu các yêu cầu kinh doanh thay đổi hoặc bạn cần các tính năng bổ sung, bạn có thể tự sửa đổi và mở rộng mã. Bạn không cần phải yêu cầu nhà cung cấp thay đổi hoặc thay đổi hoàn toàn.

Điều quan trọng là phải đề cập đến tính minh bạch. Mã có sẵn cho mọi người xem. Vì rất nhiều chuyên gia có quyền truy cập vào mã, họ có thể làm cho phần mềm tốt hơn và an toàn hơn.

Có những lợi ích khác của việc sử dụng nhà cung cấp xác thực nguồn mở, nhưng những lợi ích này thúc đẩy điểm về nhà.

2. Tuyên bố JWT tùy chỉnh

Khi tích hợp bất kỳ Nhà cung cấp dịch vụ xác thực nào với Hasura, điều quan trọng là phải đảm bảo họ hỗ trợ các xác nhận quyền sở hữu JWT tùy chỉnh.

Hasura kiểm tra các tuyên bố JWT tùy chỉnh để tìm hiểu về vai trò của người dùng đưa ra yêu cầu. Do đó, Hasura có thể áp dụng các quy tắc ủy quyền phù hợp.

{
    'x-hasura-default-role': 'user',
    'x-hasura-allowed-roles': ['user'],
    'x-hasura-user-id': user.user_id
};

Đoạn mã trên cho thấy một ví dụ về xác nhận quyền sở hữu JWT tùy chỉnh. Nó chứa thông tin cần thiết về yêu cầu.

3. Hỗ trợ Đăng nhập Một lần (SSO)

Theo thuật ngữ đơn giản nhất, SSO đề cập đến loại xác thực trong đó người dùng đăng nhập vào nhiều nền tảng bằng một bộ thông tin xác thực.

Một ví dụ là SSO xã hội, trong đó người dùng sử dụng tài khoản mạng xã hội như tài khoản Google để đăng nhập vào ứng dụng.

4. Xác thực máy với máy

Không phải lúc nào người dùng cũng đưa ra yêu cầu. Có những tình huống mà hai máy giao tiếp giữa chúng. Không có người dùng để nhập thông tin đăng nhập, vì vậy máy khách (máy khác) cần được xác thực theo cách khác.

Xác thực máy với máy (M2M) đề cập đến việc xác thực máy mà không cần người dùng nhập. Điều đó có thể thực hiện được bằng cách sử dụng Luồng thông tin xác thực ứng dụng khách OAuth 2.0. Thông tin xác thực bao gồm dấu client_idclient_secret, được sử dụng để xác thực khách hàng.

5. Bậc miễn phí

Tất cả các nhà cung cấp xác thực từ bài viết này đều có một cấp miễn phí. Sự khác biệt nằm ở những gì họ cung cấp trong cấp đó.

Họ đo lường người dùng hoạt động hàng tháng (MAU) và tính phí dựa trên đó. Do đó, một số nhà cung cấp cung cấp cấp miễn phí với hàng nghìn MAU, trong khi một số nhà cung cấp chỉ cung cấp vài trăm MAU.

6. Dễ dàng hội nhập

Việc tích hợp nhà cung cấp dịch vụ xác thực phụ thuộc vào nhiều yếu tố. Thật khó để trình bày mức độ dễ dàng hay khó khăn khi tích hợp một nhà cung cấp.

Tuy nhiên, có một số điểm có thể chỉ ra mức độ khó khăn của việc triển khai, chẳng hạn như:

  • chất lượng của tài liệu
  • SDK có sẵn
  • số lượng cấu hình yêu cầu
  • vật liệu có sẵn

So sánh nhà cung cấp

Hình ảnh minh họa sự so sánh giữa các Nhà cung cấp xác thực được trình bày trong bài viết này.

So sánh nhà cung cấp dịch vụ xác thực

auth0

Auth0 là một giải pháp được thiết lập tốt và phổ biến cho các dịch vụ xác thực. Nó đi kèm với một cấp miễn phí phong phú và có hỗ trợ cho hầu hết những thứ bạn cần.

MÃ NGUỒN MỞKHÔNG
SaaSĐúng
Hỗ trợ SSOĐúng
Tuyên bố tùy chỉnh JWTĐúng
Xác thực máy với máyĐúng
Gói miễn phíCó - lên đến 7000 MAU

Khi nói đến sự dễ dàng tích hợp, Auth0 không dễ cũng không khó để tích hợp. Vì đây là một giải pháp được thiết lập tốt và phổ biến, nên rất nhiều tài liệu có sẵn để giúp bạn tích hợp. Số lượng cấu hình bạn cần thực hiện tùy thuộc vào loại và độ phức tạp của ứng dụng của bạn.

Xác thực Firebase

Xác thực Firebase là một dịch vụ xác thực phổ biến khác cho phép bạn thêm xác thực vào các ứng dụng của mình.

Firebase cho phép bạn thêm các phương thức đăng nhập như:

  • các nhà cung cấp danh tính như Google, Facebook và các nhà cung cấp khác
  • email và mật khẩu
  • điện thoại
MÃ NGUỒN MỞKHÔNG
SaaSKhông
Hỗ trợ SSOĐúng
Tuyên bố tùy chỉnh JWTĐúng
Xác thực máy với máyĐúng
Gói miễn phíMiễn phí ngoại trừ Xác thực Điện thoại

Số lượng tài nguyên có sẵn làm cho quá trình tích hợp trở nên đơn giản hơn. Cộng đồng Firebase tạo ra nhiều tài nguyên mã nguồn mở mà bạn có thể sử dụng. Đây cũng là một nhà cung cấp có uy tín lâu năm, có nghĩa là bạn có khả năng tìm ra giải pháp cho hầu hết mọi vấn đề.

Cuối cùng, nó có tài liệu chuyên sâu về cách triển khai Firebase Auth trong cả ứng dụng web và ứng dụng di động.

Nhân viên văn phòng

So với các nhà cung cấp khác, Clerk là nhà cung cấp mới nhất. Thư ký cho phép bạn triển khai đăng ký, đăng nhập và hồ sơ người dùng vào các ứng dụng của mình. Theo trang web của họ, họ là một "nền tảng nhận dạng khách hàng hoàn chỉnh".

Thư ký cũng đi kèm với sự hỗ trợ của Hasura. Họ có một phần tài liệu đặc biệt giới thiệu cách tích hợp Clerk với Hasura.

MÃ NGUỒN MỞKHÔNG
SaaSĐúng
Hỗ trợ SSOSSO xã hội
Tuyên bố tùy chỉnh JWTĐúng
Xác thực máy với máyKhông
Gói miễn phíCó - lên đến 500 MAU

Vì nó tương đối mới, bạn có thể gặp phải các vấn đề chưa được ghi chép / giải quyết. Ngoài ra, Clerk có tài liệu chuyên sâu, phong phú.

Cấu hình cần thiết để tích hợp Clerk với ứng dụng của bạn là tối thiểu. Bạn cần có tài khoản Thư ký và sau đó bạn có thể sử dụng SDK và các thành phần do họ cung cấp.

Móc khóa

Keycloak là một nhà cung cấp dịch vụ xác thực mã nguồn mở phổ biến. Vì nó là mã nguồn mở, bạn có thể tự lưu trữ nó, có nghĩa là nó miễn phí bất kể số lượng người dùng hoạt động hàng tháng.

Mặc dù nó là mã nguồn mở và mở cho tất cả mọi người đóng góp, dự án vẫn được duy trì bởi Red Hat. Điều đó có nghĩa là bạn có thể tin tưởng vào dự án.

Keycloak hỗ trợ hầu hết các trường hợp sử dụng xác thực và nó cũng miễn phí, vì vậy nó có thể là một lựa chọn tuyệt vời.

MÃ NGUỒN MỞVÂNG
SaaSKhông
Hỗ trợ SSOĐúng
Tuyên bố tùy chỉnh JWTĐúng
Xác thực máy với máyĐúng
Gói miễn phíMiễn phí cho người dùng không giới hạn

Keycloak có mức độ khó triển khai vừa phải. Bên cạnh việc tích hợp Keycloak vào các ứng dụng của bạn, bạn cũng phải quan tâm đến việc triển khai và bảo trì.

Mặc dù nó có thể trông phức tạp ngay từ cái nhìn đầu tiên, nhưng bạn có thể nhanh chóng làm quen với Keycloak. Nó cũng là một sản phẩm đã được thành lập, có nghĩa là bạn có khả năng tìm ra giải pháp cho hầu hết các vấn đề của mình. Cuối cùng, nó có tài liệu tốt.

Đã học

Cognito là sản phẩm của Amazon để xử lý xác thực. Nó cho phép bạn triển khai xác thực vào các ứng dụng web và di động của mình.

Cognito là một trong những nhà cung cấp xác thực hào phóng nhất, cung cấp cho bạn gói miễn phí với tối đa 50.000 người dùng hoạt động hàng tháng. Nếu chi phí là một mối quan tâm và bạn muốn một giải pháp được quản lý, Cognito là một lựa chọn tuyệt vời.

MÃ NGUỒN MỞKHÔNG
SaaSKhông
Hỗ trợ SSOĐúng
Tuyên bố tùy chỉnh JWTĐúng
Xác thực máy với máyĐúng
Gói miễn phíMiễn phí tới 50000 người dùng hoạt động hàng tháng (những người đăng nhập trực tiếp vào Cognito User Pools)

Về tính dễ dàng tích hợp, Amazon Cognito có thể gặp khá nhiều khó khăn để triển khai so với các nhà cung cấp khác. Cognito yêu cầu một thiết lập phức tạp, ngay cả đối với các ứng dụng cơ bản.

Tuy nhiên, có nhiều tài liệu chính thức và cộng đồng để giúp bạn tích hợp Cognito với ứng dụng của mình. Một số SDK và ứng dụng mẫu cũng có sẵn để trợ giúp và truyền cảm hứng cho bạn.

Tìm hiểu cách tích hợp Cognito với Hasura

SuperTokens

SuperTokens là một dịch vụ tương đối mới. Nó đi kèm với sự hỗ trợ cho hầu hết mọi thứ bạn cần và nó cũng là mã nguồn mở. Điều đó có nghĩa là bạn có thể tự lưu trữ nó và tránh phải trả thêm phí. Nếu bạn chọn tự lưu trữ, nó miễn phí vĩnh viễn cho người dùng không giới hạn.

SuperTokens đi kèm với hỗ trợ Hasura, có một phần đặc biệt về cách tích hợp SuperTokens với Hasura.

MÃ NGUỒN MỞVÂNG
SaaSĐúng
Hỗ trợ SSOĐúng
Tuyên bố tùy chỉnh JWTĐúng
Xác thực máy với máyĐúng
Gói miễn phíGiải phóng cho người dùng không giới hạn (Tự lưu trữ) và lên đến 5000 MAU (SaaS)

Khi nói đến sự dễ dàng tích hợp, bạn có thể gặp một số khó khăn khi cố gắng tích hợp nó với ứng dụng của mình. Lý do là vì đó là một dịch vụ mới và không có nhiều tài liệu có sẵn trên internet vào lúc này.

Về cấu hình, thật dễ dàng để bắt đầu với SuperTokens vì tài liệu cung cấp tất cả các cài đặt và thông tin bạn cần.

SuperTokens cũng có hướng dẫn về việc tích hợp SuperTokens với Hasura và các ứng dụng demo SuperTokens + Hasura mẫu.

Xác thực nhỏ

Nhost Authentication là một dịch vụ xác thực mã nguồn mở cho Hasura. Với Xác thực Nhỏ, mọi người có thể đăng nhập bằng:

  • Email và mật khẩu
  • Các nhà cung cấp OAuth như GitHub, Google, Apple, Facebook, Twitter, LinkedIn và các nhà cung cấp khác
  • Liên kết ma thuật
  • tin nhắn

Vì đây là một dự án mã nguồn mở, bạn có thể tự lưu trữ nó và tránh phải trả thêm phí khi sử dụng dịch vụ được quản lý.

MÃ NGUỒN MỞVÂNG
SaaSKhông
Hỗ trợ SSOĐúng
Tuyên bố tùy chỉnh JWTĐúng
Xác thực máy với máyKhông
Gói miễn phíMiễn phí cho người dùng không giới hạn

Khi nói đến sự dễ dàng tích hợp, Nhost Authentication khá dễ dàng để tích hợp với các ứng dụng Hasura. Bạn có thể tạo một ứng dụng thông qua Nhost, ứng dụng này cung cấp cho bạn một chương trình phụ trợ độc lập với Hasura, Hasura Auth và Postgres hoặc bạn có thể sử dụng hình ảnh Nhost Authentication Docker để tự lưu trữ nó.

Bạn có thể kiểm tra Xác thực Nhost tại đây .

Lưu ý về khả năng mở rộng

Khả năng mở rộng đề cập đến khả năng của dịch vụ xác thực trong việc xử lý sự phát triển ứng dụng của bạn và những thay đổi trong yêu cầu kinh doanh. Dịch vụ xác thực phải theo kịp với sự phát triển của người dùng và các yêu cầu thay đổi mà không ảnh hưởng đến ứng dụng của bạn.

Nếu bạn quyết định sử dụng giải pháp tự lưu trữ, bạn có toàn bộ trách nhiệm khi nói đến việc mở rộng quy mô. Bạn cần quản lý cơ sở dữ liệu, máy chủ và toàn bộ cơ sở hạ tầng. Bạn có trách nhiệm đảm bảo mọi thứ hoạt động trơn tru.

Khi bạn sử dụng giải pháp được quản lý, nhà cung cấp xác thực sẽ quan tâm đến việc tăng và giảm quy mô. Nhà cung cấp xác thực có các giới hạn và hạn ngạch tỷ lệ được xác định trước, họ sử dụng để mở rộng quy mô.

Sự kết luận

Tất cả các nhà cung cấp được trình bày trong bài viết này đều là những lựa chọn tuyệt vời, nhưng không có một câu trả lời chung nào. Việc chọn Nhà cung cấp dịch vụ xác thực phụ thuộc vào nhu cầu và yêu cầu của mỗi người.

SuperTokens và Clerk là hai nhà cung cấp đáng chú ý hỗ trợ Hasura chính thức. “Hỗ trợ” có nghĩa là họ có một phần đặc biệt trong tài liệu minh họa cách tích hợp chúng với Hasura. Đó là một điểm cộng và nó sẽ giúp ích rất nhiều khi tích hợp bất kỳ mục nào trong số chúng với Hasura.

Điều quan trọng cần lưu ý là đây không phải là một danh sách đầy đủ. Có những nhà cung cấp khác có sẵn mà không có trong bài viết. Tuy nhiên, bài báo sẽ được cập nhật đôi khi và các nhà cung cấp mới sẽ được thêm vào.

Nguồn: https://hasura.io/blog/top-authentication-providers-building-apps-jwt/

  #jwt #authentication #hasura 

ERIC  MACUS

ERIC MACUS

1647540000

Substrate Knowledge Map For Hackathon Participants

Substrate Knowledge Map for Hackathon Participants

The Substrate Knowledge Map provides information that you—as a Substrate hackathon participant—need to know to develop a non-trivial application for your hackathon submission.

The map covers 6 main sections:

  1. Introduction
  2. Basics
  3. Preliminaries
  4. Runtime Development
  5. Polkadot JS API
  6. Smart Contracts

Each section contains basic information on each topic, with links to additional documentation for you to dig deeper. Within each section, you'll find a mix of quizzes and labs to test your knowledge as your progress through the map. The goal of the labs and quizzes is to help you consolidate what you've learned and put it to practice with some hands-on activities.

Introduction

One question we often get is why learn the Substrate framework when we can write smart contracts to build decentralized applications?

The short answer is that using the Substrate framework and writing smart contracts are two different approaches.

Smart contract development

Traditional smart contract platforms allow users to publish additional logic on top of some core blockchain logic. Since smart contract logic can be published by anyone, including malicious actors and inexperienced developers, there are a number of intentional safeguards and restrictions built around these public smart contract platforms. For example:

Fees: Smart contract developers must ensure that contract users are charged for the computation and storage they impose on the computers running their contract. With fees, block creators are protected from abuse of the network.

Sandboxed: A contract is not able to modify core blockchain storage or storage items of other contracts directly. Its power is limited to only modifying its own state, and the ability to make outside calls to other contracts or runtime functions.

Reversion: Contracts can be prone to undesirable situations that lead to logical errors when wanting to revert or upgrade them. Developers need to learn additional patterns such as splitting their contract's logic and data to ensure seamless upgrades.

These safeguards and restrictions make running smart contracts slower and more costly. However, it's important to consider the different developer audiences for contract development versus Substrate runtime development.

Building decentralized applications with smart contracts allows your community to extend and develop on top of your runtime logic without worrying about proposals, runtime upgrades, and so on. You can also use smart contracts as a testing ground for future runtime changes, but done in an isolated way that protects your network from any errors the changes might introduce.

In summary, smart contract development:

  • Is inherently safer to the network.
  • Provides economic incentives and transaction fee mechanisms that can't be directly controlled by the smart contract author.
  • Provides computational overhead to support graceful logical failures.
  • Has a low barrier to entry for developers and enables a faster pace of community interaction.

Substrate runtime development

Unlike traditional smart contract development, Substrate runtime development offers none of the network protections or safeguards. Instead, as a runtime developer, you have total control over how the blockchain behaves. However, this level of control also means that there is a higher barrier to entry.

Substrate is a framework for building blockchains, which almost makes comparing it to smart contract development like comparing apples and oranges. With the Substrate framework, developers can build smart contracts but that is only a fraction of using Substrate to its full potential.

With Substrate, you have full control over the underlying logic that your network's nodes will run. You also have full access for modifying and controlling each and every storage item across your runtime modules. As you progress through this map, you'll discover concepts and techniques that will help you to unlock the potential of the Substrate framework, giving you the freedom to build the blockchain that best suits the needs of your application.

You'll also discover how you can upgrade the Substrate runtime with a single transaction instead of having to organize a community hard-fork. Upgradeability is one of the primary design features of the Substrate framework.

In summary, runtime development:

  • Provides low level access to your entire blockchain.
  • Removes the overhead of built-in safety for performance.
  • Has a higher barrier of entry for developers.
  • Provides flexibility to customize full-stack application logic.

To learn more about using smart contracts within Substrate, refer to the Smart Contract - Overview page as well as the Polkadot Builders Guide.

Navigating the documentation

If you need any community support, please join the following channels based on the area where you need help:

Alternatively, also look for support on Stackoverflow where questions are tagged with "substrate" or on the Parity Subport repo.

Use the following links to explore the sites and resources available on each:

Substrate Developer Hub has the most comprehensive all-round coverage about Substrate, from a "big picture" explanation of architecture to specific technical concepts. The site also provides tutorials to guide you as your learn the Substrate framework and the API reference documentation. You should check this site first if you want to look up information about Substrate runtime development. The site consists of:

Knowledge Base: Explaining the foundational concepts of building blockchain runtimes using Substrate.

Tutorials: Hand-on tutorials for developers to follow. The first SIX tutorials show the fundamentals in Substrate and are recommended for every Substrate learner to go through.

How-to Guides: These resources are like the O'Reilly cookbook series written in a task-oriented way for readers to get the job done. Some examples of the topics overed include:

  • Setting up proper weight functions for extrinsic calls.
  • Using off-chain workers to fetch HTTP requests.
  • Writing tests for your pallets It can also be read from

API docs: Substrate API reference documentation.

Substrate Node Template provides a light weight, minimal Substrate blockchain node that you can set up as a local development environment.

Substrate Front-end template provides a front-end interface built with React using Polkadot-JS API to connect to any Substrate node. Developers are encouraged to start new Substrate projects based on these templates.

If you face any technical difficulties and need support, feel free to join the Substrate Technical matrix channel and ask your questions there.

Additional resources

Polkadot Wiki documents the specific behavior and mechanisms of the Polkadot network. The Polkadot network allows multiple blockchains to connect and pass messages to each other. On the wiki, you can learn about how Polkadot—built using Substrate—is customized to support inter-blockchain message passing.

Polkadot JS API doc: documents how to use the Polkadot-JS API. This JavaScript-based API allows developers to build custom front-ends for their blockchains and applications. Polkadot JS API provides a way to connect to Substrate-based blockchains to query runtime metadata and send transactions.

Quiz #1

👉 Submit your answers to Quiz #1

Basics

Set up your local development environment

Here you will set up your local machine to install the Rust compiler—ensuring that you have both stable and nightly versions installed. Both stable and nightly versions are required because currently a Substrate runtime is compiled to a native binary using the stable Rust compiler, then compiled to a WebAssembly (WASM) binary, which only the nightly Rust compiler can do.

Also refer to:

Lab #1

👉 Complete Lab #1: Run a Substrate node

Interact with a Substrate network using Polkadot-JS apps

Polkadot JS Apps is the canonical front-end to interact with any Substrate-based chain.

You can configure whichever endpoint you want it to connected to, even to your localhost running node. Refer to the following two diagrams.

  1. Click on the top left side showing your currently connected network:

assets/01-polkadot-app-endpoint.png

  1. Scroll to the bottom of the menu, open DEVELOPMENT, and choose either Local Node or Custom to specify your own endpoint.

assets/02-polkadot-app-select-endpoint.png

Quiz #2

👉 Complete Quiz #2

Lab #2

👉 Complete Lab #2: Using Polkadot-JS Apps

Notes: If you are connecting Apps to a custom chain (or your locally-running node), you may need to specify your chain's custom data types in JSON under Settings > Developer.

Polkadot-JS Apps only receives a series of bytes from the blockchain. It is up to the developer to tell it how to decode and interpret these custom data type. To learn more on this, refer to:

You will also need to create an account. To do so, follow these steps on account generation. You'll learn that you can also use the Polkadot-JS Browser Plugin (a Metamask-like browser extension to manage your Substrate accounts) and it will automatically be imported into Polkadot-JS Apps.

Notes: When you run a Substrate chain in development mode (with the --dev flag), well-known accounts (Alice, Bob, Charlie, etc.) are always created for you.

Lab #3

👉 Complete Lab #3: Create an Account

Preliminaries

You need to know some Rust programming concepts and have a good understanding on how blockchain technology works in order to make the most of developing with Substrate. The following resources will help you brush up in these areas.

Rust

You will need familiarize yourself with Rust to understand how Substrate is built and how to make the most of its capabilities.

If you are new to Rust, or need a brush up on your Rust knowledge, please refer to The Rust Book. You could still continue learning about Substrate without knowing Rust, but we recommend you come back to this section whenever in doubt about what any of the Rust syntax you're looking at means. Here are the parts of the Rust book we recommend you familiarize yourself with:

  • ch 1 - 10: These chapters cover the foundational knowledge of programming in Rust
  • ch 13: On iterators and closures
  • ch 18 - 19: On advanced traits and advanced types. Learn a bit about macros as well. You will not necessarily be writing your own macros, but you'll be using a lot of Substrate and FRAME's built-in macros to write your blockchain runtime.

How blockchains work

Given that you'll be writing a blockchain runtime, you need to know what a blockchain is, and how it works. The **Web3 Blockchain Fundamental MOOC Youtube video series provides a good basis for understanding key blockchain concepts and how blockchains work.

The lectures we recommend you watch are: lectures 1 - 7 and lecture 10. That's 8 lectures, or about 4 hours of video.

Quiz #3

👉 Complete Quiz #3

Substrate runtime development

High level architecture

To know more about the high level architecture of Substrate, please go through the Knowledge Base articles on Getting Started: Overview and Getting Started: Architecture.

In this document, we assume you will develop a Substrate runtime with FRAME (v2). This is what a Substrate node consists of.

assets/03-substrate-architecture.png

Each node has many components that manage things like the transaction queue, communicating over a P2P network, reaching consensus on the state of the blockchain, and the chain's actual runtime logic (aka the blockchain runtime). Each aspect of the node is interesting in its own right, and the runtime is particularly interesting because it contains the business logic (aka "state transition function") that codifies the chain's functionality. The runtime contains a collection of pallets that are configured to work together.

On the node level, Substrate leverages libp2p for the p2p networking layer and puts the transaction pool, consensus mechanism, and underlying data storage (a key-value database) on the node level. These components all work "under the hood", and in this knowledge map we won't cover them in detail except for mentioning their existence.

Quiz #4

👉 Complete Quiz #4

Runtime development topics

In our Developer Hub, we have a thorough coverage on various subjects you need to know to develop with Substrate. So here we just list out the key topics and reference back to Developer Hub. Please go through the following key concepts and the directed resources to know the fundamentals of runtime development.

Key Concept: Runtime, this is where the blockchain state transition function (the blockchain application-specific logic) is defined. It is about composing multiple pallets (can be understood as Rust modules) together in the runtime and hooking them up together.

Runtime Development: Execution, this article describes how a block is produced, and how transactions are selected and executed to reach the next "stage" in the blockchain.

Runtime Develpment: Pallets, this article describes what the basic structure of a Substrate pallet is consists of.

Runtime Development: FRAME, this article gives a high level overview of the system pallets Substrate already implements to help you quickly develop as a runtime engineer. Have a quick skim so you have a basic idea of the different pallets Substrate is made of.

Lab #4

👉 Complete Lab #4: Adding a Pallet into a Runtime

Runtime Development: Storage, this article describes how data is stored on-chain and how you could access them.

Runtime Development: Events & Errors, this page describe how external parties know what has happened in the blockchain, via the emitted events and errors when executing transactions.

Notes: All of the above concepts we leverage on the #[pallet::*] macro to define them in the code. If you are interested to learn more about what other types of pallet macros exist go to the FRAME macro API documentation and this doc on some frequently used Substrate macros.

Lab #5

👉 Complete Lab #5: Building a Proof-of-Existence dApp

Lab #6

👉 Complete Lab #6: Building a Substrate Kitties dApp

Quiz #5

👉 Complete Quiz #5

Polkadot JS API

Polkadot JS API is the javascript API for Substrate. By using it you can build a javascript front end or utility and interact with any Substrate-based blockchain.

The Substrate Front-end Template is an example of using Polkadot JS API in a React front-end.

  • Runtime Development: Metadata, this article describes the API allowing external parties to query what API is open for the chain. Polkadot JS API makes use of a chain's metadata to know what queries and functions are available from a chain to call.

Lab #7

👉 Complete Lab #7: Using Polkadot-JS API

Quiz #6

👉 Complete Quiz #6: Using Polkadot-JS API

Smart contracts

Learn about the difference between smart contract development vs Substrate runtime development, and when to use each here.

In Substrate, you can program smart contracts using ink!.

Quiz #7

👉 Complete Quiz #7: Using ink!

What we do not cover

A lot 😄

On-chain runtime upgrades. We have a tutorial on On-chain (forkless) Runtime Upgrade. This tutorial introduces how to perform and schedule a runtime upgrade as an on-chain transaction.

About transaction weight and fee, and benchmarking your runtime to determine the proper transaction cost.

Off-chain Features

There are certain limits to on-chain logic. For instance, computation cannot be too intensive that it affects the block output time, and computation must be deterministic. This means that computation that relies on external data fetching cannot be done on-chain. In Substrate, developers can run these types of computation off-chain and have the result sent back on-chain via extrinsics.

Tightly- and Loosely-coupled pallets, calling one pallet's functions from another pallet via trait specification.

Blockchain Consensus Mechansim, and a guide on customizing it to proof-of-work here.

Parachains: one key feature of Substrate is the capability of becoming a parachain for relay chains like Polkadot. You can develop your own application-specific logic in your chain and rely on the validator community of the relay chain to secure your network, instead of building another validator community yourself. Learn more with the following resources:

Terms clarification

  • Substrate: the blockchain development framework built for writing highly customized, domain-specific blockchains.
  • Polkadot: Polkadot is the relay chain blockchain, built with Substrate.
  • Kusama: Kusama is Polkadot's canary network, used to launch features before these features are launched on Polkadot. You could view it as a beta-network with real economic value where the state of the blockchain is never reset.
  • Web 3.0: is the decentralized internet ecosystem that, instead of apps being centrally stored in a few servers and managed by a sovereign party, it is an open, trustless, and permissionless network when apps are not controlled by a centralized entity.
  • Web3 Foundation: A foundation setup to support the development of decentralized web software protocols. Learn more about what they do on thier website.

Others


Author: substrate-developer-hub
Source Code: https://github.com/substrate-developer-hub/hackathon-knowledge-map
License: 

#blockchain #substrate 

Sheldon  Grant

Sheldon Grant

1655019480

Learning-v8: Project for Learning V8 internals

Learning Google V8

The sole purpose of this project is to aid me in leaning Google's V8 JavaScript engine

Isolate

An Isolate is an independant copy of the V8 runtime which includes its own heap. Two different Isolates can run in parallel and can be seen as entirely different sandboxed instances of a V8 runtime.

Context

To allow separate JavaScript applications to run in the same isolate a context must be specified for each one. This is to avoid them interfering with each other, for example by changing the builtin objects provided.

Template

This is the super class of both ObjecTemplate and FunctionTemplate. Remember that in JavaScript a function can have fields just like objects.

class V8_EXPORT Template : public Data {
 public:
  void Set(Local<Name> name, Local<Data> value,
           PropertyAttribute attributes = None);
  void SetPrivate(Local<Private> name, Local<Data> value,
                  PropertyAttribute attributes = None);
  V8_INLINE void Set(Isolate* isolate, const char* name, Local<Data> value);

  void SetAccessorProperty(
     Local<Name> name,
     Local<FunctionTemplate> getter = Local<FunctionTemplate>(),
     Local<FunctionTemplate> setter = Local<FunctionTemplate>(),
     PropertyAttribute attribute = None,
     AccessControl settings = DEFAULT);

The Set function can be used to have an name and a value set on an instance created from this template. The SetAccessorProperty is for properties that are get/set using functions.

enum PropertyAttribute {
  /** None. **/
  None = 0,
  /** ReadOnly, i.e., not writable. **/
  ReadOnly = 1 << 0,
  /** DontEnum, i.e., not enumerable. **/
  DontEnum = 1 << 1,
  /** DontDelete, i.e., not configurable. **/
  DontDelete = 1 << 2
};

enum AccessControl {
  DEFAULT               = 0,
  ALL_CAN_READ          = 1,
  ALL_CAN_WRITE         = 1 << 1,
  PROHIBITS_OVERWRITING = 1 << 2
};

ObjectTemplate

These allow you to create JavaScript objects without a dedicated constructor. When an instance is created using an ObjectTemplate the new instance will have the properties and functions configured on the ObjectTemplate.

This would be something like:

const obj = {};

This class is declared in include/v8.h and extends Template:

class V8_EXPORT ObjectTemplate : public Template { 
  ...
}
class V8_EXPORT Template : public Data {
  ...
}
class V8_EXPORT Data {
 private:                                                                       
  Data();                                                                       
};

We create an instance of ObjectTemplate and we can add properties to it that all instance created using this ObjectTemplate instance will have. This is done by calling Set which is member of the Template class. You specify a Local for the property. Name is a superclass for Symbol and String which can be both be used as names for a property.

The implementation for Set can be found in src/api/api.cc:

void Template::Set(v8::Local<Name> name, v8::Local<Data> value, v8::PropertyAttribute attribute) {
  ...

  i::ApiNatives::AddDataProperty(isolate, templ, Utils::OpenHandle(*name),           
                                 value_obj,                                     
                                 static_cast<i::PropertyAttributes>(attribute));
}

There is an example in objecttemplate_test.cc

FunctionTemplate

Is a template that is used to create functions and like ObjectTemplate it inherits from Template:

class V8_EXPORT FunctionTemplate : public Template {
}

Rememeber that a function in javascript can have properties just like object.

There is an example in functiontemplate_test.cc

An instance of a function template can be created using:

  Local<FunctionTemplate> ft = FunctionTemplate::New(isolate_, function_callback, data);
  Local<Function> function = ft->GetFunction(context).ToLocalChecked();

And the function can be called using:

  MaybeLocal<Value> ret = function->Call(context, recv, 0, nullptr);

Function::Call can be found in src/api/api.cc:

  bool has_pending_exception = false;
  auto self = Utils::OpenHandle(this);                                               
  i::Handle<i::Object> recv_obj = Utils::OpenHandle(*recv);                          
  i::Handle<i::Object>* args = reinterpret_cast<i::Handle<i::Object>*>(argv);   
  Local<Value> result;                                                               
  has_pending_exception = !ToLocal<Value>(                                           
      i::Execution::Call(isolate, self, recv_obj, argc, args), &result);

Notice that the return value of Call which is a MaybeHandle<Object> will be passed to ToLocal which is defined in api.h:

template <class T>                                                              
inline bool ToLocal(v8::internal::MaybeHandle<v8::internal::Object> maybe,      
                    Local<T>* local) {                                          
  v8::internal::Handle<v8::internal::Object> handle;                            
  if (maybe.ToHandle(&handle)) {                                                   
    *local = Utils::Convert<v8::internal::Object, T>(handle);                   
    return true;                                                                
  }                                                                                
  return false;                                                                 

So lets take a look at Execution::Call which can be found in execution/execution.cc and it calls:

return Invoke(isolate, InvokeParams::SetUpForCall(isolate, callable, receiver, argc, argv));

SetUpForCall will return an InvokeParams. TODO: Take a closer look at InvokeParams.

V8_WARN_UNUSED_RESULT MaybeHandle<Object> Invoke(Isolate* isolate,              
                                                 const InvokeParams& params) {
Handle<Object> receiver = params.is_construct                             
                                    ? isolate->factory()->the_hole_value()         
                                    : params.receiver; 

In our case is_construct is false as we are not using new and the receiver, the this in the function should be set to the receiver that we passed in. After that we have Builtins::InvokeApiFunction

auto value = Builtins::InvokeApiFunction(                                 
          isolate, params.is_construct, function, receiver, params.argc,        
          params.argv, Handle<HeapObject>::cast(params.new_target)); 
result = HandleApiCallHelper<false>(isolate, function, new_target,        
                                    fun_data, receiver, arguments);

api-arguments-inl.h has:

FunctionCallbackArguments::Call(CallHandlerInfo handler) {
  ...
  ExternalCallbackScope call_scope(isolate, FUNCTION_ADDR(f));                  
  FunctionCallbackInfo<v8::Value> info(values_, argv_, argc_);                  
  f(info);
  return GetReturnValue<Object>(isolate);
}

The call to f(info) is what invokes the callback, which is just a normal function call.

Back in HandleApiCallHelper we have:

Handle<Object> result = custom.Call(call_data);                             
                                                                                
RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object);

RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION expands to:

Handle<Object> result = custom.Call(call_data);                             
do { 
  Isolate* __isolate__ = (isolate); 
  ((void) 0); 
  if (__isolate__->has_scheduled_exception()) { 
    __isolate__->PromoteScheduledException(); 
    return MaybeHandle<Object>(); 
  }
} while (false);

Notice that if there was an exception an empty object is returned. Later in Invoke in execution.cca:

  auto value = Builtins::InvokeApiFunction(                                 
          isolate, params.is_construct, function, receiver, params.argc,        
          params.argv, Handle<HeapObject>::cast(params.new_target));            
  bool has_exception = value.is_null();                                     
  if (has_exception) {                                                      
    if (params.message_handling == Execution::MessageHandling::kReport) {   
      isolate->ReportPendingMessages();                                     
    }                                                                       
    return MaybeHandle<Object>();                                           
  } else {                                                                  
    isolate->clear_pending_message();                                       
  }                                                                         
  return value;                         

Looking at this is looks like passing back an empty object will cause an exception to be triggered?

Address

Address can be found in include/v8-internal.h:

typedef uintptr_t Address;

uintptr_t is an optional type specified in cstdint and is capable of storing a data pointer. It is an unsigned integer type that any valid pointer to void can be converted to this type (and back).

TaggedImpl

This class is declared in `src/objects/tagged-impl.h and has a single private member which is declared as:

 public
  constexpr StorageType ptr() const { return ptr_; }
 private:
  StorageType ptr_;

An instance can be created using:

  i::TaggedImpl<i::HeapObjectReferenceType::STRONG, i::Address>  tagged{};

Storage type can also be Tagged_t which is defined in globals.h:

 using Tagged_t = uint32_t;

It looks like it can be a different value when using pointer compression.

See tagged_test.cc for an example.

Object

This class extends TaggedImpl:

class Object : public TaggedImpl<HeapObjectReferenceType::STRONG, Address> {       

An Object can be created using the default constructor, or by passing in an Address which will delegate to TaggedImpl constructors. Object itself does not have any members (apart from ptr_ which is inherited from TaggedImpl that is). So if we create an Object on the stack this is like a pointer/reference to an object:

+------+
|Object|
|------|
|ptr_  |---->
+------+

Now, ptr_ is a StorageType so it could be a Smi in which case it would just contains the value directly, for example a small integer:

+------+
|Object|
|------|
|  18  |
+------+

See object_test.cc for an example.

ObjectSlot

  i::Object obj{18};
  i::FullObjectSlot slot{&obj};
+----------+      +---------+
|ObjectSlot|      | Object  |
|----------|      |---------|
| address  | ---> |   18    |
+----------+      +---------+

See objectslot_test.cc for an example.

Maybe

A Maybe is like an optional which can either hold a value or nothing.

template <class T>                                                              
class Maybe {
 public:
  V8_INLINE bool IsNothing() const { return !has_value_; }                      
  V8_INLINE bool IsJust() const { return has_value_; }
  ...

 private:
  bool has_value_;                                                              
  T value_; 
}

I first thought that name Just was a little confusing but if you read this like:

  bool cond = true;
  Maybe<int> maybe = cond ? Just<int>(10) : Nothing<int>();

I think it makes more sense. There are functions that check if the Maybe is nothing and crash the process if so. You can also check and return the value by using FromJust.

The usage of Maybe is where api calls can fail and returning Nothing is a way of signaling this.

See maybe_test.cc for an example.

MaybeLocal

template <class T>                                                              
class MaybeLocal {
 public:                                                                        
  V8_INLINE MaybeLocal() : val_(nullptr) {} 
  V8_INLINE Local<T> ToLocalChecked();
  V8_INLINE bool IsEmpty() const { return val_ == nullptr; }
  template <class S>                                                            
  V8_WARN_UNUSED_RESULT V8_INLINE bool ToLocal(Local<S>* out) const {           
    out->val_ = IsEmpty() ? nullptr : this->val_;                               
    return !IsEmpty();                                                          
  }    

 private:
  T* val_;

ToLocalChecked will crash the process if val_ is a nullptr. If you want to avoid a crash one can use ToLocal.

See maybelocal_test.cc for an example.

Data

Is the super class of all objects that can exist the V8 heap:

class V8_EXPORT Data {                                                          
 private:                                                                       
  Data();                                                                       
};

Value

Value extends Data and adds a number of methods that check if a Value is of a certain type, like IsUndefined(), IsNull, IsNumber etc. It also has useful methods to convert to a Local, for example:

V8_WARN_UNUSED_RESULT MaybeLocal<Number> ToNumber(Local<Context> context) const;
V8_WARN_UNUSED_RESULT MaybeLocal<String> ToNumber(Local<String> context) const;
...

Handle

A Handle is similar to a Object and ObjectSlot in that it also contains an Address member (called location_ and declared in HandleBase), but with the difference is that Handles acts as a layer of abstraction and can be relocated by the garbage collector. Can be found in src/handles/handles.h.

class HandleBase {  
 ...
 protected:
  Address* location_; 
}
template <typename T>                                                           
class Handle final : public HandleBase {
  ...
}
+----------+                  +--------+         +---------+
|  Handle  |                  | Object |         |   int   |
|----------|      +-----+     |--------|         |---------|
|*location_| ---> |&ptr_| --> | ptr_   | ----->  |     5   |
+----------+      +-----+     +--------+         +---------+
(gdb) p handle
$8 = {<v8::internal::HandleBase> = {location_ = 0x7ffdf81d60c0}, <No data fields>}

Notice that location_ contains a pointer:

(gdb) p /x *(int*)0x7ffdf81d60c0
$9 = 0xa9d330

And this is the same as the value in obj:

(gdb) p /x obj.ptr_
$14 = 0xa9d330

And we can access the int using any of the pointers:

(gdb) p /x *value
$16 = 0x5
(gdb) p /x *obj.ptr_
$17 = 0x5
(gdb) p /x *(int*)0x7ffdf81d60c0
$18 = 0xa9d330
(gdb) p /x *(*(int*)0x7ffdf81d60c0)
$19 = 0x5

See handle_test.cc for an example.

HandleScope

Contains a number of Local/Handle's (think pointers to objects but is managed by V8) and will take care of deleting the Local/Handles for us. HandleScopes are stack allocated

When ~HandleScope is called all handles created within that scope are removed from the stack maintained by the HandleScope which makes objects to which the handles point being eligible for deletion from the heap by the GC.

A HandleScope only has three members:

  internal::Isolate* isolate_;
  internal::Address* prev_next_;
  internal::Address* prev_limit_;

Lets take a closer look at what happens when we construct a HandleScope:

  v8::HandleScope handle_scope{isolate_};

The constructor call will end up in src/api/api.cc and the constructor simply delegates to Initialize:

HandleScope::HandleScope(Isolate* isolate) { Initialize(isolate); }

void HandleScope::Initialize(Isolate* isolate) {
  i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate);
  ...
  i::HandleScopeData* current = internal_isolate->handle_scope_data();
  isolate_ = internal_isolate;
  prev_next_ = current->next;
  prev_limit_ = current->limit;
  current->level++;
}

Every v8::internal::Isolate has member of type HandleScopeData:

HandleScopeData* handle_scope_data() { return &handle_scope_data_; }
HandleScopeData handle_scope_data_;

HandleScopeData is a struct defined in src/handles/handles.h:

struct HandleScopeData final {
  Address* next;
  Address* limit;
  int level;
  int sealed_level;
  CanonicalHandleScope* canonical_scope;

  void Initialize() {
    next = limit = nullptr;
    sealed_level = level = 0;
    canonical_scope = nullptr;
  }
};

Notice that there are two pointers (Address*) to next and a limit. When a HandleScope is Initialized the current handle_scope_data will be retrieved from the internal isolate. The HandleScope instance that is getting created stores the next/limit pointers of the current isolate so that they can be restored when this HandleScope is closed (see CloseScope).

So with a HandleScope created, how does a Local interact with this instance?

When a Local is created this will/might go through FactoryBase::NewStruct which will allocate a new Map and then create a Handle for the InstanceType being created:

Handle<Struct> str = handle(Struct::cast(result), isolate()); 

This will land in the constructor Handlesrc/handles/handles-inl.h

template <typename T>                                                           
Handle<T>::Handle(T object, Isolate* isolate): HandleBase(object.ptr(), isolate) {}

HandleBase::HandleBase(Address object, Isolate* isolate)                        
    : location_(HandleScope::GetHandle(isolate, object)) {}

Notice that object.ptr() is used to pass the Address to HandleBase. And also notice that HandleBase sets its location_ to the result of HandleScope::GetHandle.

Address* HandleScope::GetHandle(Isolate* isolate, Address value) {              
  DCHECK(AllowHandleAllocation::IsAllowed());                                   
  HandleScopeData* data = isolate->handle_scope_data();                         
  CanonicalHandleScope* canonical = data->canonical_scope;                      
  return canonical ? canonical->Lookup(value) : CreateHandle(isolate, value);   
}

Which will call CreateHandle in this case and this function will retrieve the current isolate's handle_scope_data:

  HandleScopeData* data = isolate->handle_scope_data();                         
  Address* result = data->next;                                                 
  if (result == data->limit) {                                                  
    result = Extend(isolate);                                                   
  }     

In this case both next and limit will be 0x0 so Extend will be called. Extend will also get the isolates handle_scope_data and check the current level and after that get the isolates HandleScopeImplementer:

  HandleScopeImplementer* impl = isolate->handle_scope_implementer();           

HandleScopeImplementer is declared in src/api/api.h

HandleScope:CreateHandle will get the handle_scope_data from the isolate:

Address* HandleScope::CreateHandle(Isolate* isolate, Address value) {
  HandleScopeData* data = isolate->handle_scope_data();
  if (result == data->limit) {
    result = Extend(isolate);
  }
  // Update the current next field, set the value in the created handle,        
  // and return the result.
  data->next = reinterpret_cast<Address*>(reinterpret_cast<Address>(result) + sizeof(Address));
  *result = value;
  return result;
}                         

Notice that data->next is set to the address passed in + the size of an Address.

The destructor for HandleScope will call CloseScope. See handlescope_test.cc for an example.

EscapableHandleScope

Local handles are located on the stack and are deleted when the appropriate destructor is called. If there is a local HandleScope then it will take care of this when the scope returns. When there are no references left to a handle it can be garbage collected. This means if a function has a HandleScope and wants to return a handle/local it will not be available after the function returns. This is what EscapableHandleScope is for, it enable the value to be placed in the enclosing handle scope to allow it to survive. When the enclosing HandleScope goes out of scope it will be cleaned up.

class V8_EXPORT EscapableHandleScope : public HandleScope {                        
 public:                                                                           
  explicit EscapableHandleScope(Isolate* isolate);
  V8_INLINE ~EscapableHandleScope() = default;
  template <class T>
  V8_INLINE Local<T> Escape(Local<T> value) {
    internal::Address* slot = Escape(reinterpret_cast<internal::Address*>(*value));
    return Local<T>(reinterpret_cast<T*>(slot));
  }

  template <class T>
  V8_INLINE MaybeLocal<T> EscapeMaybe(MaybeLocal<T> value) {
    return Escape(value.FromMaybe(Local<T>()));
  }

 private:
  ...
  internal::Address* escape_slot_;
};

From api.cc

EscapableHandleScope::EscapableHandleScope(Isolate* v8_isolate) {
  i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate);
  escape_slot_ = CreateHandle(isolate, i::ReadOnlyRoots(isolate).the_hole_value().ptr());
  Initialize(v8_isolate);
}

So when an EscapableHandleScope is created it will create a handle with the hole value and store it in the escape_slot_ which is of type Address. This Handle will be created in the current HandleScope, and EscapableHandleScope can later set a value for that pointer/address which it want to be escaped. Later when that HandleScope goes out of scope it will be cleaned up. It then calls Initialize just like a normal HandleScope would.

i::Address* HandleScope::CreateHandle(i::Isolate* isolate, i::Address value) {
  return i::HandleScope::CreateHandle(isolate, value);
}

From handles-inl.h:

Address* HandleScope::CreateHandle(Isolate* isolate, Address value) {
  DCHECK(AllowHandleAllocation::IsAllowed());
  HandleScopeData* data = isolate->handle_scope_data();
  Address* result = data->next;
  if (result == data->limit) {
    result = Extend(isolate);
  }
  // Update the current next field, set the value in the created handle,
  // and return the result.
  DCHECK_LT(reinterpret_cast<Address>(result),
            reinterpret_cast<Address>(data->limit));
  data->next = reinterpret_cast<Address*>(reinterpret_cast<Address>(result) +
                                          sizeof(Address));
  *result = value;
  return result;
}

When Escape is called the following happens (v8.h):

template <class T>
  V8_INLINE Local<T> Escape(Local<T> value) {
    internal::Address* slot = Escape(reinterpret_cast<internal::Address*>(*value));
    return Local<T>(reinterpret_cast<T*>(slot));
  }

An the EscapeableHandleScope::Escape (api.cc):

i::Address* EscapableHandleScope::Escape(i::Address* escape_value) {
  i::Heap* heap = reinterpret_cast<i::Isolate*>(GetIsolate())->heap();
  Utils::ApiCheck(i::Object(*escape_slot_).IsTheHole(heap->isolate()),
                  "EscapableHandleScope::Escape", "Escape value set twice");
  if (escape_value == nullptr) {
    *escape_slot_ = i::ReadOnlyRoots(heap).undefined_value().ptr();
    return nullptr;
  }
  *escape_slot_ = *escape_value;
  return escape_slot_;
}

If the escape_value is null, the escape_slot that is a pointer into the parent HandleScope is set to the undefined_value() instead of the hole value which is was previously, and nullptr will be returned. This returned address/pointer will then be returned after being casted to T*. Next, we take a look at what happens when the EscapableHandleScope goes out of scope. This will call HandleScope::~HandleScope which makes sense as any other Local handles should be cleaned up.

Escape copies the value of its argument into the enclosing scope, deletes alli its local handles, and then gives back the new handle copy which can safely be returned.

HeapObject

TODO:

Local

Has a single member val_ which is of type pointer to T:

template <class T> class Local { 
...
 private:
  T* val_
}

Notice that this is a pointer to T. We could create a local using:

  v8::Local<v8::Value> empty_value;

So a Local contains a pointer to type T. We can access this pointer using operator-> and operator*.

We can cast from a subtype to a supertype using Local::Cast:

v8::Local<v8::Number> nr = v8::Local<v8::Number>(v8::Number::New(isolate_, 12));
v8::Local<v8::Value> val = v8::Local<v8::Value>::Cast(nr);

And there is also the

v8::Local<v8::Value> val2 = nr.As<v8::Value>();

See local_test.cc for an example.

PrintObject

Using _v8_internal_Print_Object from c++:

$ nm -C libv8_monolith.a | grep Print_Object
0000000000000000 T _v8_internal_Print_Object(void*)

Notice that this function does not have a namespace. We can use this as:

extern void _v8_internal_Print_Object(void* object);

_v8_internal_Print_Object(*((v8::internal::Object**)(*global)));

Lets take a closer look at the above:

  v8::internal::Object** gl = ((v8::internal::Object**)(*global));

We use the dereference operator to get the value of a Local (*global), which is just of type T*, a pointer to the type the Local:

template <class T>
class Local {
  ...
 private:
  T* val_;
}

We are then casting that to be of type pointer-to-pointer to Object.

  gl**        Object*         Object
+-----+      +------+      +-------+
|     |----->|      |----->|       |
+-----+      +------+      +-------+

An instance of v8::internal::Object only has a single data member which is a field named ptr_ of type Address:

src/objects/objects.h:

class Object : public TaggedImpl<HeapObjectReferenceType::STRONG, Address> {
 public:
  constexpr Object() : TaggedImpl(kNullAddress) {}
  explicit constexpr Object(Address ptr) : TaggedImpl(ptr) {}

#define IS_TYPE_FUNCTION_DECL(Type) \
  V8_INLINE bool Is##Type() const;  \
  V8_INLINE bool Is##Type(const Isolate* isolate) const;
  OBJECT_TYPE_LIST(IS_TYPE_FUNCTION_DECL)
  HEAP_OBJECT_TYPE_LIST(IS_TYPE_FUNCTION_DECL)
  IS_TYPE_FUNCTION_DECL(HashTableBase)
  IS_TYPE_FUNCTION_DECL(SmallOrderedHashTable)
#undef IS_TYPE_FUNCTION_DECL
  V8_INLINE bool IsNumber(ReadOnlyRoots roots) const;
}

Lets take a look at one of these functions and see how it is implemented. For example in the OBJECT_TYPE_LIST we have:

#define OBJECT_TYPE_LIST(V) \
  V(LayoutDescriptor)       \
  V(Primitive)              \
  V(Number)                 \
  V(Numeric)

So the object class will have a function that looks like:

inline bool IsNumber() const;
inline bool IsNumber(const Isolate* isolate) const;

And in src/objects/objects-inl.h we will have the implementations:

bool Object::IsNumber() const {
  return IsHeapObject() && HeapObject::cast(*this).IsNumber();
}

IsHeapObject is defined in TaggedImpl:

  constexpr inline bool IsHeapObject() const { return IsStrong(); }

  constexpr inline bool IsStrong() const {
#if V8_HAS_CXX14_CONSTEXPR
    DCHECK_IMPLIES(!kCanBeWeak, !IsSmi() == HAS_STRONG_HEAP_OBJECT_TAG(ptr_));
#endif
    return kCanBeWeak ? HAS_STRONG_HEAP_OBJECT_TAG(ptr_) : !IsSmi();
  }

The macro can be found in src/common/globals.h:

#define HAS_STRONG_HEAP_OBJECT_TAG(value)                          \
  (((static_cast<i::Tagged_t>(value) & ::i::kHeapObjectTagMask) == \
    ::i::kHeapObjectTag))

So we are casting ptr_ which is of type Address into type Tagged_t which is defined in src/common/global.h and can be different depending on if compressed pointers are used or not. If they are not supported it is the same as Address:

using Tagged_t = Address;

src/objects/tagged-impl.h:

template <HeapObjectReferenceType kRefType, typename StorageType>
class TaggedImpl {

  StorageType ptr_;
}

The HeapObjectReferenceType can be either WEAK or STRONG. And the storage type is Address in this case. So Object itself only has one member that is inherited from its only super class and this is ptr_.

So the following is telling the compiler to treat the value of our Local, *global, as a pointer (which it already is) to a pointer that points to a memory location that adhers to the layout of an v8::internal::Object type, which we know now has a prt_ member. And we want to dereference it and pass it into the function.

_v8_internal_Print_Object(*((v8::internal::Object**)(*global)));

ObjectTemplate

But I'm still missing the connection between ObjectTemplate and object. When we create it we use:

Local<ObjectTemplate> global = ObjectTemplate::New(isolate);

In src/api/api.cc we have:

static Local<ObjectTemplate> ObjectTemplateNew(
    i::Isolate* isolate, v8::Local<FunctionTemplate> constructor,
    bool do_not_cache) {
  i::Handle<i::Struct> struct_obj = isolate->factory()->NewStruct(
      i::OBJECT_TEMPLATE_INFO_TYPE, i::AllocationType::kOld);
  i::Handle<i::ObjectTemplateInfo> obj = i::Handle<i::ObjectTemplateInfo>::cast(struct_obj);
  InitializeTemplate(obj, Consts::OBJECT_TEMPLATE);
  int next_serial_number = 0;
  if (!constructor.IsEmpty())
    obj->set_constructor(*Utils::OpenHandle(*constructor));
  obj->set_data(i::Smi::zero());
  return Utils::ToLocal(obj);
}

What is a Struct in this context?
src/objects/struct.h

#include "torque-generated/class-definitions-tq.h"

class Struct : public TorqueGeneratedStruct<Struct, HeapObject> {
 public:
  inline void InitializeBody(int object_size);
  void BriefPrintDetails(std::ostream& os);
  TQ_OBJECT_CONSTRUCTORS(Struct)

Notice that the include is specifying torque-generated include which can be found out/x64.release_gcc/gen/torque-generated/class-definitions-tq. So, somewhere there must be an call to the torque executable which generates the Code Stub Assembler C++ headers and sources before compiling the main source files. There is and there is a section about this in Building V8. The macro TQ_OBJECT_CONSTRUCTORS can be found in src/objects/object-macros.h and expands to:

  constexpr Struct() = default;

 protected:
  template <typename TFieldType, int kFieldOffset>
  friend class TaggedField;

  inline explicit Struct(Address ptr);

So what does the TorqueGeneratedStruct look like?

template <class D, class P>
class TorqueGeneratedStruct : public P {
 public:

Where D is Struct and P is HeapObject in this case. But the above is the declartion of the type but what we have in the .h file is what was generated.

This type is defined in src/objects/struct.tq:

@abstract                                                                       
@generatePrint                                                                  
@generateCppClass                                                               
extern class Struct extends HeapObject {                                        
} 

NewStruct can be found in src/heap/factory-base.cc

template <typename Impl>
HandleFor<Impl, Struct> FactoryBase<Impl>::NewStruct(
    InstanceType type, AllocationType allocation) {
  Map map = Map::GetStructMap(read_only_roots(), type);
  int size = map.instance_size();
  HeapObject result = AllocateRawWithImmortalMap(size, allocation, map);
  HandleFor<Impl, Struct> str = handle(Struct::cast(result), isolate());
  str->InitializeBody(size);
  return str;
}

Every object that is stored on the v8 heap has a Map (src/objects/map.h) that describes the structure of the object being stored.

class Map : public HeapObject {
1725      return Utils::ToLocal(obj);
(gdb) p obj
$6 = {<v8::internal::HandleBase> = {location_ = 0x30b5160}, <No data fields>}

So this is the connection, what we see as a Local is a HandleBase. TODO: dig into this some more when I have time.

(lldb) expr gl
(v8::internal::Object **) $0 = 0x00000000020ee160
(lldb) memory read -f x -s 8 -c 1 gl
0x020ee160: 0x00000aee081c0121

(lldb) memory read -f x -s 8 -c 1 *gl
0xaee081c0121: 0x0200000002080433

You can reload .lldbinit using the following command:

(lldb) command source ~/.lldbinit

This can be useful when debugging a lldb command. You can set a breakpoint and break at that location and make updates to the command and reload without having to restart lldb.

Currently, the lldb-commands.py that ships with v8 contains an extra operation of the parameter pased to ptr_arg_cmd:

def ptr_arg_cmd(debugger, name, param, cmd):                                    
  if not param:                                                                 
    print("'{}' requires an argument".format(name))                             
    return                                                                      
  param = '(void*)({})'.format(param)                                           
  no_arg_cmd(debugger, cmd.format(param)) 

Notice that param is the object that we want to print, for example lets say it is a local named obj:

param = "(void*)(obj)"

This will then be "passed"/formatted into the command string:

"_v8_internal_Print_Object(*(v8::internal::Object**)(*(void*)(obj))")

Threads

V8 is single threaded (the execution of the functions of the stack) but there are supporting threads used for garbage collection, profiling (IC, and perhaps other things) (I think). Lets see what threads there are:

$ LD_LIBRARY_PATH=../v8_src/v8/out/x64.release_gcc/ lldb ./hello-world 
(lldb) br s -n main
(lldb) r
(lldb) thread list
thread #1: tid = 0x2efca6, 0x0000000100001e16 hello-world`main(argc=1, argv=0x00007fff5fbfee98) + 38 at hello-world.cc:40, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1

So at startup there is only one thread which is what we expected. Lets skip ahead to where we create the platform:

Platform* platform = platform::CreateDefaultPlatform();
...
DefaultPlatform* platform = new DefaultPlatform(idle_task_support, tracing_controller);
platform->SetThreadPoolSize(thread_pool_size);

(lldb) fr v thread_pool_size
(int) thread_pool_size = 0

Next there is a check for 0 and the number of processors -1 is used as the size of the thread pool:

(lldb) fr v thread_pool_size
(int) thread_pool_size = 7

This is all that SetThreadPoolSize does. After this we have:

platform->EnsureInitialized();

for (int i = 0; i < thread_pool_size_; ++i)
  thread_pool_.push_back(new WorkerThread(&queue_));

new WorkerThread will create a new pthread (on my system which is MacOSX):

result = pthread_create(&data_->thread_, &attr, ThreadEntry, this);

ThreadEntry can be found in src/base/platform/platform-posix.

International Component for Unicode (ICU)

International Components for Unicode (ICU) deals with internationalization (i18n). ICU provides support locale-sensitve string comparisons, date/time/number/currency formatting etc.

There is an optional API called ECMAScript 402 which V8 suppports and which is enabled by default. i18n-support says that even if your application does not use ICU you still need to call InitializeICU :

V8::InitializeICU();

Local

Local<String> script_name = ...;

So what is script_name. Well it is an object reference that is managed by the v8 GC. The GC needs to be able to move things (pointers around) and also track if things should be GC'd. Local handles as opposed to persistent handles are light weight and mostly used local operations. These handles are managed by HandleScopes so you must have a handlescope on the stack and the local is only valid as long as the handlescope is valid. This uses Resource Acquisition Is Initialization (RAII) so when the HandleScope instance goes out of scope it will remove all the Local instances.

The Local class (in include/v8.h) only has one member which is of type pointer to the type T. So for the above example it would be:

  String* val_;

You can find the available operations for a Local in include/v8.h.

(lldb) p script_name.IsEmpty()
(bool) $12 = false

A Local has overloaded a number of operators, for example ->:

(lldb) p script_name->Length()
(int) $14 = 7

Where Length is a method on the v8 String class.

The handle stack is not part of the C++ call stack, but the handle scopes are embedded in the C++ stack. Handle scopes can only be stack-allocated, not allocated with new.

Persistent

https://v8.dev/docs/embed: Persistent handles provide a reference to a heap-allocated JavaScript Object, just like a local handle. There are two flavors, which differ in the lifetime management of the reference they handle. Use a persistent handle when you need to keep a reference to an object for more than one function call, or when handle lifetimes do not correspond to C++ scopes. Google Chrome, for example, uses persistent handles to refer to Document Object Model (DOM) nodes.

A persistent handle can be made weak, using PersistentBase::SetWeak, to trigger a callback from the garbage collector when the only references to an object are from weak persistent handles.

A UniquePersistent handle relies on C++ constructors and destructors to manage the lifetime of the underlying object. A Persistent can be constructed with its constructor, but must be explicitly cleared with Persistent::Reset.

So how is a persistent object created?
Let's write a test and find out (test/persistent-object_text.cc):

$ make test/persistent-object_test
$ ./test/persistent-object_test --gtest_filter=PersistentTest.value

Now, to create an instance of Persistent we need a Local instance or the Persistent instance will just be empty.

Local<Object> o = Local<Object>::New(isolate_, Object::New(isolate_));

Local<Object>::New can be found in src/api/api.cc:

Local<v8::Object> v8::Object::New(Isolate* isolate) {
  i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
  LOG_API(i_isolate, Object, New);
  ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
  i::Handle<i::JSObject> obj =
      i_isolate->factory()->NewJSObject(i_isolate->object_function());
  return Utils::ToLocal(obj);
}

The first thing that happens is that the public Isolate pointer is cast to an pointer to the internal Isolate type. LOG_API is a macro in the same source file (src/api/api.cc):

#define LOG_API(isolate, class_name, function_name)                           \
  i::RuntimeCallTimerScope _runtime_timer(                                    \
      isolate, i::RuntimeCallCounterId::kAPI_##class_name##_##function_name); \
  LOG(isolate, ApiEntryCall("v8::" #class_name "::" #function_name))

If our case the preprocessor would expand that to:

  i::RuntimeCallTimerScope _runtime_timer(
      isolate, i::RuntimeCallCounterId::kAPI_Object_New);
  LOG(isolate, ApiEntryCall("v8::Object::New))

LOG is a macro that can be found in src/log.h:

#define LOG(isolate, Call)                              \
  do {                                                  \
    v8::internal::Logger* logger = (isolate)->logger(); \
    if (logger->is_logging()) logger->Call;             \
  } while (false)

And this would expand to:

  v8::internal::Logger* logger = isolate->logger();
  if (logger->is_logging()) logger->ApiEntryCall("v8::Object::New");

So with the LOG_API macro expanded we have:

Local<v8::Object> v8::Object::New(Isolate* isolate) {
  i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
  i::RuntimeCallTimerScope _runtime_timer( isolate, i::RuntimeCallCounterId::kAPI_Object_New);
  v8::internal::Logger* logger = isolate->logger();
  if (logger->is_logging()) logger->ApiEntryCall("v8::Object::New");

  ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate);
  i::Handle<i::JSObject> obj =
      i_isolate->factory()->NewJSObject(i_isolate->object_function());
  return Utils::ToLocal(obj);
}

Next we have ENTER_V8_NO_SCRIPT_NO_EXCEPTION:

#define ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate)                    \
  i::VMState<v8::OTHER> __state__((isolate));                       \
  i::DisallowJavascriptExecutionDebugOnly __no_script__((isolate)); \
  i::DisallowExceptions __no_exceptions__((isolate))

So with the macros expanded we have:

Local<v8::Object> v8::Object::New(Isolate* isolate) {
  i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
  i::RuntimeCallTimerScope _runtime_timer( isolate, i::RuntimeCallCounterId::kAPI_Object_New);
  v8::internal::Logger* logger = isolate->logger();
  if (logger->is_logging()) logger->ApiEntryCall("v8::Object::New");

  i::VMState<v8::OTHER> __state__(i_isolate));
  i::DisallowJavascriptExecutionDebugOnly __no_script__(i_isolate);
  i::DisallowExceptions __no_exceptions__(i_isolate));

  i::Handle<i::JSObject> obj =
      i_isolate->factory()->NewJSObject(i_isolate->object_function());

  return Utils::ToLocal(obj);
}

TODO: Look closer at VMState.

First, i_isolate->object_function() is called and the result passed to NewJSObject. object_function is generated by a macro named NATIVE_CONTEXT_FIELDS:

#define NATIVE_CONTEXT_FIELD_ACCESSOR(index, type, name)     \
  Handle<type> Isolate::name() {                             \
    return Handle<type>(raw_native_context()->name(), this); \
  }                                                          \
  bool Isolate::is_##name(type* value) {                     \
    return raw_native_context()->is_##name(value);           \
  }
NATIVE_CONTEXT_FIELDS(NATIVE_CONTEXT_FIELD_ACCESSOR)

NATIVE_CONTEXT_FIELDS is a macro in src/contexts and it c

#define NATIVE_CONTEXT_FIELDS(V)                                               \
...                                                                            \
  V(OBJECT_FUNCTION_INDEX, JSFunction, object_function)                        \
  Handle<type> Isolate::object_function() {
    return Handle<JSFunction>(raw_native_context()->object_function(), this);
  }

  bool Isolate::is_object_function(JSFunction* value) {
    return raw_native_context()->is_object_function(value);
  }

I'm not clear on the different types of context, there is a native context, a "normal/public" context. In src/contexts-inl.h we have the native_context function:

Context* Context::native_context() const {
  Object* result = get(NATIVE_CONTEXT_INDEX);
  DCHECK(IsBootstrappingOrNativeContext(this->GetIsolate(), result));
  return reinterpret_cast<Context*>(result);
}

Context extends FixedArray so the get function is the get function of FixedArray and NATIVE_CONTEXT_INDEX is the index into the array where the native context is stored.

Now, lets take a closer look at NewJSObject. If you search for NewJSObject in src/heap/factory.cc:

Handle<JSObject> Factory::NewJSObject(Handle<JSFunction> constructor, PretenureFlag pretenure) {
  JSFunction::EnsureHasInitialMap(constructor);
  Handle<Map> map(constructor->initial_map(), isolate());
  return NewJSObjectFromMap(map, pretenure);
}

NewJSObjectFromMap

...
  HeapObject* obj = AllocateRawWithAllocationSite(map, pretenure, allocation_site);

So we have created a new map

Map

So an HeapObject contains a pointer to a Map, or rather has a function that returns a pointer to Map. I can't see any member map in the HeapObject class.

Lets take a look at when a map is created.

(lldb) br s -f map_test.cc -l 63
Handle<Map> Factory::NewMap(InstanceType type,
                            int instance_size,
                            ElementsKind elements_kind,
                            int inobject_properties) {
  HeapObject* result = isolate()->heap()->AllocateRawWithRetryOrFail(Map::kSize, MAP_SPACE);
  result->set_map_after_allocation(*meta_map(), SKIP_WRITE_BARRIER);
  return handle(InitializeMap(Map::cast(result), type, instance_size,
                              elements_kind, inobject_properties),
                isolate());
}

We can see that the above is calling AllocateRawWithRetryOrFail on the heap instance passing a size of 88 and specifying the MAP_SPACE:

HeapObject* Heap::AllocateRawWithRetryOrFail(int size, AllocationSpace space,
                                             AllocationAlignment alignment) {
  AllocationResult alloc;
  HeapObject* result = AllocateRawWithLigthRetry(size, space, alignment);
  if (result) return result;

  isolate()->counters()->gc_last_resort_from_handles()->Increment();
  CollectAllAvailableGarbage(GarbageCollectionReason::kLastResort);
  {
    AlwaysAllocateScope scope(isolate());
    alloc = AllocateRaw(size, space, alignment);
  }
  if (alloc.To(&result)) {
    DCHECK(result != exception());
    return result;
  }
  // TODO(1181417): Fix this.
  FatalProcessOutOfMemory("CALL_AND_RETRY_LAST");
  return nullptr;
}

The default value for alignment is kWordAligned. Reading the docs in the header it says that this function will try to perform an allocation of size 88 in the MAP_SPACE and if it fails a full GC will be performed and the allocation retried. Lets take a look at AllocateRawWithLigthRetry:

  AllocationResult alloc = AllocateRaw(size, space, alignment);

AllocateRaw can be found in src/heap/heap-inl.h. There are different paths that will be taken depending on the space parameteter. Since it is MAP_SPACE in our case we will focus on that path:

AllocationResult Heap::AllocateRaw(int size_in_bytes, AllocationSpace space, AllocationAlignment alignment) {
  ...
  HeapObject* object = nullptr;
  AllocationResult allocation;
  if (OLD_SPACE == space) {
  ...
  } else if (MAP_SPACE == space) {
    allocation = map_space_->AllocateRawUnaligned(size_in_bytes);
  }
  ...
}

map_space_ is a private member of Heap (src/heap/heap.h):

MapSpace* map_space_;

AllocateRawUnaligned can be found in src/heap/spaces-inl.h:

AllocationResult PagedSpace::AllocateRawUnaligned( int size_in_bytes, UpdateSkipList update_skip_list) {
  if (!EnsureLinearAllocationArea(size_in_bytes)) {
    return AllocationResult::Retry(identity());
  }

  HeapObject* object = AllocateLinearly(size_in_bytes);
  MSAN_ALLOCATED_UNINITIALIZED_MEMORY(object->address(), size_in_bytes);
  return object;
}

The default value for update_skip_list is UPDATE_SKIP_LIST. So lets take a look at AllocateLinearly:

HeapObject* PagedSpace::AllocateLinearly(int size_in_bytes) {
  Address current_top = allocation_info_.top();
  Address new_top = current_top + size_in_bytes;
  allocation_info_.set_top(new_top);
  return HeapObject::FromAddress(current_top);
}

Recall that size_in_bytes in our case is 88.

(lldb) expr current_top
(v8::internal::Address) $5 = 24847457492680
(lldb) expr new_top
(v8::internal::Address) $6 = 24847457492768
(lldb) expr new_top - current_top
(unsigned long) $7 = 88

Notice that first the top is set to the new_top and then the current_top is returned and that will be a pointer to the start of the object in memory (which in this case is of v8::internal::Map which is also of type HeapObject). I've been wondering why Map (and other HeapObject) don't have any member fields and only/mostly getters/setters for the various fields that make up an object. Well the answer is that pointers to instances of for example Map point to the first memory location of the instance. And the getters/setter functions use indexed to read/write to memory locations. The indexes are mostly in the form of enum fields that define the memory layout of the type.

Next, in AllocateRawUnaligned we have the MSAN_ALLOCATED_UNINITIALIZED_MEMORY macro:

  MSAN_ALLOCATED_UNINITIALIZED_MEMORY(object->address(), size_in_bytes);

MSAN_ALLOCATED_UNINITIALIZED_MEMORY can be found in src/msan.h and ms stands for Memory Sanitizer and would only be used if V8_US_MEMORY_SANITIZER is defined. The returned object will be used to construct an AllocationResult when returned. Back in AllocateRaw we have:

if (allocation.To(&object)) {
    ...
    OnAllocationEvent(object, size_in_bytes);
  }

  return allocation;

This will return us in AllocateRawWithLightRetry:

AllocationResult alloc = AllocateRaw(size, space, alignment);
if (alloc.To(&result)) {
  DCHECK(result != exception());
  return result;
}

This will return us back in AllocateRawWithRetryOrFail:

  HeapObject* result = AllocateRawWithLigthRetry(size, space, alignment);
  if (result) return result;

And that return will return to NewMap in src/heap/factory.cc:

  result->set_map_after_allocation(*meta_map(), SKIP_WRITE_BARRIER);
  return handle(InitializeMap(Map::cast(result), type, instance_size,
                              elements_kind, inobject_properties),
                isolate());

InitializeMap:

  map->set_instance_type(type);
  map->set_prototype(*null_value(), SKIP_WRITE_BARRIER);
  map->set_constructor_or_backpointer(*null_value(), SKIP_WRITE_BARRIER);
  map->set_instance_size(instance_size);
  if (map->IsJSObjectMap()) {
    DCHECK(!isolate()->heap()->InReadOnlySpace(map));
    map->SetInObjectPropertiesStartInWords(instance_size / kPointerSize - inobject_properties);
    DCHECK_EQ(map->GetInObjectProperties(), inobject_properties);
    map->set_prototype_validity_cell(*invalid_prototype_validity_cell());
  } else {
    DCHECK_EQ(inobject_properties, 0);
    map->set_inobject_properties_start_or_constructor_function_index(0);
    map->set_prototype_validity_cell(Smi::FromInt(Map::kPrototypeChainValid));
  }
  map->set_dependent_code(DependentCode::cast(*empty_fixed_array()), SKIP_WRITE_BARRIER);
  map->set_weak_cell_cache(Smi::kZero);
  map->set_raw_transitions(MaybeObject::FromSmi(Smi::kZero));
  map->SetInObjectUnusedPropertyFields(inobject_properties);
  map->set_instance_descriptors(*empty_descriptor_array());

  map->set_visitor_id(Map::GetVisitorId(map));
  map->set_bit_field(0);
  map->set_bit_field2(Map::IsExtensibleBit::kMask);
  int bit_field3 = Map::EnumLengthBits::encode(kInvalidEnumCacheSentinel) |
                   Map::OwnsDescriptorsBit::encode(true) |
                   Map::ConstructionCounterBits::encode(Map::kNoSlackTracking);
  map->set_bit_field3(bit_field3);
  map->set_elements_kind(elements_kind); //HOLEY_ELEMENTS
  map->set_new_target_is_base(true);
  isolate()->counters()->maps_created()->Increment();
  if (FLAG_trace_maps) LOG(isolate(), MapCreate(map));
  return map;

Creating a new map (map_test.cc:

  i::Handle<i::Map> map = i::Map::Create(asInternal(isolate_), 10);
  std::cout << map->instance_type() << '\n';

Map::Create can be found in objects.cc:

Handle<Map> Map::Create(Isolate* isolate, int inobject_properties) {
  Handle<Map> copy = Copy(handle(isolate->object_function()->initial_map()), "MapCreate");

So, the first thing that will happen is isolate->object_function() will be called. This is function that is generated by the preprocessor.

// from src/context.h
#define NATIVE_CONTEXT_FIELDS(V)                                               \
  ...                                                                          \
  V(OBJECT_FUNCTION_INDEX, JSFunction, object_function)                        \

// from src/isolate.h
#define NATIVE_CONTEXT_FIELD_ACCESSOR(index, type, name)     \
  Handle<type> Isolate::name() {                             \
    return Handle<type>(raw_native_context()->name(), this); \
  }                                                          \
  bool Isolate::is_##name(type* value) {                     \
    return raw_native_context()->is_##name(value);           \
  }
NATIVE_CONTEXT_FIELDS(NATIVE_CONTEXT_FIELD_ACCESSOR)

object_function() will become:

  Handle<JSFunction> Isolate::object_function() {
    return Handle<JSFunction>(raw_native_context()->object_function(), this);
  }

Lets look closer at JSFunction::initial_map() in in object-inl.h:

Map* JSFunction::initial_map() {
  return Map::cast(prototype_or_initial_map());
}

prototype_or_initial_map is generated by a macro:

ACCESSORS_CHECKED(JSFunction, prototype_or_initial_map, Object,
                  kPrototypeOrInitialMapOffset, map()->has_prototype_slot())

ACCESSORS_CHECKED can be found in src/objects/object-macros.h:

#define ACCESSORS_CHECKED(holder, name, type, offset, condition) \
  ACCESSORS_CHECKED2(holder, name, type, offset, condition, condition)

#define ACCESSORS_CHECKED2(holder, name, type, offset, get_condition, \
                           set_condition)                             \
  type* holder::name() const {                                        \
    type* value = type::cast(READ_FIELD(this, offset));               \
    DCHECK(get_condition);                                            \
    return value;                                                     \
  }                                                                   \
  void holder::set_##name(type* value, WriteBarrierMode mode) {       \
    DCHECK(set_condition);                                            \
    WRITE_FIELD(this, offset, value);                                 \
    CONDITIONAL_WRITE_BARRIER(GetHeap(), this, offset, value, mode);  \
  }

#define FIELD_ADDR(p, offset) \
  (reinterpret_cast<Address>(p) + offset - kHeapObjectTag)

#define READ_FIELD(p, offset) \
  (*reinterpret_cast<Object* const*>(FIELD_ADDR(p, offset)))

The preprocessor will expand prototype_or_initial_map to:

  JSFunction* JSFunction::prototype_or_initial_map() const {
    JSFunction* value = JSFunction::cast(
        (*reinterpret_cast<Object* const*>(
            (reinterpret_cast<Address>(this) + kPrototypeOrInitialMapOffset - kHeapObjectTag))))
    DCHECK(map()->has_prototype_slot());
    return value;
  }

Notice that map()->has_prototype_slot()) will be called first which looks like this:

Map* HeapObject::map() const {
  return map_word().ToMap();
}

TODO: Add notes about MapWord

MapWord HeapObject::map_word() const {
  return MapWord(
      reinterpret_cast<uintptr_t>(RELAXED_READ_FIELD(this, kMapOffset)));
}

First thing that will happen is RELAXED_READ_FIELD(this, kMapOffset)

#define RELAXED_READ_FIELD(p, offset)           \
  reinterpret_cast<Object*>(base::Relaxed_Load( \
      reinterpret_cast<const base::AtomicWord*>(FIELD_ADDR(p, offset))))

#define FIELD_ADDR(p, offset) \
  (reinterpret_cast<Address>(p) + offset - kHeapObjectTag)

This will get expanded by the preprocessor to:

  reinterpret_cast<Object*>(base::Relaxed_Load(
      reinterpret_cast<const base::AtomicWord*>(
          (reinterpret_cast<Address>(this) + kMapOffset - kHeapObjectTag)))

src/base/atomicops_internals_portable.h:

inline Atomic8 Relaxed_Load(volatile const Atomic8* ptr) {
  return __atomic_load_n(ptr, __ATOMIC_RELAXED);
}

So this will do an atomoic load of the ptr with the memory order of __ATOMIC_RELELAXED.

ACCESSORS_CHECKED also generates a set_prototyp_or_initial_map:

  void JSFunction::set_prototype_or_initial_map(JSFunction* value, WriteBarrierMode mode) {
    DCHECK(map()->has_prototype_slot());
    WRITE_FIELD(this, kPrototypeOrInitialMapOffset, value);
    CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kPrototypeOrInitialMapOffset, value, mode);
  }

What does WRITE_FIELD do?

#define WRITE_FIELD(p, offset, value)                             \
  base::Relaxed_Store(                                            \
      reinterpret_cast<base::AtomicWord*>(FIELD_ADDR(p, offset)), \
      reinterpret_cast<base::AtomicWord>(value));

Which would expand into:

  base::Relaxed_Store(                                            \
      reinterpret_cast<base::AtomicWord*>(
          (reinterpret_cast<Address>(this) + kPrototypeOrInitialMapOffset - kHeapObjectTag)
      reinterpret_cast<base::AtomicWord>(value));

Lets take a look at what instance_type does:

InstanceType Map::instance_type() const {
  return static_cast<InstanceType>(READ_UINT16_FIELD(this, kInstanceTypeOffset));
}

To see what the above is doing we can do the same thing in the debugger: Note that I got 11 below from map->kInstanceTypeOffset - i::kHeapObjectTag

(lldb) memory read -f u -c 1 -s 8 `*map + 11`
0x6d4e6609ed4: 585472345729139745
(lldb) expr static_cast<InstanceType>(585472345729139745)
(v8::internal::InstanceType) $34 = JS_OBJECT_TYPE

Take map->has_non_instance_prototype():

(lldb) br s -n has_non_instance_prototype
(lldb) expr -i 0 -- map->has_non_instance_prototype()

The above command will break in src/objects/map-inl.h:

BIT_FIELD_ACCESSORS(Map, bit_field, has_non_instance_prototype, Map::HasNonInstancePrototypeBit)

// src/objects/object-macros.h
#define BIT_FIELD_ACCESSORS(holder, field, name, BitField)      \
  typename BitField::FieldType holder::name() const {           \
    return BitField::decode(field());                           \
  }                                                             \
  void holder::set_##name(typename BitField::FieldType value) { \
    set_##field(BitField::update(field(), value));              \
  }

The preprocessor will expand that to:

  typename Map::HasNonInstancePrototypeBit::FieldType Map::has_non_instance_prototype() const {
    return Map::HasNonInstancePrototypeBit::decode(bit_field());
  }                                                             \
  void holder::set_has_non_instance_prototype(typename BitField::FieldType value) { \
    set_bit_field(Map::HasNonInstancePrototypeBit::update(bit_field(), value));              \
  }

So where can we find Map::HasNonInstancePrototypeBit?
It is generated by a macro in src/objects/map.h:

// Bit positions for |bit_field|.
#define MAP_BIT_FIELD_FIELDS(V, _)          \
  V(HasNonInstancePrototypeBit, bool, 1, _) \
  ...
  DEFINE_BIT_FIELDS(MAP_BIT_FIELD_FIELDS)
#undef MAP_BIT_FIELD_FIELDS

#define DEFINE_BIT_FIELDS(LIST_MACRO) \
  DEFINE_BIT_RANGES(LIST_MACRO)       \
  LIST_MACRO(DEFINE_BIT_FIELD_TYPE, LIST_MACRO##_Ranges)

#define DEFINE_BIT_RANGES(LIST_MACRO)                               \
  struct LIST_MACRO##_Ranges {                                      \
    enum { LIST_MACRO(DEFINE_BIT_FIELD_RANGE_TYPE, _) kBitsCount }; \
  };

#define DEFINE_BIT_FIELD_RANGE_TYPE(Name, Type, Size, _) \
  k##Name##Start, k##Name##End = k##Name##Start + Size - 1,

Alright, lets see what preprocessor expands that to:

  struct MAP_BIT_FIELD_FIELDS_Ranges {
    enum { 
      kHasNonInstancePrototypeBitStart, 
      kHasNonInstancePrototypeBitEnd = kHasNonInstancePrototypeBitStart + 1 - 1,
      ... // not showing the rest of the entries.
      kBitsCount 
    };
  };

So this would create a struct with an enum and it could be accessed using: i::Map::MAP_BIT_FIELD_FIELDS_Ranges::kHasNonInstancePrototypeBitStart The next part of the macro is

  LIST_MACRO(DEFINE_BIT_FIELD_TYPE, LIST_MACRO##_Ranges)

#define DEFINE_BIT_FIELD_TYPE(Name, Type, Size, RangesName) \
  typedef BitField<Type, RangesName::k##Name##Start, Size> Name;

Which will get expanded to:

  typedef BitField<HasNonInstancePrototypeBit, MAP_BIT_FIELD_FIELDS_Ranges::kHasNonInstancePrototypeBitStart, 1> HasNonInstancePrototypeBit;

So this is how HasNonInstancePrototypeBit is declared and notice that it is of type BitField which can be found in src/utils.h:

template<class T, int shift, int size>
class BitField : public BitFieldBase<T, shift, size, uint32_t> { };

template<class T, int shift, int size, class U>
class BitFieldBase {
 public:
  typedef T FieldType;

Map::HasNonInstancePrototypeBit::decode(bit_field()); first bit_field is called:

byte Map::bit_field() const { return READ_BYTE_FIELD(this, kBitFieldOffset); }

And the result of that is passed to Map::HasNonInstancePrototypeBit::decode:

(lldb) br s -n bit_field
(lldb) expr -i 0 --  map->bit_field()
byte Map::bit_field() const { return READ_BYTE_FIELD(this, kBitFieldOffset); }

So, this is the current Map instance, and we are going to read from.

#define READ_BYTE_FIELD(p, offset) \
  (*reinterpret_cast<const byte*>(FIELD_ADDR(p, offset)))

#define FIELD_ADDR(p, offset) \
  (reinterpret_cast<Address>(p) + offset - kHeapObjectTag)

Which will get expanded to:

byte Map::bit_field() const { 
  return *reinterpret_cast<const byte*>(
      reinterpret_cast<Address>(this) + kBitFieldOffset - kHeapObjectTag)
}

The instance_size is the instance_size_in_words << kPointerSizeLog2 (3 on my machine):

(lldb) memory read -f x -s 1 -c 1 *map+8
0x24d1cd509ed1: 0x03
(lldb) expr 0x03 << 3
(int) $2 = 24
(lldb) expr map->instance_size()
(int) $3 = 24

i::HeapObject::kHeaderSize is 8 on my system which is used in the `DEFINE_FIELD_OFFSET_CONSTANTS:

#define MAP_FIELDS(V)
V(kInstanceSizeInWordsOffset, kUInt8Size)
V(kInObjectPropertiesStartOrConstructorFunctionIndexOffset, kUInt8Size)
...
DEFINE_FIELD_OFFSET_CONSTANTS(HeapObject::kHeaderSize, MAP_FIELDS)

So we can use this information to read the inobject_properties_start_or_constructor_function_index directly from memory using:

(lldb) expr map->inobject_properties_start_or_constructor_function_index()
(lldb) memory read -f x -s 1 -c 1 map+9
error: invalid start address expression.
error: address expression "map+9" evaluation failed
(lldb) memory read -f x -s 1 -c 1 *map+9
0x17b027209ed2: 0x03

Inspect the visitor_id (which is the last of the first byte):

lldb) memory read -f x -s 1 -c 1 *map+10
0x17b027209ed3: 0x15
(lldb) expr (int) 0x15
(int) $8 = 21
(lldb) expr map->visitor_id()
(v8::internal::VisitorId) $11 = kVisitJSObjectFast
(lldb) expr (int) $11
(int) $12 = 21

Inspect the instance_type (which is part of the second byte):

(lldb) expr map->instance_type()
(v8::internal::InstanceType) $41 = JS_OBJECT_TYPE
(lldb) expr v8::internal::InstanceType::JS_OBJECT_TYPE
(uint16_t) $35 = 1057
(lldb) memory read -f x -s 2 -c 1 *map+11
0x17b027209ed4: 0x0421
(lldb) expr (int)0x0421
(int) $40 = 1057

Notice that instance_type is a short so that will take up 2 bytes

(lldb) expr map->has_non_instance_prototype()
(bool) $60 = false
(lldb) expr map->is_callable()
(bool) $46 = false
(lldb) expr map->has_named_interceptor()
(bool) $51 = false
(lldb) expr map->has_indexed_interceptor()
(bool) $55 = false
(lldb) expr map->is_undetectable()
(bool) $56 = false
(lldb) expr map->is_access_check_needed()
(bool) $57 = false
(lldb) expr map->is_constructor()
(bool) $58 = false
(lldb) expr map->has_prototype_slot()
(bool) $59 = false

Verify that the above is correct:

(lldb) expr map->has_non_instance_prototype()
(bool) $44 = false
(lldb) memory read -f x -s 1 -c 1 *map+13
0x17b027209ed6: 0x00

(lldb) expr map->set_has_non_instance_prototype(true)
(lldb) memory read -f x -s 1 -c 1 *map+13
0x17b027209ed6: 0x01

(lldb) expr map->set_has_prototype_slot(true)
(lldb) memory read -f x -s 1 -c 1 *map+13
0x17b027209ed6: 0x81

Inspect second int field (bit_field2):

(lldb) memory read -f x -s 1 -c 1 *map+14
0x17b027209ed7: 0x19
(lldb) expr map->is_extensible()
(bool) $78 = true
(lldb) expr -- 0x19 & (1 << 0)
(bool) $90 = 1

(lldb) expr map->is_prototype_map()
(bool) $79 = false

(lldb) expr map->is_in_retained_map_list()
(bool) $80 = false

(lldb) expr map->elements_kind()
(v8::internal::ElementsKind) $81 = HOLEY_ELEMENTS
(lldb) expr v8::internal::ElementsKind::HOLEY_ELEMENTS
(int) $133 = 3
(lldb) expr  0x19 >> 3
(int) $134 = 3

Inspect third int field (bit_field3):

(lldb) memory read -f b -s 4 -c 1 *map+15
0x17b027209ed8: 0b00001000001000000000001111111111
(lldb) memory read -f x -s 4 -c 1 *map+15
0x17b027209ed8: 0x082003ff

So we know that a Map instance is a pointer allocated by the Heap and with a specific size. Fields are accessed using indexes (remember there are no member fields in the Map class). We also know that all HeapObject have a Map. The Map is sometimes referred to as the HiddenClass and sometimes the shape of an object. If two objects have the same properties they would share the same Map. This makes sense and I've see blog post that show this but I'd like to verify this to fully understand it. I'm going to try to match https://v8project.blogspot.com/2017/08/fast-properties.html with the code.

So, lets take a look at adding a property to a JSObject. We start by creating a new Map and then use it to create a new JSObject:

  i::Handle<i::Map> map = factory->NewMap(i::JS_OBJECT_TYPE, 32);
  i::Handle<i::JSObject> js_object = factory->NewJSObjectFromMap(map);

  i::Handle<i::String> prop_name = factory->InternalizeUtf8String("prop_name");
  i::Handle<i::String> prop_value = factory->InternalizeUtf8String("prop_value");
  i::JSObject::AddProperty(js_object, prop_name, prop_value, i::NONE);  

Lets take a closer look at AddProperty and how it interacts with the Map. This function can be found in src/objects.cc:

void JSObject::AddProperty(Handle<JSObject> object, Handle<Name> name,
                           Handle<Object> value,
                           PropertyAttributes attributes) {
  LookupIterator it(object, name, object, LookupIterator::OWN_SKIP_INTERCEPTOR);
  CHECK_NE(LookupIterator::ACCESS_CHECK, it.state());

First we have the LookupIterator constructor (src/lookup.h) but since this is a new property which we know does not exist it will not find any property.

CHECK(AddDataProperty(&it, value, attributes, kThrowOnError,
                        CERTAINLY_NOT_STORE_FROM_KEYED)
            .IsJust());
  Handle<JSReceiver> receiver = it->GetStoreTarget<JSReceiver>();
  ...
  it->UpdateProtector();
  // Migrate to the most up-to-date map that will be able to store |value|
  // under it->name() with |attributes|.
  it->PrepareTransitionToDataProperty(receiver, value, attributes, store_mode);
  DCHECK_EQ(LookupIterator::TRANSITION, it->state());
  it->ApplyTransitionToDataProperty(receiver);

  // Write the property value.
  it->WriteDataValue(value, true);

PrepareTransitionToDataProperty:

  Representation representation = value->OptimalRepresentation();
  Handle<FieldType> type = value->OptimalType(isolate, representation);
  maybe_map = Map::CopyWithField(map, name, type, attributes, constness,
  representation, flag);

Map::CopyWithField:

  Descriptor d = Descriptor::DataField(name, index, attributes, constness, representation, wrapped_type);

Lets take a closer look the Decriptor which can be found in src/property.cc:

Descriptor Descriptor::DataField(Handle<Name> key, int field_index,
                                 PropertyAttributes attributes,
                                 PropertyConstness constness,
                                 Representation representation,
                                 MaybeObjectHandle wrapped_field_type) {
  DCHECK(wrapped_field_type->IsSmi() || wrapped_field_type->IsWeakHeapObject());
  PropertyDetails details(kData, attributes, kField, constness, representation,
                          field_index);
  return Descriptor(key, wrapped_field_type, details);
}

Descriptor is declared in src/property.h and describes the elements in a instance-descriptor array. These are returned when calling map->instance_descriptors(). Let check some of the arguments:

(lldb) job *key
#prop_name
(lldb) expr attributes
(v8::internal::PropertyAttributes) $27 = NONE
(lldb) expr constness
(v8::internal::PropertyConstness) $28 = kMutable
(lldb) expr representation
(v8::internal::Representation) $29 = (kind_ = '\b')

The Descriptor class contains three members:

 private:
  Handle<Name> key_;
  MaybeObjectHandle value_;
  PropertyDetails details_;

Lets take a closer look PropertyDetails which only has a single member named value_

  uint32_t value_;

It also declares a number of classes the extend BitField, for example:

class KindField : public BitField<PropertyKind, 0, 1> {};
class LocationField : public BitField<PropertyLocation, KindField::kNext, 1> {};
class ConstnessField : public BitField<PropertyConstness, LocationField::kNext, 1> {};
class AttributesField : public BitField<PropertyAttributes, ConstnessField::kNext, 3> {};
class PropertyCellTypeField : public BitField<PropertyCellType, AttributesField::kNext, 2> {};
class DictionaryStorageField : public BitField<uint32_t, PropertyCellTypeField::kNext, 23> {};

// Bit fields for fast objects.
class RepresentationField : public BitField<uint32_t, AttributesField::kNext, 4> {};
class DescriptorPointer : public BitField<uint32_t, RepresentationField::kNext, kDescriptorIndexBitCount> {};
class FieldIndexField : public BitField<uint32_t, DescriptorPointer::kNext, kDescriptorIndexBitCount> {

enum PropertyKind { kData = 0, kAccessor = 1 };
enum PropertyLocation { kField = 0, kDescriptor = 1 };
enum class PropertyConstness { kMutable = 0, kConst = 1 };
enum PropertyAttributes {
  NONE = ::v8::None,
  READ_ONLY = ::v8::ReadOnly,
  DONT_ENUM = ::v8::DontEnum,
  DONT_DELETE = ::v8::DontDelete,
  ALL_ATTRIBUTES_MASK = READ_ONLY | DONT_ENUM | DONT_DELETE,
  SEALED = DONT_DELETE,
  FROZEN = SEALED | READ_ONLY,
  ABSENT = 64,  // Used in runtime to indicate a property is absent.
  // ABSENT can never be stored in or returned from a descriptor's attributes
  // bitfield.  It is only used as a return value meaning the attributes of
  // a non-existent property.
};
enum class PropertyCellType {
  // Meaningful when a property cell does not contain the hole.
  kUndefined,     // The PREMONOMORPHIC of property cells.
  kConstant,      // Cell has been assigned only once.
  kConstantType,  // Cell has been assigned only one type.
  kMutable,       // Cell will no longer be tracked as constant.
  // Meaningful when a property cell contains the hole.
  kUninitialized = kUndefined,  // Cell has never been initialized.
  kInvalidated = kConstant,     // Cell has been deleted, invalidated or never
                                // existed.
  // For dictionaries not holding cells.
  kNoCell = kMutable,
};


template<class T, int shift, int size>
class BitField : public BitFieldBase<T, shift, size, uint32_t> { };

The Type T of KindField will be PropertyKind, the shift will be 0 , and the size 1. Notice that LocationField is using KindField::kNext as its shift. This is a static class constant of type uint32_t and is defined as:

static const U kNext = kShift + kSize;

So LocationField would get the value from KindField which should be:

class LocationField : public BitField<PropertyLocation, 1, 1> {};

The constructor for PropertyDetails looks like this:

PropertyDetails(PropertyKind kind, PropertyAttributes attributes, PropertyCellType cell_type, int dictionary_index = 0) {
    value_ = KindField::encode(kind) | LocationField::encode(kField) |
             AttributesField::encode(attributes) |
             DictionaryStorageField::encode(dictionary_index) |
             PropertyCellTypeField::encode(cell_type);
  }

So what does KindField::encode(kind) actualy do then?

(lldb) expr static_cast<uint32_t>(kind())
(uint32_t) $36 = 0
(lldb) expr static_cast<uint32_t>(kind()) << 0
(uint32_t) $37 = 0

This value is later returned by calling kind():

PropertyKind kind() const { return KindField::decode(value_); }

So we have all this information about this property, its type (Representation), constness, if it is read-only, enumerable, deletable, sealed, frozen. After that little detour we are back in Descriptor::DataField:

  return Descriptor(key, wrapped_field_type, details);

Here we are using the key (name of the property), the wrapped_field_type, and PropertyDetails we created. What is wrapped_field_type again?
If we back up a few frames back into Map::TransitionToDataProperty we can see that the type passed in is taken from the following code:

  Representation representation = value->OptimalRepresentation();
  Handle<FieldType> type = value->OptimalType(isolate, representation);

So this is only taking the type of the field:

(lldb) expr representation.kind()
(v8::internal::Representation::Kind) $51 = kHeapObject

This makes sense as the map only deals with the shape of the propery and not the value. Next in Map::CopyWithField we have:

  Handle<Map> new_map = Map::CopyAddDescriptor(map, &d, flag);

CopyAddDescriptor does:

  Handle<DescriptorArray> descriptors(map->instance_descriptors());
 
  int nof = map->NumberOfOwnDescriptors();
  Handle<DescriptorArray> new_descriptors = DescriptorArray::CopyUpTo(descriptors, nof, 1);
  new_descriptors->Append(descriptor);
  
  Handle<LayoutDescriptor> new_layout_descriptor =
      FLAG_unbox_double_fields
          ? LayoutDescriptor::New(map, new_descriptors, nof + 1)
          : handle(LayoutDescriptor::FastPointerLayout(), map->GetIsolate());

  return CopyReplaceDescriptors(map, new_descriptors, new_layout_descriptor,
                                flag, descriptor->GetKey(), "CopyAddDescriptor",
                                SIMPLE_PROPERTY_TRANSITION);

Lets take a closer look at LayoutDescriptor

(lldb) expr new_layout_descriptor->Print()
Layout descriptor: <all tagged>

TODO: Take a closer look at LayoutDescritpor

Later when actually adding the value in Object::AddDataProperty:

  it->WriteDataValue(value, true);

This call will end up in src/lookup.cc and in our case the path will be the following call:

  JSObject::cast(*holder)->WriteToField(descriptor_number(), property_details_, *value);

TODO: Take a closer look at LookupIterator. WriteToField can be found in src/objects-inl.h:

  FieldIndex index = FieldIndex::ForDescriptor(map(), descriptor);

FieldIndex::ForDescriptor can be found in src/field-index-inl.h:

inline FieldIndex FieldIndex::ForDescriptor(const Map* map, int descriptor_index) {
  PropertyDetails details = map->instance_descriptors()->GetDetails(descriptor_index);
  int field_index = details.field_index();
  return ForPropertyIndex(map, field_index, details.representation());
}

Notice that this is calling instance_descriptors() on the passed-in map. This as we recall from earlier returns and DescriptorArray (which is a type of WeakFixedArray). A Descriptor array

Our DecsriptorArray only has one entry:

(lldb) expr map->instance_descriptors()->number_of_descriptors()
(int) $6 = 1
(lldb) expr map->instance_descriptors()->GetKey(0)->Print()
#prop_name
(lldb) expr map->instance_descriptors()->GetFieldIndex(0)
(int) $11 = 0

We can also use Print on the DescriptorArray:

lldb) expr map->instance_descriptors()->Print()

  [0]: #prop_name (data field 0:h, p: 0, attrs: [WEC]) @ Any

In our case we are accessing the PropertyDetails and then getting the field_index which I think tells us where in the object the value for this property is stored. The last call in ForDescriptor is `ForProperty:

inline FieldIndex FieldIndex::ForPropertyIndex(const Map* map,
                                               int property_index,
                                               Representation representation) {
  int inobject_properties = map->GetInObjectProperties();
  bool is_inobject = property_index < inobject_properties;
  int first_inobject_offset;
  int offset;
  if (is_inobject) {
    first_inobject_offset = map->GetInObjectPropertyOffset(0);
    offset = map->GetInObjectPropertyOffset(property_index);
  } else {
    first_inobject_offset = FixedArray::kHeaderSize;
    property_index -= inobject_properties;
    offset = FixedArray::kHeaderSize + property_index * kPointerSize;
  }
  Encoding encoding = FieldEncoding(representation);
  return FieldIndex(is_inobject, offset, encoding, inobject_properties,
                    first_inobject_offset);
}

I was expecting inobject_propertis to be 1 here but it is 0:

(lldb) expr inobject_properties
(int) $14 = 0

Why is that, what am I missing?
These in-object properties are stored directly on the object instance and not do not use the properties array. All get back to an example of this later to clarify this. TODO: Add in-object properties example.

Back in JSObject::WriteToField:

  RawFastPropertyAtPut(index, value);
void JSObject::RawFastPropertyAtPut(FieldIndex index, Object* value) {
  if (index.is_inobject()) {
    int offset = index.offset();
    WRITE_FIELD(this, offset, value);
    WRITE_BARRIER(GetHeap(), this, offset, value);
  } else {
    property_array()->set(index.outobject_array_index(), value);
  }
}

In our case we know that the index is not inobject()

(lldb) expr index.is_inobject()
(bool) $18 = false

So, property_array()->set() will be called.

(lldb) expr this
(v8::internal::JSObject *) $21 = 0x00002c31c6a88b59

JSObject inherits from JSReceiver which is where the property_array() function is declared.

  inline PropertyArray* property_array() const;
(lldb) expr property_array()->Print()
0x2c31c6a88bb1: [PropertyArray]
 - map: 0x2c31f5603e21 <Map>
 - length: 3
 - hash: 0
           0: 0x2c31f56025a1 <Odd Oddball: uninitialized>
         1-2: 0x2c31f56026f1 <undefined>
(lldb) expr index.outobject_array_index()
(int) $26 = 0
(lldb) expr value->Print()
#prop_value

Looking at the above values printed we should see the property be written to entry 0.

(lldb) expr property_array()->get(0)->Print()
#uninitialized
// after call to set
(lldb) expr property_array()->get(0)->Print()
#prop_value
(lldb) expr map->instance_descriptors()
(v8::internal::DescriptorArray *) $4 = 0x000039a927082339

So a map has an pointer array of instance of DescriptorArray

(lldb) expr map->GetInObjectProperties()
(int) $19 = 1

Each Map has int that tells us the number of properties it has. This is the number specified when creating a new Map, for example:

i::Handle<i::Map> map = i::Map::Create(asInternal(isolate_), 1);

But at this stage we don't really have any properties. The value for a property is associated with the actual instance of the Object. What the Map specifies is index of the value for a particualar property.

Creating a Map instance

Lets take a look at when a map is created.

(lldb) br s -f map_test.cc -l 63
Handle<Map> Factory::NewMap(InstanceType type,
                            int instance_size,
                            ElementsKind elements_kind,
                            int inobject_properties) {
  HeapObject* result = isolate()->heap()->AllocateRawWithRetryOrFail(Map::kSize, MAP_SPACE);
  result->set_map_after_allocation(*meta_map(), SKIP_WRITE_BARRIER);
  return handle(InitializeMap(Map::cast(result), type, instance_size,
                              elements_kind, inobject_properties),
                isolate());
}

We can see that the above is calling AllocateRawWithRetryOrFail on the heap instance passing a size of 88 and specifying the MAP_SPACE:

HeapObject* Heap::AllocateRawWithRetryOrFail(int size, AllocationSpace space,
                                             AllocationAlignment alignment) {
  AllocationResult alloc;
  HeapObject* result = AllocateRawWithLigthRetry(size, space, alignment);
  if (result) return result;

  isolate()->counters()->gc_last_resort_from_handles()->Increment();
  CollectAllAvailableGarbage(GarbageCollectionReason::kLastResort);
  {
    AlwaysAllocateScope scope(isolate());
    alloc = AllocateRaw(size, space, alignment);
  }
  if (alloc.To(&result)) {
    DCHECK(result != exception());
    return result;
  }
  // TODO(1181417): Fix this.
  FatalProcessOutOfMemory("CALL_AND_RETRY_LAST");
  return nullptr;
}

The default value for alignment is kWordAligned. Reading the docs in the header it says that this function will try to perform an allocation of size 88 in the MAP_SPACE and if it fails a full GC will be performed and the allocation retried. Lets take a look at AllocateRawWithLigthRetry:

  AllocationResult alloc = AllocateRaw(size, space, alignment);

AllocateRaw can be found in src/heap/heap-inl.h. There are different paths that will be taken depending on the space parameteter. Since it is MAP_SPACE in our case we will focus on that path:

AllocationResult Heap::AllocateRaw(int size_in_bytes, AllocationSpace space, AllocationAlignment alignment) {
  ...
  HeapObject* object = nullptr;
  AllocationResult allocation;
  if (OLD_SPACE == space) {
  ...
  } else if (MAP_SPACE == space) {
    allocation = map_space_->AllocateRawUnaligned(size_in_bytes);
  }
  ...
}

map_space_ is a private member of Heap (src/heap/heap.h):

MapSpace* map_space_;

AllocateRawUnaligned can be found in src/heap/spaces-inl.h:

AllocationResult PagedSpace::AllocateRawUnaligned( int size_in_bytes, UpdateSkipList update_skip_list) {
  if (!EnsureLinearAllocationArea(size_in_bytes)) {
    return AllocationResult::Retry(identity());
  }

  HeapObject* object = AllocateLinearly(size_in_bytes);
  MSAN_ALLOCATED_UNINITIALIZED_MEMORY(object->address(), size_in_bytes);
  return object;
}

The default value for update_skip_list is UPDATE_SKIP_LIST. So lets take a look at AllocateLinearly:

HeapObject* PagedSpace::AllocateLinearly(int size_in_bytes) {
  Address current_top = allocation_info_.top();
  Address new_top = current_top + size_in_bytes;
  allocation_info_.set_top(new_top);
  return HeapObject::FromAddress(current_top);
}

Recall that size_in_bytes in our case is 88.

(lldb) expr current_top
(v8::internal::Address) $5 = 24847457492680
(lldb) expr new_top
(v8::internal::Address) $6 = 24847457492768
(lldb) expr new_top - current_top
(unsigned long) $7 = 88

Notice that first the top is set to the new_top and then the current_top is returned and that will be a pointer to the start of the object in memory (which in this case is of v8::internal::Map which is also of type HeapObject). I've been wondering why Map (and other HeapObject) don't have any member fields and only/mostly getters/setters for the various fields that make up an object. Well the answer is that pointers to instances of for example Map point to the first memory location of the instance. And the getters/setter functions use indexed to read/write to memory locations. The indexes are mostly in the form of enum fields that define the memory layout of the type.

Next, in AllocateRawUnaligned we have the MSAN_ALLOCATED_UNINITIALIZED_MEMORY macro:

  MSAN_ALLOCATED_UNINITIALIZED_MEMORY(object->address(), size_in_bytes);

MSAN_ALLOCATED_UNINITIALIZED_MEMORY can be found in src/msan.h and ms stands for Memory Sanitizer and would only be used if V8_US_MEMORY_SANITIZER is defined. The returned object will be used to construct an AllocationResult when returned. Back in AllocateRaw we have:

if (allocation.To(&object)) {
    ...
    OnAllocationEvent(object, size_in_bytes);
  }

  return allocation;

This will return us in AllocateRawWithLightRetry:

AllocationResult alloc = AllocateRaw(size, space, alignment);
if (alloc.To(&result)) {
  DCHECK(result != exception());
  return result;
}

This will return us back in AllocateRawWithRetryOrFail:

  HeapObject* result = AllocateRawWithLigthRetry(size, space, alignment);
  if (result) return result;

And that return will return to NewMap in src/heap/factory.cc:

  result->set_map_after_allocation(*meta_map(), SKIP_WRITE_BARRIER);
  return handle(InitializeMap(Map::cast(result), type, instance_size,
                              elements_kind, inobject_properties),
                isolate());

InitializeMap:

  map->set_instance_type(type);
  map->set_prototype(*null_value(), SKIP_WRITE_BARRIER);
  map->set_constructor_or_backpointer(*null_value(), SKIP_WRITE_BARRIER);
  map->set_instance_size(instance_size);
  if (map->IsJSObjectMap()) {
    DCHECK(!isolate()->heap()->InReadOnlySpace(map));
    map->SetInObjectPropertiesStartInWords(instance_size / kPointerSize - inobject_properties);
    DCHECK_EQ(map->GetInObjectProperties(), inobject_properties);
    map->set_prototype_validity_cell(*invalid_prototype_validity_cell());
  } else {
    DCHECK_EQ(inobject_properties, 0);
    map->set_inobject_properties_start_or_constructor_function_index(0);
    map->set_prototype_validity_cell(Smi::FromInt(Map::kPrototypeChainValid));
  }
  map->set_dependent_code(DependentCode::cast(*empty_fixed_array()), SKIP_WRITE_BARRIER);
  map->set_weak_cell_cache(Smi::kZero);
  map->set_raw_transitions(MaybeObject::FromSmi(Smi::kZero));
  map->SetInObjectUnusedPropertyFields(inobject_properties);
  map->set_instance_descriptors(*empty_descriptor_array());

  map->set_visitor_id(Map::GetVisitorId(map));
  map->set_bit_field(0);
  map->set_bit_field2(Map::IsExtensibleBit::kMask);
  int bit_field3 = Map::EnumLengthBits::encode(kInvalidEnumCacheSentinel) |
                   Map::OwnsDescriptorsBit::encode(true) |
                   Map::ConstructionCounterBits::encode(Map::kNoSlackTracking);
  map->set_bit_field3(bit_field3);
  map->set_elements_kind(elements_kind); //HOLEY_ELEMENTS
  map->set_new_target_is_base(true);
  isolate()->counters()->maps_created()->Increment();
  if (FLAG_trace_maps) LOG(isolate(), MapCreate(map));
  return map;

Context

Context extends FixedArray (src/context.h). So an instance of this Context is a FixedArray and we can use Get(index) etc to get entries in the array.

V8_EXPORT

This can be found in quite a few places in v8 source code. For example:

class V8_EXPORT ArrayBuffer : public Object {

What is this?
It is a preprocessor macro which looks like this:

#if V8_HAS_ATTRIBUTE_VISIBILITY && defined(V8_SHARED)
# ifdef BUILDING_V8_SHARED
#  define V8_EXPORT __attribute__ ((visibility("default")))
# else
#  define V8_EXPORT
# endif
#else
# define V8_EXPORT
#endif 

So we can see that if V8_HAS_ATTRIBUTE_VISIBILITY, and defined(V8_SHARED), and also if BUILDING_V8_SHARED, V8_EXPORT is set to __attribute__ ((visibility("default")). But in all other cases V8_EXPORT is empty and the preprocessor does not insert anything (nothing will be there come compile time). But what about the __attribute__ ((visibility("default")) what is this?

In the GNU compiler collection (GCC) environment, the term that is used for exporting is visibility. As it applies to functions and variables in a shared object, visibility refers to the ability of other shared objects to call a C/C++ function. Functions with default visibility have a global scope and can be called from other shared objects. Functions with hidden visibility have a local scope and cannot be called from other shared objects.

Visibility can be controlled by using either compiler options or visibility attributes. In your header files, wherever you want an interface or API made public outside the current Dynamic Shared Object (DSO) , place __attribute__ ((visibility ("default"))) in struct, class and function declarations you wish to make public. With -fvisibility=hidden, you are telling GCC that every declaration not explicitly marked with a visibility attribute has a hidden visibility. There is such a flag in build/common.gypi

ToLocalChecked()

You'll see a few of these calls in the hello_world example:

  Local<String> source = String::NewFromUtf8(isolate, js, NewStringType::kNormal).ToLocalChecked();

NewFromUtf8 actually returns a Local wrapped in a MaybeLocal which forces a check to see if the Local<> is empty before using it. NewStringType is an enum which can be kNormalString (k for constant) or kInternalized.

The following is after running the preprocessor (clang -E src/api.cc):

# 5961 "src/api.cc"
Local<String> String::NewFromUtf8(Isolate* isolate,
                              const char* data,
                              NewStringType type,
                              int length) {
  MaybeLocal<String> result; 
  if (length == 0) { 
    result = String::Empty(isolate); 
  } else if (length > i::String::kMaxLength) { 
    result = MaybeLocal<String>(); 
  } else { 
    i::Isolate* i_isolate = reinterpret_cast<internal::Isolate*>(isolate); 
    i::VMState<v8::OTHER> __state__((i_isolate)); 
    i::RuntimeCallTimerScope _runtime_timer( i_isolate, &i::RuntimeCallStats::API_String_NewFromUtf8); 
    LOG(i_isolate, ApiEntryCall("v8::" "String" "::" "NewFromUtf8")); 
    if (length < 0) length = StringLength(data); 
    i::Handle<i::String> handle_result = NewString(i_isolate->factory(), static_cast<v8::NewStringType>(type), i::Vector<const char>(data, length)) .ToHandleChecked(); 
    result = Utils::ToLocal(handle_result); 
 };
 return result.FromMaybe(Local<String>());;
}

I was wondering where the Utils::ToLocal was defined but could not find it until I found:

MAKE_TO_LOCAL(ToLocal, String, String)

#define MAKE_TO_LOCAL(Name, From, To)                                       \
Local<v8::To> Utils::Name(v8::internal::Handle<v8::internal::From> obj) {   \
  return Convert<v8::internal::From, v8::To>(obj);                          \
}

The above can be found in src/api.h. The same goes for Local<Object>, Local<String> etc.

Small Integers

Reading through v8.h I came accross // Tag information for Smi Smi stands for small integers.

A pointer is really just a integer that is treated like a memory address. We can use that memory address to get the start of the data located in that memory slot. But we can also just store an normal value like 18 in it. There might be cases where it does not make sense to store a small integer somewhere in the heap and have a pointer to it, but instead store the value directly in the pointer itself. But that only works for small integers so there needs to be away to know if the value we want is stored in the pointer or if we should follow the value stored to the heap to get the value.

A word on a 64 bit machine is 8 bytes (64 bits) and all of the pointers need to be aligned to multiples of 8. So a pointer could be:

1000       = 8
10000      = 16
11000      = 24
100000     = 32
1000000000 = 512

Remember that we are talking about the pointers and not the values store at the memory location they point to. We can see that there are always three bits that are zero in the pointers. So we can use them for something else and just mask them out when using them as pointers.

Tagging involves borrowing one bit of the 32-bit, making it 31-bit and having the leftover bit represent a tag. If the tag is zero then this is a plain value, but if tag is 1 then the pointer must be followed. This does not only have to be for numbers it could also be used for object (I think)

Instead the small integer is represented by the 32 bits plus a pointer to the 64-bit number. V8 needs to know if a value stored in memory represents a 32-bit integer, or if it is really a 64-bit number, in which case it has to follow the pointer to get the complete value. This is where the concept of tagging comes in.

Properties/Elements

Take the following object:

{ firstname: "Jon", lastname: "Doe' }

The above object has two named properties. Named properties differ from integer indexed which is what you have when you are working with arrays.

Memory layout of JavaScript Object:

Properties                  JavaScript Object               Elements
+-----------+              +-----------------+         +----------------+
|property1  |<------+      | HiddenClass     |  +----->|                |
+-----------+       |      +-----------------+  |      +----------------+
|...        |       +------| Properties      |  |      | element1       |<------+
+-----------+              +-----------------+  |      +----------------+       |
|...        |              | Elements        |--+      | ...            |       |
+-----------+              +-----------------+         +----------------+       |
|propertyN  | <---------------------+                  | elementN       |       |
+-----------+                       |                  +----------------+       |
                                    |                                           |
                                    |                                           |
                                    |                                           | 
Named properties:    { firstname: "Jon", lastname: "Doe' } Indexed Properties: {1: "Jon", 2: "Doe"}

We can see that properies and elements are stored in different data structures. Elements are usually implemented as a plain array and the indexes can be used for fast access to the elements. But for the properties this is not the case. Instead there is a mapping between the property names and the index into the properties.

In src/objects/objects.h we can find JSObject:

class JSObject: public JSReceiver {
...
DECL_ACCESSORS(elements, FixedArrayBase)

And looking a the DECL_ACCESSOR macro:

#define DECL_ACCESSORS(name, type)    \
  inline type* name() const;          \
  inline void set_##name(type* value, \
                         WriteBarrierMode mode = UPDATE_WRITE_BARRIER);

inline FixedArrayBase* name() const;
inline void set_elements(FixedArrayBase* value, WriteBarrierMode = UPDATE_WRITE_BARRIER)

Notice that JSObject extends JSReceiver which is extended by all types that can have properties defined on them. I think this includes all JSObjects and JSProxy. It is in JSReceiver that the we find the properties array:

DECL_ACCESSORS(raw_properties_or_hash, Object)

Now properties (named properties not elements) can be of different kinds internally. These work just like simple dictionaries from the outside but a dictionary is only used in certain curcumstances at runtime.

Properties                  JSObject                    HiddenClass (Map)
+-----------+              +-----------------+         +----------------+
|property1  |<------+      | HiddenClass     |-------->| bit field1     |
+-----------+       |      +-----------------+         +----------------+
|...        |       +------| Properties      |         | bit field2     |
+-----------+              +-----------------+         +----------------+
|...        |              | Elements        |         | bit field3     |
+-----------+              +-----------------+         +----------------+
|propertyN  |              | property1       |         
+-----------+              +-----------------+         
                           | property2       |
                           +-----------------+
                           | ...             |
                           +-----------------+

JSObject

Each JSObject has as its first field a pointer to the generated HiddenClass. A hiddenclass contain mappings from property names to indices into the properties data type. When an instance of JSObject is created a Map is passed in. As mentioned earlier JSObject inherits from JSReceiver which inherits from HeapObject

For example,in jsobject_test.cc we first create a new Map using the internal Isolate Factory:

v8::internal::Handle<v8::internal::Map> map = factory->NewMap(v8::internal::JS_OBJECT_TYPE, 24);
v8::internal::Handle<v8::internal::JSObject> js_object = factory->NewJSObjectFromMap(map);
EXPECT_TRUE(js_object->HasFastProperties());

When we call js_object->HasFastProperties() this will delegate to the map instance:

return !map()->is_dictionary_map();

How do you add a property to a JSObject instance? Take a look at jsobject_test.cc for an example.

Caching

Are ways to optimize polymorphic function calls in dynamic languages, for example JavaScript.

Lookup caches

Sending a message to a receiver requires the runtime to find the correct target method using the runtime type of the receiver. A lookup cache maps the type of the receiver/message name pair to methods and stores the most recently used lookup results. The cache is first consulted and if there is a cache miss a normal lookup is performed and the result stored in the cache.

Inline caches

Using a lookup cache as described above still takes a considerable amount of time since the cache must be probed for each message. It can be observed that the type of the target does often not vary. If a call to type A is done at a particular call site it is very likely that the next time it is called the type will also be A. The method address looked up by the system lookup routine can be cached and the call instruction can be overwritten. Subsequent calls for the same type can jump directly to the cached method and completely avoid the lookup. The prolog of the called method must verify that the receivers type has not changed and do the lookup if it has changed (the type if incorrect, no longer A for example).

The target methods address is stored in the callers code, or "inline" with the callers code, hence the name "inline cache".

If V8 is able to make a good assumption about the type of object that will be passed to a method, it can bypass the process of figuring out how to access the objects properties, and instead use the stored information from previous lookups to the objects hidden class.

Polymorfic Inline cache (PIC)

A polymorfic call site is one where there are many equally likely receiver types (and thus call targets).

  • Monomorfic means there is only one receiver type
  • Polymorfic a few receiver types
  • Megamorfic very many receiver types

This type of caching extends inline caching to not just cache the last lookup, but cache all lookup results for a given polymorfic call site using a specially generated stub. Lets say we have a method that iterates through a list of types and calls a method. If all the types are the same (monomorfic) a PIC acts just like an inline cache. The calls will directly call the target method (with the method prolog followed by the method body). If a different type exists in the list there will be a cache miss in the prolog and the lookup routine called. In normal inline caching this would rebind the call, replacing the call to this types target method. This would happen each time the type changes.

With PIC the cache miss handler will generate a small stub routine and rebinds the call to this stub. The stub will check if the receiver is of a type that it has seen before and branch to the correct targets. Since the type of the target is already known at this point it can directly branch to the target method body without the need for the prolog. If the type has not been seen before it will be added to the stub to handle that type. Eventually the stub will contain all types used and there will be no more cache misses/lookups.

The problem is that we don't have type information so methods cannot be called directly, but instead be looked up. In a static language a virtual table might have been used. In JavaScript there is no inheritance relationship so it is not possible to know a vtable offset ahead of time. What can be done is to observe and learn about the "types" used in the program. When an object is seen it can be stored and the target of that method call can be stored and inlined into that call. Bascially the type will be checked and if that particular type has been seen before the method can just be invoked directly. But how do we check the type in a dynamic language? The answer is hidden classes which allow the VM to quickly check an object against a hidden class.

The inline caching source are located in src/ic.

--trace-ic

$ out/x64.debug/d8 --trace-ic --trace-maps class.js

before
[TraceMaps: Normalize from= 0x19a314288b89 to= 0x19a31428aff9 reason= NormalizeAsPrototype ]
[TraceMaps: ReplaceDescriptors from= 0x19a31428aff9 to= 0x19a31428b051 reason= CopyAsPrototype ]
[TraceMaps: InitialMap map= 0x19a31428afa1 SFI= 34_Person ]

[StoreIC in ~Person+65 at class.js:2 (0->.) map=0x19a31428afa1 0x10e68ba83361 <String[4]: name>]
[TraceMaps: Transition from= 0x19a31428afa1 to= 0x19a31428b0a9 name= name ]
[StoreIC in ~Person+102 at class.js:3 (0->.) map=0x19a31428b0a9 0x2beaa25abd89 <String[3]: age>]
[TraceMaps: Transition from= 0x19a31428b0a9 to= 0x19a31428b101 name= age ]
[TraceMaps: SlowToFast from= 0x19a31428b051 to= 0x19a31428b159 reason= OptimizeAsPrototype ]
[StoreIC in ~Person+65 at class.js:2 (.->1) map=0x19a31428afa1 0x10e68ba83361 <String[4]: name>]
[StoreIC in ~Person+102 at class.js:3 (.->1) map=0x19a31428b0a9 0x2beaa25abd89 <String[3]: age>]
[LoadIC in ~+546 at class.js:9 (0->.) map=0x19a31428b101 0x10e68ba83361 <String[4]: name>]
[CallIC in ~+571 at class.js:9 (0->1) map=0x0 0x32f481082231 <String[5]: print>]
Daniel
[LoadIC in ~+642 at class.js:10 (0->.) map=0x19a31428b101 0x2beaa25abd89 <String[3]: age>]
[CallIC in ~+667 at class.js:10 (0->1) map=0x0 0x32f481082231 <String[5]: print>]
41
[LoadIC in ~+738 at class.js:11 (0->.) map=0x19a31428b101 0x10e68ba83361 <String[4]: name>]
[CallIC in ~+763 at class.js:11 (0->1) map=0x0 0x32f481082231 <String[5]: print>]
Tilda
[LoadIC in ~+834 at class.js:12 (0->.) map=0x19a31428b101 0x2beaa25abd89 <String[3]: age>]
[CallIC in ~+859 at class.js:12 (0->1) map=0x0 0x32f481082231 <String[5]: print>]
2
[CallIC in ~+927 at class.js:13 (0->1) map=0x0 0x32f481082231 <String[5]: print>]
after

LoadIC (0->.) means that it has transitioned from unititialized state (0) to pre-monomophic state (.) monomorphic state is specified with a 1. These states can be found in src/ic/ic.cc. What we are doing caching knowledge about the layout of the previously seen object inside the StoreIC/LoadIC calls.

$ lldb -- out/x64.debug/d8 class.js

HeapObject

This class describes heap allocated objects. It is in this class we find information regarding the type of object. This information is contained in v8::internal::Map.

v8::internal::Map

src/objects/map.h

  • bit_field1
  • bit_field2
  • bit field3 contains information about the number of properties that this Map has, a pointer to an DescriptorArray. The DescriptorArray contains information like the name of the property, and the posistion where the value is stored in the JSObject. I noticed that this information available in src/objects/map.h.

DescriptorArray

Can be found in src/objects/descriptor-array.h. This class extends FixedArray and has the following entries:

[0] the number of descriptors it contains  
[1] If uninitialized this will be Smi(0) otherwise an enum cache bridge which is a FixedArray of size 2: 
  [0] enum cache: FixedArray containing all own enumerable keys  
  [1] either Smi(0) or a pointer to a FixedArray with indices  
[2] first key (and internalized String  
[3] first descriptor  

Factory

Each Internal Isolate has a Factory which is used to create instances. This is because all handles needs to be allocated using the factory (src/heap/factory.h)

Objects

All objects extend the abstract class Object (src/objects/objects.h).

Oddball

This class extends HeapObject and describes null, undefined, true, and false objects.

Map

Extends HeapObject and all heap objects have a Map which describes the objects structure. This is where you can find the size of the instance, access to the inobject_properties.

Compiler pipeline

When a script is compiled all of the top level code is parsed. These are function declarartions (but not the function bodies).

function f1() {       <- top level code
  console.log('f1');  <- non top level
}

function f2() {       <- top level code
  f1();               <- non top level
  console.logg('f2'); <- non top level
}

f2();                 <- top level code
var i = 10;           <- top level code

The non top level code must be pre-parsed to check for syntax errors. The top level code is parsed and compiles by the full-codegen compiler. This compiler does not perform any optimizations and it's only task is to generate machine code as quickly as possible (this is pre turbofan)

Source ------> Parser  --------> Full-codegen ---------> Unoptimized Machine Code

So the whole script is parsed even though we only generated code for the top-level code. The pre-parse (the syntax checking) was not stored in any way. The functions are lazy stubs that when/if the function gets called the function get compiled. This means that the function has to be parsed (again, the first time was the pre-parse remember).

If a function is determined to be hot it will be optimized by one of the two optimizing compilers crankshaft for older parts of JavaScript or Turbofan for Web Assembly (WASM) and some of the newer es6 features.

The first time V8 sees a function it will parse it into an AST but not do any further processing of that tree until that function is used.

                     +-----> Full-codegen -----> Unoptimized code
                    /                               \/ /\       \
Parser  ------> AST -------> Cranshaft    -----> Optimized code  |
                    \                                           /
                     +-----> Turbofan     -----> Optimized code

Inline Cachine (IC) is done here which also help to gather type information. V8 also has a profiler thread which monitors which functions are hot and should be optimized. This profiling also allows V8 to find out information about types using IC. This type information can then be fed to Crankshaft/Turbofan. The type information is stored as a 8 bit value.

When a function is optimized the unoptimized code cannot be thrown away as it might be needed since JavaScript is highly dynamic the optimzed function migth change and the in that case we fallback to the unoptimzed code. This takes up alot of memory which may be important for low end devices. Also the time spent in parsing (twice) takes time.

The idea with Ignition is to be an bytecode interpreter and to reduce memory consumption, the bytecode is very consice compared to native code which can vary depending on the target platform. The whole source can be parsed and compiled, compared to the current pipeline the has the pre-parse and parse stages mentioned above. So even unused functions will get compiled. The bytecode becomes the source of truth instead of as before the AST.

Source ------> Parser  --------> Ignition-codegen ---------> Bytecode ---------> Turbofan ----> Optimized Code ---+
                                                              /\                                                  |
                                                               +--------------------------------------------------+

function bajja(a, b, c) {
  var d = c - 100;
  return a + d * b;
}

var result = bajja(2, 2, 150);
print(result); 

$ ./d8 test.js --ignition  --print_bytecode

[generating bytecode for function: bajja]
Parameter count 4
Frame size 8
 14 E> 0x2eef8d9b103e @    0 : 7f                StackCheck
 38 S> 0x2eef8d9b103f @    1 : 03 64             LdaSmi [100]   // load 100
 38 E> 0x2eef8d9b1041 @    3 : 2b 02 02          Sub a2, [2]    // a2 is the third argument. a2 is an argument register
       0x2eef8d9b1044 @    6 : 1f fa             Star r0        // r0 is a register for local variables. We only have one which is d
 47 S> 0x2eef8d9b1046 @    8 : 1e 03             Ldar a1        // LoaD accumulator from Register argument a1 which is b
 60 E> 0x2eef8d9b1048 @   10 : 2c fa 03          Mul r0, [3]    // multiply that is our local variable in r0
 56 E> 0x2eef8d9b104b @   13 : 2a 04 04          Add a0, [4]    // add that to our argument register 0 which is a 
 65 S> 0x2eef8d9b104e @   16 : 83                Return         // return the value in the accumulator?

Abstract Syntax Tree (AST)

In src/ast/ast.h. You can print the ast using the --print-ast option for d8.

Lets take the following javascript and look at the ast:

const msg = 'testing';
console.log(msg);
$ d8 --print-ast simple.js
[generating interpreter code for user-defined function: ]
--- AST ---
FUNC at 0
. KIND 0
. SUSPEND COUNT 0
. NAME ""
. INFERRED NAME ""
. DECLS
. . VARIABLE (0x7ffe5285b0f8) (mode = CONST) "msg"
. BLOCK NOCOMPLETIONS at -1
. . EXPRESSION STATEMENT at 12
. . . INIT at 12
. . . . VAR PROXY context[4] (0x7ffe5285b0f8) (mode = CONST) "msg"
. . . . LITERAL "testing"
. EXPRESSION STATEMENT at 23
. . ASSIGN at -1
. . . VAR PROXY local[0] (0x7ffe5285b330) (mode = TEMPORARY) ".result"
. . . CALL Slot(0)
. . . . PROPERTY Slot(4) at 31
. . . . . VAR PROXY Slot(2) unallocated (0x7ffe5285b3d8) (mode = DYNAMIC_GLOBAL) "console"
. . . . . NAME log
. . . . VAR PROXY context[4] (0x7ffe5285b0f8) (mode = CONST) "msg"
. RETURN at -1
. . VAR PROXY local[0] (0x7ffe5285b330) (mode = TEMPORARY) ".result"

You can find the declaration of EXPRESSION in ast.h.

Bytecode

Can be found in src/interpreter/bytecodes.h

  • StackCheck checks that stack limits are not exceeded to guard against overflow.
  • Star Store content in accumulator regiser in register (the operand).
  • Ldar LoaD accumulator from Register argument a1 which is b

The registers are not machine registers, apart from the accumlator as I understand it, but would instead be stack allocated.

Parsing

Parsing is the parsing of the JavaScript and the generation of the abstract syntax tree. That tree is then visited and bytecode generated from it. This section tries to figure out where in the code these operations are performed.

For example, take the script example.

$ make run-script
$ lldb -- run-script
(lldb) br s -n main
(lldb) r

Lets take a look at the following line:

Local<Script> script = Script::Compile(context, source).ToLocalChecked();

This will land us in api.cc

ScriptCompiler::Source script_source(source);
return ScriptCompiler::Compile(context, &script_source);

MaybeLocal<Script> ScriptCompiler::Compile(Local<Context> context, Source* source, CompileOptions options) {
...
auto isolate = context->GetIsolate();
auto maybe = CompileUnboundInternal(isolate, source, options);

CompileUnboundInternal will call GetSharedFunctionInfoForScript (in src/compiler.cc):

result = i::Compiler::GetSharedFunctionInfoForScript(
      str, name_obj, line_offset, column_offset, source->resource_options,
      source_map_url, isolate->native_context(), NULL, &script_data, options,
      i::NOT_NATIVES_CODE);

(lldb) br s -f compiler.cc -l 1259

LanguageMode language_mode = construct_language_mode(FLAG_use_strict);
(lldb) p language_mode
(v8::internal::LanguageMode) $10 = SLOPPY

LanguageMode can be found in src/globals.h and it is an enum with three values:

enum LanguageMode : uint32_t { SLOPPY, STRICT, LANGUAGE_END };

SLOPPY mode, I assume, is the mode when there is no "use strict";. Remember that this can go inside a function and does not have to be at the top level of the file.

ParseInfo parse_info(script);

There is a unit test that shows how a ParseInfo instance can be created and inspected.

This will call ParseInfo's constructor (in src/parsing/parse-info.cc), and which will call ParseInfo::InitFromIsolate:

DCHECK_NOT_NULL(isolate);
set_hash_seed(isolate->heap()->HashSeed());
set_stack_limit(isolate->stack_guard()->real_climit());
set_unicode_cache(isolate->unicode_cache());
set_runtime_call_stats(isolate->counters()->runtime_call_stats());
set_ast_string_constants(isolate->ast_string_constants());

I was curious about these ast_string_constants:

(lldb) p *ast_string_constants_
(const v8::internal::AstStringConstants) $58 = {
  zone_ = {
    allocation_size_ = 1312
    segment_bytes_allocated_ = 8192
    position_ = 0x0000000105052538 <no value available>
    limit_ = 0x0000000105054000 <no value available>
    allocator_ = 0x0000000103e00080
    segment_head_ = 0x0000000105052000
    name_ = 0x0000000101623a70 "../../src/ast/ast-value-factory.h:365"
    sealed_ = false
  }
  string_table_ = {
    v8::base::TemplateHashMapImpl<void *, void *, v8::base::HashEqualityThenKeyMatcher<void *, bool (*)(void *, void *)>, v8::base::DefaultAllocationPolicy> = {
      map_ = 0x0000000105054000
      capacity_ = 64
      occupancy_ = 41
      match_ = {
        match_ = 0x000000010014b260 (libv8.dylib`v8::internal::AstRawString::Compare(void*, void*) at ast-value-factory.cc:122)
      }
    }
  }
  hash_seed_ = 500815076
  anonymous_function_string_ = 0x0000000105052018
  arguments_string_ = 0x0000000105052038
  async_string_ = 0x0000000105052058
  await_string_ = 0x0000000105052078
  boolean_string_ = 0x0000000105052098
  constructor_string_ = 0x00000001050520b8
  default_string_ = 0x00000001050520d8
  done_string_ = 0x00000001050520f8
  dot_string_ = 0x0000000105052118
  dot_for_string_ = 0x0000000105052138
  dot_generator_object_string_ = 0x0000000105052158
  dot_iterator_string_ = 0x0000000105052178
  dot_result_string_ = 0x0000000105052198
  dot_switch_tag_string_ = 0x00000001050521b8
  dot_catch_string_ = 0x00000001050521d8
  empty_string_ = 0x00000001050521f8
  eval_string_ = 0x0000000105052218
  function_string_ = 0x0000000105052238
  get_space_string_ = 0x0000000105052258
  length_string_ = 0x0000000105052278
  let_string_ = 0x0000000105052298
  name_string_ = 0x00000001050522b8
  native_string_ = 0x00000001050522d8
  new_target_string_ = 0x00000001050522f8
  next_string_ = 0x0000000105052318
  number_string_ = 0x0000000105052338
  object_string_ = 0x0000000105052358
  proto_string_ = 0x0000000105052378
  prototype_string_ = 0x0000000105052398
  return_string_ = 0x00000001050523b8
  set_space_string_ = 0x00000001050523d8
  star_default_star_string_ = 0x00000001050523f8
  string_string_ = 0x0000000105052418
  symbol_string_ = 0x0000000105052438
  this_string_ = 0x0000000105052458
  this_function_string_ = 0x0000000105052478
  throw_string_ = 0x0000000105052498
  undefined_string_ = 0x00000001050524b8
  use_asm_string_ = 0x00000001050524d8
  use_strict_string_ = 0x00000001050524f8
  value_string_ = 0x0000000105052518
} 

So these are constants that are set on the new ParseInfo instance using the values from the isolate. Not exactly sure what I want with this but I might come back to it later. So, we are back in ParseInfo's constructor:

set_allow_lazy_parsing();
set_toplevel();
set_script(script);

Script is of type v8::internal::Script which can be found in src/object/script.h

Back now in compiler.cc and the GetSharedFunctionInfoForScript function:

Zone compile_zone(isolate->allocator(), ZONE_NAME);

...
if (parse_info->literal() == nullptr && !parsing::ParseProgram(parse_info, isolate))

ParseProgram:

Parser parser(info);
...
FunctionLiteral* result = nullptr;
result = parser.ParseProgram(isolate, info);

parser.ParseProgram:

Handle<String> source(String::cast(info->script()->source()));


(lldb) job *source
"var user1 = new Person('Fletch');\x0avar user2 = new Person('Dr.Rosen');\x0aprint("user1 = " + user1.name);\x0aprint("user2 = " + user2.name);\x0a\x0a"

So here we can see our JavaScript as a String.

std::unique_ptr<Utf16CharacterStream> stream(ScannerStream::For(source));
scanner_.Initialize(stream.get(), info->is_module());
result = DoParseProgram(info);

DoParseProgram:

(lldb) br s -f parser.cc -l 639
...

this->scope()->SetLanguageMode(info->language_mode());
ParseStatementList(body, Token::EOS, &ok);

This call will land in parser-base.h and its ParseStatementList function.

(lldb) br s -f parser-base.h -l 4695

StatementT stat = ParseStatementListItem(CHECK_OK_CUSTOM(Return, kLazyParsingComplete));

result = CompileToplevel(&parse_info, isolate, Handle<SharedFunctionInfo>::null());

This will land in CompileTopelevel (in the same file which is src/compiler.cc):

// Compile the code.
result = CompileUnoptimizedCode(parse_info, shared_info, isolate);

This will land in CompileUnoptimizedCode (in the same file which is src/compiler.cc):

// Prepare and execute compilation of the outer-most function.
std::unique_ptr<CompilationJob> outer_job(
   PrepareAndExecuteUnoptimizedCompileJob(parse_info, parse_info->literal(),
                                          shared_info, isolate));


std::unique_ptr<CompilationJob> job(
    interpreter::Interpreter::NewCompilationJob(parse_info, literal, isolate));
if (job->PrepareJob() == CompilationJob::SUCCEEDED &&
    job->ExecuteJob() == CompilationJob::SUCCEEDED) {
  return job;
}

PrepareJobImpl:

CodeGenerator::MakeCodePrologue(parse_info(), compilation_info(),
                                "interpreter");
return SUCCEEDED;

codegen.cc MakeCodePrologue:

interpreter.cc ExecuteJobImpl:

generator()->GenerateBytecode(stack_limit());    

src/interpreter/bytecode-generator.cc

 RegisterAllocationScope register_scope(this);

The bytecode is register based (if that is the correct term) and we had an example previously. I'm guessing that this is what this call is about.

VisitDeclarations will iterate over all the declarations in the file which in our case are:

var user1 = new Person('Fletch');
var user2 = new Person('Dr.Rosen');

(lldb) p *variable->raw_name()
(const v8::internal::AstRawString) $33 = {
   = {
    next_ = 0x000000010600a280
    string_ = 0x000000010600a280
  }
  literal_bytes_ = (start_ = "user1", length_ = 5)
  hash_field_ = 1303438034
  is_one_byte_ = true
  has_string_ = false
}

// Perform a stack-check before the body.
builder()->StackCheck(info()->literal()->start_position());

So that call will output a stackcheck instruction, like in the example above:

14 E> 0x2eef8d9b103e @    0 : 7f                StackCheck

Performance

Say you have the expression x + y the full-codegen compiler might produce:

movq rax, x
movq rbx, y
callq RuntimeAdd

If x and y are integers just using the add operation would be much quicker:

movq rax, x
movq rbx, y
add rax, rbx

Recall that functions are optimized so if the compiler has to bail out and unoptimize part of a function then the whole functions will be affected and it will go back to the unoptimized version.

Bytecode

This section will examine the bytecode for the following JavaScript:

function beve() {
  const p = new Promise((resolve, reject) => {
    resolve('ok');
  });

  p.then(msg => {
    console.log(msg);
  });
}

beve(); 

$ d8 --print-bytecode promise.js

First have the main function which does not have a name:

[generating bytecode for function: ]
(The code that generated this can be found in src/objects.cc BytecodeArray::Dissassemble)
Parameter count 1
Frame size 32
       // load what ever the FixedArray[4] is in the constant pool into the accumulator.
       0x34423e7ac19e @    0 : 09 00             LdaConstant [0] 
       // store the FixedArray[4] in register r1
       0x34423e7ac1a0 @    2 : 1e f9             Star r1
       // store zero into the accumulator.
       0x34423e7ac1a2 @    4 : 02                LdaZero
       // store zero (the contents of the accumulator) into register r2.
       0x34423e7ac1a3 @    5 : 1e f8             Star r2
       // 
       0x34423e7ac1a5 @    7 : 1f fe f7          Mov <closure>, r3
       0x34423e7ac1a8 @   10 : 53 96 01 f9 03    CallRuntime [DeclareGlobalsForInterpreter], r1-r3
  0 E> 0x34423e7ac1ad @   15 : 90                StackCheck
141 S> 0x34423e7ac1ae @   16 : 0a 01 00          LdaGlobal [1], [0]
       0x34423e7ac1b1 @   19 : 1e f9             Star r1
141 E> 0x34423e7ac1b3 @   21 : 4f f9 03          CallUndefinedReceiver0 r1, [3]
       0x34423e7ac1b6 @   24 : 1e fa             Star r0
148 S> 0x34423e7ac1b8 @   26 : 94                Return

Constant pool (size = 2)
0x34423e7ac149: [FixedArray] in OldSpace
 - map = 0x344252182309 <Map(HOLEY_ELEMENTS)>
 - length: 2
       0: 0x34423e7ac069 <FixedArray[4]>
       1: 0x34423e7abf59 <String[4]: beve>

Handler Table (size = 16) Load the global with name in constant pool entry <name_index> into the
// accumulator using FeedBackVector slot <slot> outside of a typeof
  • LdaConstant Load the constant at index from the constant pool into the accumulator.
  • Star Store the contents of the accumulator register in dst.
  • Ldar Load accumulator with value from register src.
  • LdaGlobal Load the global with name in constant pool entry idx into the accumulator using FeedBackVector slot outside of a typeof.
  • Mov , Store the value of register

You can find the declarations for the these instructions in src/interpreter/interpreter-generator.cc.

Unified code generation architecture

FeedbackVector

Is attached to every function and is responsible for recording and managing all execution feedback, which is information about types enabling. You can find the declaration for this class in src/feedback-vector.h

BytecodeGenerator

Is currently the only part of V8 that cares about the AST.

BytecodeGraphBuilder

Produces high-level IR graph based on interpreter bytecodes.

TurboFan

Is a compiler backend that gets fed a control flow graph and then does instruction selection, register allocation and code generation. The code generation generates

Execution/Runtime

I'm not sure if V8 follows this exactly but I've heard and read that when the engine comes across a function declaration it only parses and verifies the syntax and saves a ref to the function name. The statements inside the function are not checked at this stage only the syntax of the function declaration (parenthesis, arguments, brackets etc).

Function methods

The declaration of Function can be found in include/v8.h (just noting this as I've looked for it several times)

Symbol

The declarations for the Symbol class can be found in v8.h and the internal implementation in src/api/api.cc.

The well known Symbols are generated using macros so you won't find the just by searching using the static function names like 'GetToPrimitive`.

#define WELL_KNOWN_SYMBOLS(V)                 \
  V(AsyncIterator, async_iterator)            \
  V(HasInstance, has_instance)                \
  V(IsConcatSpreadable, is_concat_spreadable) \
  V(Iterator, iterator)                       \
  V(Match, match)                             \
  V(Replace, replace)                         \
  V(Search, search)                           \
  V(Split, split)                             \
  V(ToPrimitive, to_primitive)                \
  V(ToStringTag, to_string_tag)               \
  V(Unscopables, unscopables)

#define SYMBOL_GETTER(Name, name)                                   \
  Local<Symbol> v8::Symbol::Get##Name(Isolate* isolate) {           \
    i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); \
    return Utils::ToLocal(i_isolate->factory()->name##_symbol());   \
  }

So GetToPrimitive would become:

Local<Symbol> v8::Symbol::GeToPrimitive(Isolate* isolate) {
  i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
  return Utils::ToLocal(i_isolate->factory()->to_primitive_symbol());
}

There is an example in symbol-test.cc.

Builtins

Are JavaScript functions/objects that are provided by V8. These are built using a C++ DSL and are passed through:

CodeStubAssembler -> CodeAssembler -> RawMachineAssembler.

Builtins need to have bytecode generated for them so that they can be run in TurboFan.

src/code-stub-assembler.h

All the builtins are declared in src/builtins/builtins-definitions.h by the BUILTIN_LIST_BASE macro. There are different type of builtins (TF = Turbo Fan):

TFJ JavaScript linkage which means it is callable as a JavaScript function

TFS CodeStub linkage. A builtin with stub linkage can be used to extract common code into a separate code object which can then be used by multiple callers. These is useful because builtins are generated at compile time and included in the V8 snapshot. This means that they are part of every isolate that is created. Being able to share common code for multiple builtins will save space.

TFC CodeStub linkage with custom descriptor

To see how this works in action we first need to disable snapshots. If we don't, we won't be able to set breakpoints as the the heap will be serialized at compile time and deserialized upon startup of v8.

To find the option to disable snapshots use:

$ gn args --list out.gn/learning --short | more
...
v8_use_snapshot=true
$ gn args out.gn/learning
v8_use_snapshot=false
$ gn -C out.gn/learning

After building we should be able to set a break point in bootstrapper.cc and its function Genesis::InitializeGlobal:

(lldb) br s -f bootstrapper.cc -l 2684

Lets take a look at how the JSON object is setup:

Handle<String> name = factory->InternalizeUtf8String("JSON");
Handle<JSObject> json_object = factory->NewJSObject(isolate->object_function(), TENURED);

TENURED means that this object should be allocated directly in the old generation.

JSObject::AddProperty(global, name, json_object, DONT_ENUM);

DONT_ENUM is checked by some builtin functions and if set this object will be ignored by those functions.

SimpleInstallFunction(json_object, "parse", Builtins::kJsonParse, 2, false);

Here we can see that we are installing a function named parse, which takes 2 parameters. You can find the definition in src/builtins/builtins-json.cc. What does the SimpleInstallFunction do?

Lets take console as an example which was created using:

Handle<JSObject> console = factory->NewJSObject(cons, TENURED);
JSObject::AddProperty(global, name, console, DONT_ENUM);
SimpleInstallFunction(console, "debug", Builtins::kConsoleDebug, 1, false,
                      NONE);

V8_NOINLINE Handle<JSFunction> SimpleInstallFunction(
  Handle<JSObject> base, 
  const char* name, 
  Builtins::Name call, 
  int len,
  bool adapt, 
  PropertyAttributes attrs = DONT_ENUM,
  BuiltinFunctionId id = kInvalidBuiltinFunctionId) {

So we can see that base is our Handle to a JSObject, and name is "debug". Builtins::Name is Builtins:kConsoleDebug. Where is this defined?
You can find a macro named CPP in src/builtins/builtins-definitions.h:

CPP(ConsoleDebug)

What does this macro expand to?
It is part of the BUILTIN_LIST_BASE macro in builtin-definitions.h We have to look at where BUILTIN_LIST is used which we can find in builtins.cc. In builtins.cc we have an array of BuiltinMetadata which is declared as:

const BuiltinMetadata builtin_metadata[] = {
  BUILTIN_LIST(DECL_CPP, DECL_API, DECL_TFJ, DECL_TFC, DECL_TFS, DECL_TFH, DECL_ASM)
};

#define DECL_CPP(Name, ...) { #Name, Builtins::CPP, \
                            { FUNCTION_ADDR(Builtin_##Name) }},

Which will expand to the creation of a BuiltinMetadata struct entry in the array. The BuildintMetadata struct looks like this which might help understand what is going on:

struct BuiltinMetadata {
  const char* name;
  Builtins::Kind kind;
  union {
    Address cpp_entry;       // For CPP and API builtins.
    int8_t parameter_count;  // For TFJ builtins.
  } kind_specific_data;
};

So the CPP(ConsoleDebug) will expand to an entry in the array which would look something like this:

{ ConsoleDebug, 
  Builtins::CPP, 
  {
    reinterpret_cast<v8::internal::Address>(reinterpret_cast<intptr_t>(Builtin_ConsoleDebug))
  }
},

The third paramter is the creation on the union which might not be obvious.

Back to the question I'm trying to answer which is:
"Buildtins::Name is is Builtins:kConsoleDebug. Where is this defined?"
For this we have to look at builtins.h and the enum Name:

enum Name : int32_t {
#define DEF_ENUM(Name, ...) k##Name,
    BUILTIN_LIST_ALL(DEF_ENUM)
#undef DEF_ENUM
    builtin_count
 };

This will expand to the complete list of builtins in builtin-definitions.h using the DEF_ENUM macro. So the expansion for ConsoleDebug will look like:

enum Name: int32_t {
  ...
  kDebugConsole,
  ...
};

So backing up to looking at the arguments to SimpleInstallFunction which are:

SimpleInstallFunction(console, "debug", Builtins::kConsoleDebug, 1, false,
                      NONE);

V8_NOINLINE Handle<JSFunction> SimpleInstallFunction(
  Handle<JSObject> base, 
  const char* name, 
  Builtins::Name call, 
  int len,
  bool adapt, 
  PropertyAttributes attrs = DONT_ENUM,
  BuiltinFunctionId id = kInvalidBuiltinFunctionId) {

We know about Builtins::Name, so lets look at len which is one, what is this?
SimpleInstallFunction will call:

Handle<JSFunction> fun =
  SimpleCreateFunction(base->GetIsolate(), function_name, call, len, adapt);

len would be used if adapt was true but it is false in our case. This is what it would be used for if adapt was true:

fun->shared()->set_internal_formal_parameter_count(len);

I'm not exactly sure what adapt is referring to here.

PropertyAttributes is not specified so it will get the default value of DONT_ENUM. The last parameter which is of type BuiltinFunctionId is not specified either so the default value of kInvalidBuiltinFunctionId will be used. This is an enum defined in src/objects/objects.h.

This blog provides an example of adding a function to the String object.

$ out.gn/learning/mksnapshot --print-code > output

You can then see the generated code from this. This will produce a code stub that can be called through C++. Lets update this to have it be called from JavaScript:

Update builtins/builtins-string-get.cc :

TF_BUILTIN(GetStringLength, StringBuiltinsAssembler) {
  Node* const str = Parameter(Descriptor::kReceiver);
  Return(LoadStringLength(str));
}

We also have to update builtins/builtins-definitions.h:

TFJ(GetStringLength, 0)

And bootstrapper.cc:

SimpleInstallFunction(prototype, "len", Builtins::kGetStringLength, 0, true);

If you now build using 'ninja -C out.gn/learning_v8' you should be able to run d8 and try this out:

d8> const s = 'testing'
undefined
d8> s.len()
7

Now lets take a closer look at the code that is generated for this:

$ out.gn/learning/mksnapshot --print-code > output

Looking at the output generated I was surprised to see two entries for GetStringLength (I changed the name just to make sure there was not something else generating the second one). Why two?

The following uses Intel Assembly syntax which means that no register/immediate prefixes and the first operand is the destination and the second operand the source.

--- Code ---
kind = BUILTIN
name = BeveStringLength
compiler = turbofan
Instructions (size = 136)
0x1fafde09b3a0     0  55             push rbp
0x1fafde09b3a1     1  4889e5         REX.W movq rbp,rsp                  // movq rsp into rbp

0x1fafde09b3a4     4  56             push rsi                            // push the value of rsi (first parameter) onto the stack 
0x1fafde09b3a5     5  57             push rdi                            // push the value of rdi (second parameter) onto the stack
0x1fafde09b3a6     6  50             push rax                            // push the value of rax (accumulator) onto the stack

0x1fafde09b3a7     7  4883ec08       REX.W subq rsp,0x8                  // make room for a 8 byte value on the stack
0x1fafde09b3ab     b  488b4510       REX.W movq rax,[rbp+0x10]           // move the value rpm + 10 to rax
0x1fafde09b3af     f  488b58ff       REX.W movq rbx,[rax-0x1]
0x1fafde09b3b3    13  807b0b80       cmpb [rbx+0xb],0x80                // IsString(object). compare byte to zero
0x1fafde09b3b7    17  0f8350000000   jnc 0x1fafde09b40d  <+0x6d>        // jump it carry flag was not set

0x1fafde09b3bd    1d  488b400f       REX.W movq rax,[rax+0xf]
0x1fafde09b3c1    21  4989e2         REX.W movq r10,rsp
0x1fafde09b3c4    24  4883ec08       REX.W subq rsp,0x8
0x1fafde09b3c8    28  4883e4f0       REX.W andq rsp,0xf0
0x1fafde09b3cc    2c  4c891424       REX.W movq [rsp],r10
0x1fafde09b3d0    30  488945e0       REX.W movq [rbp-0x20],rax
0x1fafde09b3d4    34  48be0000000001000000 REX.W movq rsi,0x100000000
0x1fafde09b3de    3e  48bad9c228dfa8090000 REX.W movq rdx,0x9a8df28c2d9    ;; object: 0x9a8df28c2d9 <String[101]: CAST(LoadObjectField(object, offset, MachineTypeOf<T>::value)) at ../../src/code-stub-assembler.h:432>
0x1fafde09b3e8    48  488bf8         REX.W movq rdi,rax
0x1fafde09b3eb    4b  48b830726d0a01000000 REX.W movq rax,0x10a6d7230    ;; external reference (check_object_type)
0x1fafde09b3f5    55  40f6c40f       testb rsp,0xf
0x1fafde09b3f9    59  7401           jz 0x1fafde09b3fc  <+0x5c>
0x1fafde09b3fb    5b  cc             int3l
0x1fafde09b3fc    5c  ffd0           call rax
0x1fafde09b3fe    5e  488b2424       REX.W movq rsp,[rsp]
0x1fafde09b402    62  488b45e0       REX.W movq rax,[rbp-0x20]
0x1fafde09b406    66  488be5         REX.W movq rsp,rbp
0x1fafde09b409    69  5d             pop rbp
0x1fafde09b40a    6a  c20800         ret 0x8

// this is where we jump to if IsString failed
0x1fafde09b40d    6d  48ba71c228dfa8090000 REX.W movq rdx,0x9a8df28c271    ;; object: 0x9a8df28c271 <String[76]\: CSA_ASSERT failed: IsString(object) [../../src/code-stub-assembler.cc:1498]\n>
0x1fafde09b417    77  e8e4d1feff     call 0x1fafde088600     ;; code: BUILTIN
0x1fafde09b41c    7c  cc             int3l
0x1fafde09b41d    7d  cc             int3l
0x1fafde09b41e    7e  90             nop
0x1fafde09b41f    7f  90             nop


Safepoints (size = 8)

RelocInfo (size = 7)
0x1fafde09b3e0  embedded object  (0x9a8df28c2d9 <String[101]: CAST(LoadObjectField(object, offset, MachineTypeOf<T>::value)) at ../../src/code-stub-assembler.h:432>)
0x1fafde09b3ed  external reference (check_object_type)  (0x10a6d7230)
0x1fafde09b40f  embedded object  (0x9a8df28c271 <String[76]\: CSA_ASSERT failed: IsString(object) [../../src/code-stub-assembler.cc:1498]\n>)
0x1fafde09b418  code target (BUILTIN)  (0x1fafde088600)

--- End code --- 

TF_BUILTIN macro

Is a macro to defining Turbofan (TF) builtins and can be found in builtins/builtins-utils-gen.h

If we take a look at the file src/builtins/builtins-bigint-gen.cc and the following function:

TF_BUILTIN(BigIntToI64, CodeStubAssembler) {                                       
  if (!Is64()) {                                                                   
    Unreachable();                                                                 
    return;                                                                        
  }                                                                                
                                                                                   
  TNode<Object> value = CAST(Parameter(Descriptor::kArgument));                    
  TNode<Context> context = CAST(Parameter(Descriptor::kContext));                  
  TNode<BigInt> n = ToBigInt(context, value);                                      
                                                                                   
  TVARIABLE(UintPtrT, var_low);                                                    
  TVARIABLE(UintPtrT, var_high);                                                   
                                                                                   
  BigIntToRawBytes(n, &var_low, &var_high);                                        
  Return(var_low.value());                                                         
}

Let's take our GetStringLength example from above and see what this will be expanded to after processing this macro:

$ clang++ --sysroot=build/linux/debian_sid_amd64-sysroot -isystem=./buildtools/third_party/libc++/trunk/include -isystem=buildtools/third_party/libc++/trunk/include -I. -E src/builtins/builtins-bigint-gen.cc > builtins-bigint-gen.cc.pp
static void Generate_BigIntToI64(compiler::CodeAssemblerState* state);

class BigIntToI64Assembler : public CodeStubAssembler { 
 public:
  using Descriptor = Builtin_BigIntToI64_InterfaceDescriptor; 
  explicit BigIntToI64Assembler(compiler::CodeAssemblerState* state) : CodeStubAssembler(state) {} 
  void GenerateBigIntToI64Impl(); 
  Node* Parameter(Descriptor::ParameterIndices index) {
    return CodeAssembler::Parameter(static_cast<int>(index));
  }
}; 

void Builtins::Generate_BigIntToI64(compiler::CodeAssemblerState* state) {
  BigIntToI64Assembler assembler(state);
  state->SetInitialDebugInformation("BigIntToI64", "src/builtins/builtins-bigint-gen.cc", 14);
  if (Builtins::KindOf(Builtins::kBigIntToI64) == Builtins::TFJ) {
    assembler.PerformStackCheck(assembler.GetJSContextParameter());
  }
  assembler.GenerateBigIntToI64Impl();
} 
void BigIntToI64Assembler::GenerateBigIntToI64Impl() {
 if (!Is64()) {                                                                
   Unreachable();                                                              
   return;                                                                     
 }                                                                             
                                                                                
 TNode<Object> value = Cast(Parameter(Descriptor::kArgument));                 
 TNode<Context> context = Cast(Parameter(Descriptor::kContext));                
 TNode<BigInt> n = ToBigInt(context, value);                                   
                                                                               
 TVariable<UintPtrT> var_low(this);                                            
 TVariable<UintPtrT> var_high(this);                                           
                                                                                
 BigIntToRawBytes(n, &var_low, &var_high);                                     
 Return(var_low.value());                                                      
} 

From the resulting class you can see how Parameter can be used from within TF_BUILTIN macro.

Building V8

You'll need to have checked out the Google V8 sources to you local file system and build it by following the instructions found here.

Configure v8 build for learning-v8

There is a make target that can generate a build configuration for V8 that is specific to this project. It can be run using the following command:

$ make configure_v8

Then to compile this configuration:

$ make compile_v8

gclient sync

$ gclient sync

Troubleshooting build:

/v8_src/v8/out/x64.release/obj/libv8_monolith.a(eh-frame.o):eh-frame.cc:function v8::internal::EhFrameWriter::WriteEmptyEhFrame(std::__1::basic_ostream<char, std::__1::char_traits<char> >&): error: undefined reference to 'std::__1::basic_ostream<char, std::__1::char_traits<char> >::write(char const*, long)'
clang: error: linker command failed with exit code 1 (use -v to see invocation)

-stdlib=libc++ is llvm's C++ runtime. This runtime has a __1 namespace. I looks like the static library above was compiled with clangs/llvm's libc++ as we are seeing the __1 namespace.

-stdlib=libstdc++ is GNU's C++ runtime

So we can see that the namespace std::__1 is used which we now know is the namespace that libc++ which is clangs libc++ library. I guess we could go about this in two ways, either we can change v8 build of to use glibc++ when compiling so that the symbols are correct when we want to link against it, or we can update our linker (ld) to use libc++.

We need to include the correct libraries to link with during linking, which means specifying:

-stdlib=libc++ -Wl,-L$(v8_build_dir)

If we look in $(v8_build_dir) we find libc++.so. We also need to this library to be found at runtime by the dynamic linker using LD_LIBRARY_PATH:

$ LD_LIBRARY_PATH=../v8_src/v8/out/x64.release/ ./hello-world

Notice that this is using ld from our path. We can tell clang to use a different search path with the -B option:

$ clang++ --help | grep -- '-B'
  -B <dir>                Add <dir> to search path for binaries and object files used implicitly

libgcc_s is GCC low level runtime library. I've been confusing this with glibc++ libraries for some reason but they are not the same.

Running cctest:

$ out.gn/learning/cctest test-heap-profiler/HeapSnapshotRetainedObjectInfo

To get a list of the available tests:

$ out.gn/learning/cctest --list

Checking formating/linting:

$ git cl format

You can then git diff and see the changes.

Running pre-submit checks:

$ git cl presubmit

Then upload using:

$ git cl upload

Build details

So when we run gn it will generate Ninja build file. GN itself is written in C++ but has a python wrapper around it.

A group in gn is just a collection of other targets which enables them to have a name.

So when we run gn there will be a number of .ninja files generated. If we look in the root of the output directory we find two .ninja files:

build.ninja  toolchain.ninja

By default ninja will look for build.ninja and when we run ninja we usually specify the -C out/dir. If no targets are specified on the command line ninja will execute all outputs unless there is one specified as default. V8 has the following default target:

default all

build all: phony $
    ./bytecode_builtins_list_generator $                                        
    ./d8 $                                                                      
    obj/fuzzer_support.stamp $                                                  
    ./gen-regexp-special-case $                                                 
    obj/generate_bytecode_builtins_list.stamp $                                 
    obj/gn_all.stamp $                                                          
    obj/json_fuzzer.stamp $                                                     
    obj/lib_wasm_fuzzer_common.stamp $                                          
    ./mksnapshot $                                                              
    obj/multi_return_fuzzer.stamp $                                             
    obj/parser_fuzzer.stamp $                                                   
    obj/postmortem-metadata.stamp $                                             
    obj/regexp_builtins_fuzzer.stamp $                                          
    obj/regexp_fuzzer.stamp $                                                   
    obj/run_gen-regexp-special-case.stamp $                                     
    obj/run_mksnapshot_default.stamp $                                          
    obj/run_torque.stamp $                                                      
    ./torque $                                                                  
    ./torque-language-server $                                                  
    obj/torque_base.stamp $                                                     
    obj/torque_generated_definitions.stamp $                                    
    obj/torque_generated_initializers.stamp $                                   
    obj/torque_ls_base.stamp $                                                  
    ./libv8.so.TOC $                                                            
    obj/v8_archive.stamp $
    ...

A phony rule can be used to create an alias for other targets. The $ in ninja is an escape character so in the case of the all target it escapes the new line, like using \ in a shell script.

Lets take a look at bytecode_builtins_list_generator:

build $:bytecode_builtins_list_generator: phony ./bytecode_builtins_list_generator

The format of the ninja build statement is:

build outputs: rulename inputs

We are again seeing the $ ninja escape character but this time it is escaping the colon which would otherwise be interpreted as separating file names. The output in this case is bytecode_builtins_list_generator. And I'm guessing, as I can't find a connection between ./bytecode_builtins_list_generator and

The default target_out_dir in this case is //out/x64.release_gcc/obj. The executable in BUILD.gn which generates this does not specify any output directory so I'm assuming that it the generated .ninja file is place in the target_out_dir in this case where we can find bytecode_builtins_list_generator.ninja This file has a label named:

label_name = bytecode_builtins_list_generator                                   

Hmm, notice that in build.ninja there is the following command:

subninja toolchain.ninja

And in toolchain.ninja we have:

subninja obj/bytecode_builtins_list_generator.ninja

This is what is making ./bytecode_builtins_list_generator available.

$ ninja -C out/x64.release_gcc/ -t targets all  | grep bytecode_builtins_list_generator
$ rm out/x64.release_gcc/bytecode_builtins_list_generator 
$ ninja -C out/x64.release_gcc/ bytecode_builtins_list_generator
ninja: Entering directory `out/x64.release_gcc/'
[1/1] LINK ./bytecode_builtins_list_generator

Alright, so I'd like to understand when in the process torque is run to generate classes like TorqueGeneratedStruct:

class Struct : public TorqueGeneratedStruct<Struct, HeapObject> {
./torque $                                                                  
./torque-language-server $                                                  
obj/torque_base.stamp $                                                     
obj/torque_generated_definitions.stamp $                                    
obj/torque_generated_initializers.stamp $                                   
obj/torque_ls_base.stamp $  

Like before we can find that obj/torque.ninja in included by the subninja command in toolchain.ninja:

subninja obj/torque.ninja

So this is building the executable torque, but it has not been run yet.

$ gn ls out/x64.release_gcc/ --type=action
//:generate_bytecode_builtins_list
//:postmortem-metadata
//:run_gen-regexp-special-case
//:run_mksnapshot_default
//:run_torque
//:v8_dump_build_config
//src/inspector:protocol_compatibility
//src/inspector:protocol_generated_sources
//tools/debug_helper:gen_heap_constants
//tools/debug_helper:run_mkgrokdump

Notice the run_torque target

$ gn desc out/x64.release_gcc/ //:run_torque

If we look in toolchain.ninja we have a rule named ___run_torque___build_toolchain_linux_x64__rule

command = python ../../tools/run.py ./torque -o gen/torque-generated -v8-root ../.. 
  src/builtins/array-copywithin.tq
  src/builtins/array-every.tq
  src/builtins/array-filter.tq
  src/builtins/array-find.tq
  ...

And there is a build that specifies the .h and cc files in gen/torque-generated which has this rule in it if they change.

Building chromium

When making changes to V8 you might need to verify that your changes have not broken anything in Chromium.

Generate Your Project (gpy) : You'll have to run this once before building:

$ gclient sync
$ gclient runhooks

Update the code base

$ git fetch origin master
$ git co master
$ git merge origin/master

Building using GN

$ gn args out.gn/learning

Building using Ninja

$ ninja -C out.gn/learning 

Building the tests:

$ ninja -C out.gn/learning chrome/test:unit_tests

An error I got when building the first time:

traceback (most recent call last):
File "./gyp-mac-tool", line 713, in <module>
  sys.exit(main(sys.argv[1:]))
File "./gyp-mac-tool", line 29, in main
  exit_code = executor.Dispatch(args)
File "./gyp-mac-tool", line 44, in Dispatch
  return getattr(self, method)(*args[1:])
File "./gyp-mac-tool", line 68, in ExecCopyBundleResource
  self._CopyStringsFile(source, dest)
File "./gyp-mac-tool", line 134, in _CopyStringsFile
  import CoreFoundation
ImportError: No module named CoreFoundation
[6642/20987] CXX obj/base/debug/base.task_annotator.o
[6644/20987] ACTION base_nacl: build newlib plib_9b4f41e4158ebb93a5d28e6734a13e85
ninja: build stopped: subcommand failed.

I was able to get around this by:

$ pip install -U pyobjc

Using a specific version of V8

The instructions below work but it is also possible to create a soft link from chromium/src/v8 to local v8 repository and the build/test.

So, we want to include our updated version of V8 so that we can verify that it builds correctly with our change to V8. While I'm not sure this is the proper way to do it, I was able to update DEPS in src (chromium) and set the v8 entry to git@github.com:danbev/v8.git@064718a8921608eaf9b5eadbb7d734ec04068a87:

"git@github.com:danbev/v8.git@064718a8921608eaf9b5eadbb7d734ec04068a87"

You'll have to run gclient sync after this.

Another way is to not updated the DEPS file, which is a version controlled file, but instead update .gclientrc and add a custom_deps entry:

solutions = [{u'managed': False, u'name': u'src', u'url': u'https://chromium.googlesource.com/chromium/src.git', 
u'custom_deps': {
  "src/v8": "git@github.com:danbev/v8.git@27a666f9be7ca3959c7372bdeeee14aef2a4b7ba"
}, u'deps_file': u'.DEPS.git', u'safesync_url': u''}]

Buiding pdfium

You may have to compile this project (in addition to chromium to verify that changes in v8 are not breaking code in pdfium.

Create/clone the project

 $ mkdir pdfuim_reop
 $ gclient config --unmanaged https://pdfium.googlesource.com/pdfium.git
 $ gclient sync
 $ cd pdfium

Building

$ ninja -C out/Default

Using a branch of v8

You should be able to update the .gclient file adding a custom_deps entry:

solutions = [
{
  "name"        : "pdfium",
  "url"         : "https://pdfium.googlesource.com/pdfium.git",
  "deps_file"   : "DEPS",
  "managed"     : False,
  "custom_deps" : {
    "v8": "git@github.com:danbev/v8.git@064718a8921608eaf9b5eadbb7d734ec04068a87"
  },
},

] cache_dir = None You'll have to run gclient sync after this too.

Code in this repo

hello-world

hello-world is heavily commented and show the usage of a static int being exposed and accessed from JavaScript.

instances

instances shows the usage of creating new instances of a C++ class from JavaScript.

run-script

run-script is basically the same as instance but reads an external file, script.js and run the script.

tests

The test directory contains unit tests for individual classes/concepts in V8 to help understand them.

Building this projects code

$ make

Running

$ ./hello-world

Cleaning

$ make clean

Contributing a change to V8

  1. Create a working branch using git new-branch name
  2. git cl upload

See Googles contributing-code for more details.

Find the current issue number

$ git cl issue

Debugging

$ lldb hello-world
(lldb) br s -f hello-world.cc -l 27

There are a number of useful functions in src/objects-printer.cc which can also be used in lldb.

Print value of a Local object

(lldb) print _v8_internal_Print_Object(*(v8::internal::Object**)(*init_fn))

Print stacktrace

(lldb) p _v8_internal_Print_StackTrace()

Creating command aliases in lldb

Create a file named .lldbinit (in your project director or home directory). This file can now be found in v8's tools directory.

Using d8

This is the source used for the following examples:

$ cat class.js
function Person(name, age) {
  this.name = name;
  this.age = age;
}

print("before");
const p = new Person("Daniel", 41);
print(p.name);
print(p.age);
print("after"); 

V8_shell startup

What happens when the v8_shell is run?

$ lldb -- out/x64.debug/d8 --enable-inspector class.js
(lldb) breakpoint set --file d8.cc --line 2662
Breakpoint 1: where = d8`v8::Shell::Main(int, char**) + 96 at d8.cc:2662, address = 0x0000000100015150

First v8::base::debug::EnableInProcessStackDumping() is called followed by some windows specific code guarded by macros. Next is all the options are set using v8::Shell::SetOptions

SetOptions will call v8::V8::SetFlagsFromCommandLine which is found in src/api.cc:

i::FlagList::SetFlagsFromCommandLine(argc, argv, remove_flags);

This function can be found in src/flags.cc. The flags themselves are defined in src/flag-definitions.h

Next a new SourceGroup array is create:

options.isolate_sources = new SourceGroup[options.num_isolates];
SourceGroup* current = options.isolate_sources;
current->Begin(argv, 1);
for (int i = 1; i < argc; i++) {
  const char* str = argv[i];

(lldb) p str
(const char *) $6 = 0x00007fff5fbfed4d "manual.js"

There are then checks performed to see if the args is --isolate or --module, or -e and if not (like in our case)

} else if (strncmp(str, "-", 1) != 0) {
  // Not a flag, so it must be a script to execute.
  options.script_executed = true;

TODO: I'm not exactly sure what SourceGroups are about but just noting this and will revisit later.

This will take us back int Shell::Main in src/d8.cc

::V8::InitializeICUDefaultLocation(argv[0], options.icu_data_file);

(lldb) p argv[0]
(char *) $8 = 0x00007fff5fbfed48 "./d8"

See ICU a little more details.

Next the default V8 platform is initialized:

g_platform = i::FLAG_verify_predictable ? new PredictablePlatform() : v8::platform::CreateDefaultPlatform();

v8::platform::CreateDefaultPlatform() will be called in our case.

We are then back in Main and have the following lines:

2685 v8::V8::InitializePlatform(g_platform);
2686 v8::V8::Initialize();

This is very similar to what I've seen in the Node.js startup process.

We did not specify any natives_blob or snapshot_blob as an option on the command line so the defaults will be used:

v8::V8::InitializeExternalStartupData(argv[0]);

back in src/d8.cc line 2918:

Isolate* isolate = Isolate::New(create_params);

this call will bring us into api.cc line 8185:

 i::Isolate* isolate = new i::Isolate(false);

So, we are invoking the Isolate constructor (in src/isolate.cc).

isolate->set_snapshot_blob(i::Snapshot::DefaultSnapshotBlob());

api.cc:

isolate->Init(NULL);

compilation_cache_ = new CompilationCache(this);
context_slot_cache_ = new ContextSlotCache();
descriptor_lookup_cache_ = new DescriptorLookupCache();
unicode_cache_ = new UnicodeCache();
inner_pointer_to_code_cache_ = new InnerPointerToCodeCache(this);
global_handles_ = new GlobalHandles(this);
eternal_handles_ = new EternalHandles();
bootstrapper_ = new Bootstrapper(this);
handle_scope_implementer_ = new HandleScopeImplementer(this);
load_stub_cache_ = new StubCache(this, Code::LOAD_IC);
store_stub_cache_ = new StubCache(this, Code::STORE_IC);
materialized_object_store_ = new MaterializedObjectStore(this);
regexp_stack_ = new RegExpStack();
regexp_stack_->isolate_ = this;
date_cache_ = new DateCache();
call_descriptor_data_ =
  new CallInterfaceDescriptorData[CallDescriptors::NUMBER_OF_DESCRIPTORS];
access_compiler_data_ = new AccessCompilerData();
cpu_profiler_ = new CpuProfiler(this);
heap_profiler_ = new HeapProfiler(heap());
interpreter_ = new interpreter::Interpreter(this);
compiler_dispatcher_ =
  new CompilerDispatcher(this, V8::GetCurrentPlatform(), FLAG_stack_size);

src/builtins/builtins.cc, this is where the builtins are defined. TODO: sort out what these macros do.

In src/v8.cc we have a couple of checks for if the options passed are for a stress_run but since we did not pass in any such flags this code path will be followed which will call RunMain:

result = RunMain(isolate, argc, argv, last_run);

this will end up calling:

options.isolate_sources[0].Execute(isolate);

Which will call SourceGroup::Execute(Isolate* isolate)

// Use all other arguments as names of files to load and run.
HandleScope handle_scope(isolate);
Local<String> file_name = String::NewFromUtf8(isolate, arg, NewStringType::kNormal).ToLocalChecked();
Local<String> source = ReadFile(isolate, arg);
if (source.IsEmpty()) {
  printf("Error reading '%s'\n", arg);
  Shell::Exit(1);
}
Shell::options.script_executed = true;
if (!Shell::ExecuteString(isolate, source, file_name, false, true)) {
  exception_was_thrown = true;
  break;
}

ScriptOrigin origin(name);
if (compile_options == ScriptCompiler::kNoCompileOptions) {
  ScriptCompiler::Source script_source(source, origin);
  return ScriptCompiler::Compile(context, &script_source, compile_options);
}

Which will delegate to ScriptCompiler(Local, Source* source, CompileOptions options):

auto maybe = CompileUnboundInternal(isolate, source, options);

CompileUnboundInternal

result = i::Compiler::GetSharedFunctionInfoForScript(
    str, name_obj, line_offset, column_offset, source->resource_options,
    source_map_url, isolate->native_context(), NULL, &script_data, options,
    i::NOT_NATIVES_CODE);

src/compiler.cc

// Compile the function and add it to the cache.
ParseInfo parse_info(script);
Zone compile_zone(isolate->allocator(), ZONE_NAME);
CompilationInfo info(&compile_zone, &parse_info, Handle<JSFunction>::null());

Back in src/compiler.cc-info.cc:

result = CompileToplevel(&info);

(lldb) job *result
0x17df0df309f1: [SharedFunctionInfo]
 - name = 0x1a7f12d82471 <String[0]: >
 - formal_parameter_count = 0
 - expected_nof_properties = 10
 - ast_node_count = 23
 - instance class name = #Object

 - code = 0x1d8484d3661 <Code: BUILTIN>
 - source code = function bajja(a, b, c) {
  var d = c - 100;
  return a + d * b;
}

var result = bajja(2, 2, 150);
print(result);

 - anonymous expression
 - function token position = -1
 - start position = 0
 - end position = 114
 - no debug info
 - length = 0
 - optimized_code_map = 0x1a7f12d82241 <FixedArray[0]>
 - feedback_metadata = 0x17df0df30d09: [FeedbackMetadata]
 - length: 3
 - slot_count: 11
 Slot #0 LOAD_GLOBAL_NOT_INSIDE_TYPEOF_IC
 Slot #2 kCreateClosure
 Slot #3 LOAD_GLOBAL_NOT_INSIDE_TYPEOF_IC
 Slot #5 CALL_IC
 Slot #7 CALL_IC
 Slot #9 LOAD_GLOBAL_NOT_INSIDE_TYPEOF_IC

 - bytecode_array = 0x17df0df30c61

Back in d8.cc:

maybe_result = script->Run(realm);

src/api.cc

auto fun = i::Handle<i::JSFunction>::cast(Utils::OpenHandle(this));

(lldb) job *fun
0x17df0df30e01: [Function]
 - map = 0x19cfe0003859 [FastProperties]
 - prototype = 0x17df0df043b1
 - elements = 0x1a7f12d82241 <FixedArray[0]> [FAST_HOLEY_ELEMENTS]
 - initial_map =
 - shared_info = 0x17df0df309f1 <SharedFunctionInfo>
 - name = 0x1a7f12d82471 <String[0]: >
 - formal_parameter_count = 0
 - context = 0x17df0df03bf9 <FixedArray[245]>
 - feedback vector cell = 0x17df0df30ed1 Cell for 0x17df0df30e49 <FixedArray[13]>
 - code = 0x1d8484d3661 <Code: BUILTIN>
 - properties = 0x1a7f12d82241 <FixedArray[0]> {
    #length: 0x2c35a5718089 <AccessorInfo> (const accessor descriptor)
    #name: 0x2c35a57180f9 <AccessorInfo> (const accessor descriptor)
    #arguments: 0x2c35a5718169 <AccessorInfo> (const accessor descriptor)
    #caller: 0x2c35a57181d9 <AccessorInfo> (const accessor descriptor)
    #prototype: 0x2c35a5718249 <AccessorInfo> (const accessor descriptor)

  }

i::Handle<i::Object> receiver = isolate->global_proxy();
Local<Value> result;
has_pending_exception = !ToLocal<Value>(i::Execution::Call(isolate, fun, receiver, 0, nullptr), &result);

src/execution.cc

Zone

Taken directly from src/zone/zone.h:

// The Zone supports very fast allocation of small chunks of
// memory. The chunks cannot be deallocated individually, but instead
// the Zone supports deallocating all chunks in one fast
// operation. The Zone is used to hold temporary data structures like
// the abstract syntax tree, which is deallocated after compilation.

V8 flags

$ ./d8 --help

d8

(lldb) br s -f d8.cc -l 2935

return v8::Shell::Main(argc, argv);

api.cc:6112
i::ReadNatives();
natives-external.cc

v8::String::NewFromOneByte

So I was a little confused when I first read this function name and thought it had something to do with the length of the string. But the byte is the type of the chars that make up the string. For example, a one byte char would be reinterpreted as uint8_t:

const char* data

reinterpret_cast<const uint8_t*>(data)

Tasks

  • gdbinit has been updated. Check if there is something that should be ported to lldbinit

Invocation walkthrough

This section will go through calling a Script to understand what happens in V8.

I'll be using run-scripts.cc as the example for this.

$ lldb -- ./run-scripts
(lldb) br s -n main

I'll step through until the following call:

script->Run(context).ToLocalChecked();

So, Script::Run is defined in api.cc First things that happens in this function is a macro:

PREPARE_FOR_EXECUTION_WITH_CONTEXT_IN_RUNTIME_CALL_STATS_SCOPE(
     "v8", 
     "V8.Execute", 
     context, 
     Script, 
     Run, 
     MaybeLocal<Value>(),
     InternalEscapableScope, 
true);
TRACE_EVENT_CALL_STATS_SCOPED(isolate, category, name);
PREPARE_FOR_EXECUTION_GENERIC(isolate, context, class_name, function_name, \
    bailout_value, HandleScopeClass, do_callback);

So, what does the preprocessor replace this with then:

auto isolate = context.IsEmpty() ? i::Isolate::Current()                               : reinterpret_cast<i::Isolate*>(context->GetIsolate());

I'm skipping TRACE_EVENT_CALL_STATS_SCOPED for now. PREPARE_FOR_EXECUTION_GENERIC will be replaced with:

if (IsExecutionTerminatingCheck(isolate)) {                        \
  return bailout_value;                                            \
}                                                                  \
HandleScopeClass handle_scope(isolate);                            \
CallDepthScope<do_callback> call_depth_scope(isolate, context);    \
LOG_API(isolate, class_name, function_name);                       \
ENTER_V8_DO_NOT_USE(isolate);                                      \
bool has_pending_exception = false




auto fun = i::Handle<i::JSFunction>::cast(Utils::OpenHandle(this));

(lldb) job *fun
0x33826912c021: [Function]
 - map = 0x1d0656c03599 [FastProperties]
 - prototype = 0x338269102e69
 - elements = 0x35190d902241 <FixedArray[0]> [FAST_HOLEY_ELEMENTS]
 - initial_map =
 - shared_info = 0x33826912bc11 <SharedFunctionInfo>
 - name = 0x35190d902471 <String[0]: >
 - formal_parameter_count = 0
 - context = 0x338269102611 <FixedArray[265]>
 - feedback vector cell = 0x33826912c139 <Cell value= 0x33826912c069 <FixedArray[24]>>
 - code = 0x1319e25fcf21 <Code BUILTIN>
 - properties = 0x35190d902241 <FixedArray[0]> {
    #length: 0x2e9d97ce68b1 <AccessorInfo> (const accessor descriptor)
    #name: 0x2e9d97ce6921 <AccessorInfo> (const accessor descriptor)
    #arguments: 0x2e9d97ce6991 <AccessorInfo> (const accessor descriptor)
    #caller: 0x2e9d97ce6a01 <AccessorInfo> (const accessor descriptor)
    #prototype: 0x2e9d97ce6a71 <AccessorInfo> (const accessor descriptor)
 }

The code for i::JSFunction is generated in src/api.h. Lets take a closer look at this.

#define DECLARE_OPEN_HANDLE(From, To) \
  static inline v8::internal::Handle<v8::internal::To> \
  OpenHandle(const From* that, bool allow_empty_handle = false);

OPEN_HANDLE_LIST(DECLARE_OPEN_HANDLE)

OPEN_HANDLE_LIST looks like this:

#define OPEN_HANDLE_LIST(V)                    \
....
V(Script, JSFunction)                        \ 

So lets expand this for JSFunction and it should become:

  static inline v8::internal::Handle<v8::internal::JSFunction> \
    OpenHandle(const Script* that, bool allow_empty_handle = false);

So there will be an function named OpenHandle that will take a const pointer to Script.

A little further down in src/api.h there is another macro which looks like this:

OPEN_HANDLE_LIST(MAKE_OPEN_HANDLE)

MAKE_OPEN_HANDLE:

    #define MAKE_OPEN_HANDLE(From, To)
      v8::internal::Handle<v8::internal::To> Utils::OpenHandle( 
      const v8::From* that, bool allow_empty_handle) {         
      return v8::internal::Handle<v8::internal::To>(                         
        reinterpret_cast<v8::internal::Address*>(const_cast<v8::From*>(that))); 
      }

And remember that JSFunction is included in the OPEN_HANDLE_LIST so there will be the following in the source after the preprocessor has processed this header: A concrete example would look like this:

v8::internal::Handle<v8::internal::JSFunction> Utils::OpenHandle(
    const v8::Script* that, bool allow_empty_handle) {
  return v8::internal::Handle<v8::internal::JSFunction>(
      reinterpret_cast<v8::internal::Address*>(const_cast<v8::Script*>(that))); }

You can inspect the output of the preprocessor using:

$ clang++ -I./out/x64.release/gen -I. -I./include -E src/api/api-inl.h > api-inl.output

So where is JSFunction declared? It is defined in objects.h

Ignition interpreter

User JavaScript also needs to have bytecode generated for them and they also use the C++ DLS and use the CodeStubAssembler -> CodeAssembler -> RawMachineAssembler just like builtins.

C++ Domain Specific Language (DLS)

Build failure

After rebasing I've seen the following issue:

$ ninja -C out/Debug chrome
ninja: Entering directory `out/Debug'
ninja: error: '../../chrome/renderer/resources/plugins/plugin_delay.html', needed by 'gen/chrome/grit/renderer_resources.h', missing and no known rule to make it

The "solution" was to remove the out directory and rebuild.

Tasks

To find suitable task you can use label:HelpWanted at bugs.chromium.org.

OpenHandle

What does this call do:

Utils::OpenHandle(*(source->source_string));

OPEN_HANDLE_LIST(MAKE_OPEN_HANDLE)

Which is a macro defined in src/api.h:

#define MAKE_OPEN_HANDLE(From, To)                                             \
  v8::internal::Handle<v8::internal::To> Utils::OpenHandle(                    \
      const v8::From* that, bool allow_empty_handle) {                         \
  DCHECK(allow_empty_handle || that != NULL);                                \
  DCHECK(that == NULL ||                                                     \
       (*reinterpret_cast<v8::internal::Object* const*>(that))->Is##To()); \
  return v8::internal::Handle<v8::internal::To>(                             \
      reinterpret_cast<v8::internal::To**>(const_cast<v8::From*>(that)));    \
}

OPEN_HANDLE_LIST(MAKE_OPEN_HANDLE)

If we take a closer look at the macro is should expand to something like this in our case:

 v8::internal::Handle<v8::internal::To> Utils::OpenHandle(const v8:String* that, false) {
   DCHECK(allow_empty_handle || that != NULL);                                \
   DCHECK(that == NULL ||                                                     \
       (*reinterpret_cast<v8::internal::Object* const*>(that))->IsString()); \
   return v8::internal::Handle<v8::internal::String>(                             \
      reinterpret_cast<v8::internal::String**>(const_cast<v8::String*>(that)));    \
 }

So this is returning a new v8::internal::Handle, the constructor is defined in src/handles.h:95.

src/objects.cc Handle WeakFixedArray::Add(Handle maybe_array, 10167 Handle value, 10168 int* assigned_index) { Notice the name of the first parameter maybe_array but it is not of type maybe?

 

Context

JavaScript provides a set of builtin functions and objects. These functions and objects can be changed by user code. Each context is separate collection of these objects and functions.

And internal::Context is declared in deps/v8/src/contexts.h and extends FixedArray

class Context: public FixedArray {

A Context can be create by calling:

const v8::HandleScope handle_scope(isolate_);
Handle<Context> context = Context::New(isolate_,
                                       nullptr,
                                       v8::Local<v8::ObjectTemplate>());

Context::New can be found in src/api.cc:6405:

Local<Context> v8::Context::New(
    v8::Isolate* external_isolate, v8::ExtensionConfiguration* extensions,
    v8::MaybeLocal<ObjectTemplate> global_template,
    v8::MaybeLocal<Value> global_object,
    DeserializeInternalFieldsCallback internal_fields_deserializer) {
  return NewContext(external_isolate, extensions, global_template,
                    global_object, 0, internal_fields_deserializer);
}

The declaration of this function can be found in include/v8.h:

static Local<Context> New(
      Isolate* isolate, ExtensionConfiguration* extensions = NULL,
      MaybeLocal<ObjectTemplate> global_template = MaybeLocal<ObjectTemplate>(),
      MaybeLocal<Value> global_object = MaybeLocal<Value>(),
      DeserializeInternalFieldsCallback internal_fields_deserializer =
          DeserializeInternalFieldsCallback());

So we can see the reason why we did not have to specify internal_fields_deserialize. What is ExtensionConfiguration?
This class can be found in include/v8.h and only has two members, a count of the extension names and an array with the names.

If specified these will be installed by Boostrapper::InstallExtensions which will delegate to Genesis::InstallExtensions, both can be found in src/boostrapper.cc. Where are extensions registered?
This is done once per process and called from V8::Initialize():

void Bootstrapper::InitializeOncePerProcess() {
  free_buffer_extension_ = new FreeBufferExtension;
  v8::RegisterExtension(free_buffer_extension_);
  gc_extension_ = new GCExtension(GCFunctionName());
  v8::RegisterExtension(gc_extension_);
  externalize_string_extension_ = new ExternalizeStringExtension;
  v8::RegisterExtension(externalize_string_extension_);
  statistics_extension_ = new StatisticsExtension;
  v8::RegisterExtension(statistics_extension_);
  trigger_failure_extension_ = new TriggerFailureExtension;
  v8::RegisterExtension(trigger_failure_extension_);
  ignition_statistics_extension_ = new IgnitionStatisticsExtension;
  v8::RegisterExtension(ignition_statistics_extension_);
}

The extensions can be found in src/extensions. You register your own extensions and an example of this can be found in test/context_test.cc.

(lldb) br s -f node.cc -l 4439
(lldb) expr context->length()
(int) $522 = 281

This output was taken

Creating a new Context is done by v8::CreateEnvironment

(lldb) br s -f api.cc -l 6565
InvokeBootstrapper<ObjectType> invoke;
   6635    result =
-> 6636        invoke.Invoke(isolate, maybe_proxy, proxy_template, extensions,
   6637                      context_snapshot_index, embedder_fields_deserializer);

This will later end up in Snapshot::NewContextFromSnapshot:

Vector<const byte> context_data =
      ExtractContextData(blob, static_cast<uint32_t>(context_index));
  SnapshotData snapshot_data(context_data);

  MaybeHandle<Context> maybe_result = PartialDeserializer::DeserializeContext(
      isolate, &snapshot_data, can_rehash, global_proxy,
      embedder_fields_deserializer);

So we can see here that the Context is deserialized from the snapshot. What does the Context contain at this stage:

(lldb) expr result->length()
(int) $650 = 281
(lldb) expr result->Print()
// not inlcuding the complete output

Lets take a look at an entry:

(lldb) expr result->get(0)->Print()
0xc201584331: [Function] in OldSpace
 - map = 0xc24c002251 [FastProperties]
 - prototype = 0xc201584371
 - elements = 0xc2b2882251 <FixedArray[0]> [HOLEY_ELEMENTS]
 - initial_map =
 - shared_info = 0xc2b2887521 <SharedFunctionInfo>
 - name = 0xc2b2882441 <String[0]: >
 - formal_parameter_count = -1
 - kind = [ NormalFunction ]
 - context = 0xc201583a59 <FixedArray[281]>
 - code = 0x2df1f9865a61 <Code BUILTIN>
 - source code = () {}
 - properties = 0xc2b2882251 <FixedArray[0]> {
    #length: 0xc2cca83729 <AccessorInfo> (const accessor descriptor)
    #name: 0xc2cca83799 <AccessorInfo> (const accessor descriptor)
    #arguments: 0xc201587fd1 <AccessorPair> (const accessor descriptor)
    #caller: 0xc201587fd1 <AccessorPair> (const accessor descriptor)
    #constructor: 0xc201584c29 <JSFunction Function (sfi = 0xc2b28a6fb1)> (const data descriptor)
    #apply: 0xc201588079 <JSFunction apply (sfi = 0xc2b28a7051)> (const data descriptor)
    #bind: 0xc2015880b9 <JSFunction bind (sfi = 0xc2b28a70f1)> (const data descriptor)
    #call: 0xc2015880f9 <JSFunction call (sfi = 0xc2b28a7191)> (const data descriptor)
    #toString: 0xc201588139 <JSFunction toString (sfi = 0xc2b28a7231)> (const data descriptor)
    0xc2b28bc669 <Symbol: Symbol.hasInstance>: 0xc201588179 <JSFunction [Symbol.hasInstance] (sfi = 0xc2b28a72d1)> (const data descriptor)
 }

 - feedback vector: not available

So we can see that this is of type [Function] which we can cast using:

(lldb) expr JSFunction::cast(result->get(0))->code()->Print()
0x2df1f9865a61: [Code]
kind = BUILTIN
name = EmptyFunction
(lldb) expr JSFunction::cast(result->closure())->Print()
0xc201584331: [Function] in OldSpace
 - map = 0xc24c002251 [FastProperties]
 - prototype = 0xc201584371
 - elements = 0xc2b2882251 <FixedArray[0]> [HOLEY_ELEMENTS]
 - initial_map =
 - shared_info = 0xc2b2887521 <SharedFunctionInfo>
 - name = 0xc2b2882441 <String[0]: >
 - formal_parameter_count = -1
 - kind = [ NormalFunction ]
 - context = 0xc201583a59 <FixedArray[281]>
 - code = 0x2df1f9865a61 <Code BUILTIN>
 - source code = () {}
 - properties = 0xc2b2882251 <FixedArray[0]> {
    #length: 0xc2cca83729 <AccessorInfo> (const accessor descriptor)
    #name: 0xc2cca83799 <AccessorInfo> (const accessor descriptor)
    #arguments: 0xc201587fd1 <AccessorPair> (const accessor descriptor)
    #caller: 0xc201587fd1 <AccessorPair> (const accessor descriptor)
    #constructor: 0xc201584c29 <JSFunction Function (sfi = 0xc2b28a6fb1)> (const data descriptor)
    #apply: 0xc201588079 <JSFunction apply (sfi = 0xc2b28a7051)> (const data descriptor)
    #bind: 0xc2015880b9 <JSFunction bind (sfi = 0xc2b28a70f1)> (const data descriptor)
    #call: 0xc2015880f9 <JSFunction call (sfi = 0xc2b28a7191)> (const data descriptor)
    #toString: 0xc201588139 <JSFunction toString (sfi = 0xc2b28a7231)> (const data descriptor)
    0xc2b28bc669 <Symbol: Symbol.hasInstance>: 0xc201588179 <JSFunction [Symbol.hasInstance] (sfi = 0xc2b28a72d1)> (const data descriptor)
 }

 - feedback vector: not available

So this is the JSFunction associated with the deserialized context. Not sure what this is about as looking at the source code it looks like an empty function. A function can also be set on the context so I'm guessing that this give access to the function of a context once set. Where is function set, well it is probably deserialized but we can see it be used in deps/v8/src/bootstrapper.cc:

{
  Handle<JSFunction> function = SimpleCreateFunction(isolate, factory->empty_string(), Builtins::kAsyncFunctionAwaitCaught, 2, false);
  native_context->set_async_function_await_caught(*function);
}
​```console
(lldb) expr isolate()->builtins()->builtin_handle(Builtins::Name::kAsyncFunctionAwaitCaught)->Print()

Context::Scope is a RAII class used to Enter/Exit a context. Lets take a closer look at Enter:

void Context::Enter() {
  i::Handle<i::Context> env = Utils::OpenHandle(this);
  i::Isolate* isolate = env->GetIsolate();
  ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
  i::HandleScopeImplementer* impl = isolate->handle_scope_implementer();
  impl->EnterContext(env);
  impl->SaveContext(isolate->context());
  isolate->set_context(*env);
}

So the current context is saved and then the this context env is set as the current on the isolate. EnterContext will push the passed-in context (deps/v8/src/api.cc):

void HandleScopeImplementer::EnterContext(Handle<Context> context) {
  entered_contexts_.push_back(*context);
}
...
DetachableVector<Context*> entered_contexts_;
DetachableVector is a delegate/adaptor with some additonaly features on a std::vector.
Handle<Context> context1 = NewContext(isolate);
Handle<Context> context2 = NewContext(isolate);
Context::Scope context_scope1(context1);        // entered_contexts_ [context1], saved_contexts_[isolateContext]
Context::Scope context_scope2(context2);        // entered_contexts_ [context1, context2], saved_contexts[isolateContext, context1]

Now, SaveContext is using the current context, not this context (env) and pushing that to the end of the saved_contexts_ vector. We can look at this as we entered context_scope2 from context_scope1:

And Exit looks like:

void Context::Exit() {
  i::Handle<i::Context> env = Utils::OpenHandle(this);
  i::Isolate* isolate = env->GetIsolate();
  ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate);
  i::HandleScopeImplementer* impl = isolate->handle_scope_implementer();
  if (!Utils::ApiCheck(impl->LastEnteredContextWas(env),
                       "v8::Context::Exit()",
                       "Cannot exit non-entered context")) {
    return;
  }
  impl->LeaveContext();
  isolate->set_context(impl->RestoreContext());
}

EmbedderData

A context can have embedder data set on it. Like decsribed above a Context is internally A FixedArray. SetEmbedderData in Context is implemented in src/api.cc:

const char* location = "v8::Context::SetEmbedderData()";
i::Handle<i::FixedArray> data = EmbedderDataFor(this, index, true, location);
i::Handle<i::FixedArray> data(env->embedder_data());

location is only used for logging and we can ignore it for now. EmbedderDataFor:

i::Handle<i::Context> env = Utils::OpenHandle(context);
...
i::Handle<i::FixedArray> data(env->embedder_data());

We can find embedder_data in src/contexts-inl.h

#define NATIVE_CONTEXT_FIELD_ACCESSORS(index, type, name) \
  inline void set_##name(type* value);                    \
  inline bool is_##name(type* value) const;               \
  inline type* name() const;
  NATIVE_CONTEXT_FIELDS(NATIVE_CONTEXT_FIELD_ACCESSORS)

And NATIVE_CONTEXT_FIELDS in context.h:

#define NATIVE_CONTEXT_FIELDS(V)                                               \
  V(GLOBAL_PROXY_INDEX, JSObject, global_proxy_object)                         \
  V(EMBEDDER_DATA_INDEX, FixedArray, embedder_data)                            \
...

#define NATIVE_CONTEXT_FIELD_ACCESSORS(index, type, name) \
  void Context::set_##name(type* value) {                 \
    DCHECK(IsNativeContext());                            \
    set(index, value);                                    \
  }                                                       \
  bool Context::is_##name(type* value) const {            \
    DCHECK(IsNativeContext());                            \
    return type::cast(get(index)) == value;               \
  }                                                       \
  type* Context::name() const {                           \
    DCHECK(IsNativeContext());                            \
    return type::cast(get(index));                        \
  }
NATIVE_CONTEXT_FIELDS(NATIVE_CONTEXT_FIELD_ACCESSORS)
#undef NATIVE_CONTEXT_FIELD_ACCESSORS

So the preprocessor would expand this to:

FixedArray embedder_data() const;

void Context::set_embedder_data(FixedArray value) {
  DCHECK(IsNativeContext());
  set(EMBEDDER_DATA_INDEX, value);
}

bool Context::is_embedder_data(FixedArray value) const {
  DCHECK(IsNativeContext());
  return FixedArray::cast(get(EMBEDDER_DATA_INDEX)) == value;
}

FixedArray Context::embedder_data() const {
  DCHECK(IsNativeContext());
  return FixedArray::cast(get(EMBEDDER_DATA_INDEX));
}

We can take a look at the initial data:

lldb) expr data->Print()
0x2fac3e896439: [FixedArray] in OldSpace
 - map = 0x2fac9de82341 <Map(HOLEY_ELEMENTS)>
 - length: 3
         0-2: 0x2fac1cb822e1 <undefined>
(lldb) expr data->length()
(int) $5 = 3

And after setting:

(lldb) expr data->Print()
0x2fac3e896439: [FixedArray] in OldSpace
 - map = 0x2fac9de82341 <Map(HOLEY_ELEMENTS)>
 - length: 3
           0: 0x2fac20c866e1 <String[7]: embdata>
         1-2: 0x2fac1cb822e1 <undefined>

(lldb) expr v8::internal::String::cast(data->get(0))->Print()
"embdata"

This was taken while debugging ContextTest::EmbedderData.

ENTER_V8_FOR_NEW_CONTEXT

This macro is used in CreateEnvironment (src/api.cc) and the call in this function looks like this:

ENTER_V8_FOR_NEW_CONTEXT(isolate);

Factory::NewMap

This section will take a look at the following call:

i::Handle<i::Map> map = factory->NewMap(i::JS_OBJECT_TYPE, 24);

Lets take a closer look at this function which can be found in src/factory.cc:

Handle<Map> Factory::NewMap(InstanceType type, int instance_size,
                            ElementsKind elements_kind,
                            int inobject_properties) {
  CALL_HEAP_FUNCTION(
      isolate(),
      isolate()->heap()->AllocateMap(type, instance_size, elements_kind,
                                     inobject_properties),
      Map);
}

If we take a look at factory.h we can see the default values for elements_kind and inobject_properties:

Handle<Map> NewMap(InstanceType type, int instance_size,
                     ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND,
                     int inobject_properties = 0);

If we expand the CALL_HEAP_FUNCTION macro we will get:

    AllocationResult __allocation__ = isolate()->heap()->AllocateMap(type,
                                                                     instance_size,
                                                                     elements_kind,
                                                                     inobject_properties),
    Object* __object__ = nullptr;
    RETURN_OBJECT_UNLESS_RETRY(isolate(), Map)
    /* Two GCs before panicking.  In newspace will almost always succeed. */
    for (int __i__ = 0; __i__ < 2; __i__++) {
      (isolate())->heap()->CollectGarbage(
          __allocation__.RetrySpace(),
          GarbageCollectionReason::kAllocationFailure);
      __allocation__ = FUNCTION_CALL;
      RETURN_OBJECT_UNLESS_RETRY(isolate, Map)
    }
    (isolate())->counters()->gc_last_resort_from_handles()->Increment();
    (isolate())->heap()->CollectAllAvailableGarbage(
        GarbageCollectionReason::kLastResort);
    {
      AlwaysAllocateScope __scope__(isolate());
    t __allocation__ = isolate()->heap()->AllocateMap(type,
                                                      instance_size,
                                                      elements_kind,
                                                      inobject_properties),
    }
    RETURN_OBJECT_UNLESS_RETRY(isolate, Map)
    /* TODO(1181417): Fix this. */
    v8::internal::Heap::FatalProcessOutOfMemory("CALL_AND_RETRY_LAST", true);
    return Handle<Map>();

So, lets take a look at isolate()->heap()->AllocateMap in 'src/heap/heap.cc':

  HeapObject* result = nullptr;
  AllocationResult allocation = AllocateRaw(Map::kSize, MAP_SPACE);

AllocateRaw can be found in src/heap/heap-inl.h:

  bool large_object = size_in_bytes > kMaxRegularHeapObjectSize;
  HeapObject* object = nullptr;
  AllocationResult allocation;
  if (NEW_SPACE == space) {
    if (large_object) {
      space = LO_SPACE;
    } else {
      allocation = new_space_->AllocateRaw(size_in_bytes, alignment);
      if (allocation.To(&object)) {
        OnAllocationEvent(object, size_in_bytes);
      }
      return allocation;
    }
  }
 } else if (MAP_SPACE == space) {
    allocation = map_space_->AllocateRawUnaligned(size_in_bytes);
 }
(lldb) expr large_object
(bool) $3 = false
(lldb) expr size_in_bytes
(int) $5 = 80
(lldb) expr map_space_
(v8::internal::MapSpace *) $6 = 0x0000000104700f60

AllocateRawUnaligned can be found in src/heap/spaces-inl.h

  HeapObject* object = AllocateLinearly(size_in_bytes);

v8::internal::Object

Is an abstract super class for all classes in the object hierarch and both Smi and HeapObject are subclasses of Object so there are no data members in object only functions. For example:

  bool IsObject() const { return true; }
  INLINE(bool IsSmi() const
  INLINE(bool IsLayoutDescriptor() const
  INLINE(bool IsHeapObject() const
  INLINE(bool IsPrimitive() const
  INLINE(bool IsNumber() const
  INLINE(bool IsNumeric() const
  INLINE(bool IsAbstractCode() const
  INLINE(bool IsAccessCheckNeeded() const
  INLINE(bool IsArrayList() const
  INLINE(bool IsBigInt() const
  INLINE(bool IsUndefined() const
  INLINE(bool IsNull() const
  INLINE(bool IsTheHole() const
  INLINE(bool IsException() const
  INLINE(bool IsUninitialized() const
  INLINE(bool IsTrue() const
  INLINE(bool IsFalse() const
  ...

v8::internal::Smi

Extends v8::internal::Object and are not allocated on the heap. There are no members as the pointer itself is used to store the information.

In our case the calling v8::Isolate::New which is done by the test fixture:

virtual void SetUp() {
  isolate_ = v8::Isolate::New(create_params_);
}

This will call:

Isolate* Isolate::New(const Isolate::CreateParams& params) {
  Isolate* isolate = Allocate();
  Initialize(isolate, params);
  return isolate;
}

In Isolate::Initialize we'll call i::Snapshot::Initialize(i_isolate):

if (params.entry_hook || !i::Snapshot::Initialize(i_isolate)) {
  ...

Which will call:

bool success = isolate->Init(&deserializer);

Before this call all the roots are uninitialized. Reading this blog it says that the Isolate class contains a roots table. It looks to me that the Heap contains this data structure but perhaps that is what they meant.

(lldb) bt 3
* thread #1, queue = 'com.apple.main-thread', stop reason = step over
  * frame #0: 0x0000000101584f43 libv8.dylib`v8::internal::StartupDeserializer::DeserializeInto(this=0x00007ffeefbfe200, isolate=0x000000010481cc00) at startup-deserializer.cc:39
    frame #1: 0x0000000101028bb6 libv8.dylib`v8::internal::Isolate::Init(this=0x000000010481cc00, des=0x00007ffeefbfe200) at isolate.cc:3036
    frame #2: 0x000000010157c682 libv8.dylib`v8::internal::Snapshot::Initialize(isolate=0x000000010481cc00) at snapshot-common.cc:54

In startup-deserializer.cc we can find StartupDeserializer::DeserializeInto:

  DisallowHeapAllocation no_gc;
  isolate->heap()->IterateSmiRoots(this);
  isolate->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG);

After If we take a look in src/roots.h we can find the read-only roots in Heap. If we take the 10 value, which is:

V(String, empty_string, empty_string)                                        \

we can then inspect this value:

(lldb) expr roots_[9]
(v8::internal::Object *) $32 = 0x0000152d30b82851
(lldb) expr roots_[9]->IsString()
(bool) $30 = true
(lldb) expr roots_[9]->Print()
#

So this entry is a pointer to objects on the managed heap which have been deserialized from the snapshot.

The heap class has a lot of members that are initialized during construction by the body of the constructor looks like this:

{
  // Ensure old_generation_size_ is a multiple of kPageSize.
  DCHECK_EQ(0, max_old_generation_size_ & (Page::kPageSize - 1));

  memset(roots_, 0, sizeof(roots_[0]) * kRootListLength);
  set_native_contexts_list(nullptr);
  set_allocation_sites_list(Smi::kZero);
  set_encountered_weak_collections(Smi::kZero);
  // Put a dummy entry in the remembered pages so we can find the list the
  // minidump even if there are no real unmapped pages.
  RememberUnmappedPage(nullptr, false);
}

We can see that roots_ is filled with 0 values. We can inspect roots_ using:

(lldb) expr roots_
(lldb) expr RootListIndex::kRootListLength
(int) $16 = 509

Now they are all 0 at this stage, so when will this array get populated?
These will happen in Isolate::Init:

  heap_.SetUp()
  if (!create_heap_objects) des->DeserializeInto(this);

void StartupDeserializer::DeserializeInto(Isolate* isolate) {
-> 17    Initialize(isolate);
startup-deserializer.cc:37

isolate->heap()->IterateSmiRoots(this);

This will delegate to ConfigureHeapDefaults() which will call Heap::ConfigureHeap:

enum RootListIndex {
  kFreeSpaceMapRootIndex,
  kOnePointerFillerMapRootIndex,
  ...
}
(lldb) expr heap->RootListIndex::kFreeSpaceMapRootIndex
(int) $3 = 0
(lldb) expr heap->RootListIndex::kOnePointerFillerMapRootIndex
(int) $4 = 1

MemoryChunk

Found in src/heap/spaces.h an instace of a MemoryChunk represents a region in memory that is owned by a specific space.

Embedded builtins

In the blog post explains how the builtins are embedded into the executable in to the .TEXT section which is readonly and therefore can be shared amoung multiple processes. We know that builtins are compiled and stored in the snapshot but now it seems that the are instead placed in to out.gn/learning/gen/embedded.cc and the combined with the object files from the compile to produce the libv8.dylib. V8 has a configuration option named v8_enable_embedded_builtins which which case embedded.cc will be added to the list of sources. This is done in BUILD.gn and the v8_snapshot target. If v8_enable_embedded_builtins is false then src/snapshot/embedded-empty.cc will be included instead. Both of these files have the following functions:

const uint8_t* DefaultEmbeddedBlob()
uint32_t DefaultEmbeddedBlobSize()

#ifdef V8_MULTI_SNAPSHOTS
const uint8_t* TrustedEmbeddedBlob()
uint32_t TrustedEmbeddedBlobSize()
#endif

These functions are used by isolate.cc and declared extern:

extern const uint8_t* DefaultEmbeddedBlob();
extern uint32_t DefaultEmbeddedBlobSize();

And the usage of DefaultEmbeddedBlob can be see in Isolate::Isolate where is sets the embedded blob:

SetEmbeddedBlob(DefaultEmbeddedBlob(), DefaultEmbeddedBlobSize());

Lets set a break point there and see if this is empty of not.

(lldb) expr v8_embedded_blob_size_
(uint32_t) $0 = 4021088

So we can see that we are not using the empty one. Isolate::SetEmbeddedBlob

We can see in src/snapshot/deserializer.cc (line 552) we have a check for the embedded_blob():

  CHECK_NOT_NULL(isolate->embedded_blob());
  EmbeddedData d = EmbeddedData::FromBlob();
  Address address = d.InstructionStartOfBuiltin(builtin_index);

EmbeddedData can be found in src/snapshot/snapshot.h` and the implementation can be found in snapshot-common.cc.

Address EmbeddedData::InstructionStartOfBuiltin(int i) const {
  const struct Metadata* metadata = Metadata();
  const uint8_t* result = RawData() + metadata[i].instructions_offset;
  return reinterpret_cast<Address>(result);
}
(lldb) expr *metadata
(const v8::internal::EmbeddedData::Metadata) $7 = (instructions_offset = 0, instructions_length = 1464)
  struct Metadata {
    // Blob layout information.
    uint32_t instructions_offset;
    uint32_t instructions_length;
  };
(lldb) expr *this
(v8::internal::EmbeddedData) $10 = (data_ = "\xffffffdc\xffffffc0\xffffff88'"y[\xffffffd6", size_ = 4021088)
(lldb) expr metadata[i]
(const v8::internal::EmbeddedData::Metadata) $8 = (instructions_offset = 0, instructions_length = 1464)

So, is it possible for us to verify that this information is in the .text section?

(lldb) expr result
(const uint8_t *) $13 = 0x0000000101b14ee0 "UH\x89�jH\x83�(H\x89U�H�\x16H\x89}�H�u�H�E�H\x89U�H\x83�
(lldb) image lookup --address 0x0000000101b14ee0 --verbose
      Address: libv8.dylib[0x00000000019cdee0] (libv8.dylib.__TEXT.__text + 27054464)
      Summary: libv8.dylib`v8_Default_embedded_blob_ + 7072
       Module: file = "/Users/danielbevenius/work/google/javascript/v8/out.gn/learning/libv8.dylib", arch = "x86_64"
       Symbol: id = {0x0004b596}, range = [0x0000000101b13340-0x0000000101ee8ea0), name="v8_Default_embedded_blob_"

So what we have is a pointer to the .text segment which is returned:

(lldb) memory read -f x -s 1 -c 13 0x0000000101b14ee0
0x101b14ee0: 0x55 0x48 0x89 0xe5 0x6a 0x18 0x48 0x83
0x101b14ee8: 0xec 0x28 0x48 0x89 0x55

And we can compare this with out.gn/learning/gen/embedded.cc:

V8_EMBEDDED_TEXT_HEADER(v8_Default_embedded_blob_)
__asm__(
  ...
  ".byte 0x55,0x48,0x89,0xe5,0x6a,0x18,0x48,0x83,0xec,0x28,0x48,0x89,0x55\n"
  ...
);

The macro V8_EMBEDDED_TEXT_HEADER can be found src/snapshot/macros.h:

#define V8_EMBEDDED_TEXT_HEADER(LABEL)         \
  __asm__(V8_ASM_DECLARE(#LABEL)               \
          ".csect " #LABEL "[DS]\n"            \
          #LABEL ":\n"                         \
          ".llong ." #LABEL ", TOC[tc0], 0\n"  \
          V8_ASM_TEXT_SECTION                  \
          "." #LABEL ":\n");

define V8_ASM_DECLARE(NAME) ".private_extern " V8_ASM_MANGLE_LABEL NAME "\n"
#define V8_ASM_MANGLE_LABEL "_"
#define V8_ASM_TEXT_SECTION ".csect .text[PR]\n"

And would be expanded by the preprocessor into:

  __asm__(".private_extern " _ v8_Default_embedded_blob_ "\n"
          ".csect " v8_Default_embedded_blob_ "[DS]\n"
          v8_Default_embedded_blob_ ":\n"
          ".llong ." v8_Default_embedded_blob_ ", TOC[tc0], 0\n"
          ".csect .text[PR]\n"
          "." v8_Default_embedded_blob_ ":\n");
  __asm__(
    ...
    ".byte 0x55,0x48,0x89,0xe5,0x6a,0x18,0x48,0x83,0xec,0x28,0x48,0x89,0x55\n"
    ...
  );

Back in src/snapshot/deserialzer.cc we are on this line:

  Address address = d.InstructionStartOfBuiltin(builtin_index);
  CHECK_NE(kNullAddress, address);
  if (RelocInfo::OffHeapTargetIsCodedSpecially()) {
    // is false in our case so skipping the code here
  } else {
    MaybeObject* o = reinterpret_cast<MaybeObject*>(address);
    UnalignedCopy(current, &o);
    current++;
  }
  break;

print-code

$ ./d8 -print-bytecode  -print-code sample.js 
[generated bytecode for function:  (0x2a180824ffbd <SharedFunctionInfo>)]
Parameter count 1
Register count 5
Frame size 40
         0x2a1808250066 @    0 : 12 00             LdaConstant [0]
         0x2a1808250068 @    2 : 26 f9             Star r2
         0x2a180825006a @    4 : 27 fe f8          Mov <closure>, r3
         0x2a180825006d @    7 : 61 32 01 f9 02    CallRuntime [DeclareGlobals], r2-r3
         0x2a1808250072 @   12 : 0b                LdaZero 
         0x2a1808250073 @   13 : 26 fa             Star r1
         0x2a1808250075 @   15 : 0d                LdaUndefined 
         0x2a1808250076 @   16 : 26 fb             Star r0
         0x2a1808250078 @   18 : 00 0c 10 27       LdaSmi.Wide [10000]
         0x2a180825007c @   22 : 69 fa 00          TestLessThan r1, [0]
         0x2a180825007f @   25 : 9a 1c             JumpIfFalse [28] (0x2a180825009b @ 53)
         0x2a1808250081 @   27 : a7                StackCheck 
         0x2a1808250082 @   28 : 13 01 01          LdaGlobal [1], [1]
         0x2a1808250085 @   31 : 26 f9             Star r2
         0x2a1808250087 @   33 : 0c 02             LdaSmi [2]
         0x2a1808250089 @   35 : 26 f7             Star r4
         0x2a180825008b @   37 : 5e f9 fa f7 03    CallUndefinedReceiver2 r2, r1, r4, [3]
         0x2a1808250090 @   42 : 26 fb             Star r0
         0x2a1808250092 @   44 : 25 fa             Ldar r1
         0x2a1808250094 @   46 : 4c 05             Inc [5]
         0x2a1808250096 @   48 : 26 fa             Star r1
         0x2a1808250098 @   50 : 8a 20 00          JumpLoop [32], [0] (0x2a1808250078 @ 18)
         0x2a180825009b @   53 : 25 fb             Ldar r0
         0x2a180825009d @   55 : ab                Return 
Constant pool (size = 2)
0x2a1808250035: [FixedArray] in OldSpace
 - map: 0x2a18080404b1 <Map>
 - length: 2
           0: 0x2a180824ffe5 <FixedArray[2]>
           1: 0x2a180824ff61 <String[#9]: something>
Handler Table (size = 0)
Source Position Table (size = 0)
[generated bytecode for function: something (0x2a180824fff5 <SharedFunctionInfo something>)]
Parameter count 3
Register count 0
Frame size 0
         0x2a18082501ba @    0 : 25 02             Ldar a1
         0x2a18082501bc @    2 : 34 03 00          Add a0, [0]
         0x2a18082501bf @    5 : ab                Return 
Constant pool (size = 0)
Handler Table (size = 0)
Source Position Table (size = 0)
--- Raw source ---
function something(x, y) {
  return x + y
}
for (let i = 0; i < 10000; i++) {
  something(i, 2);
}


--- Optimized code ---
optimization_id = 0
source_position = 0
kind = OPTIMIZED_FUNCTION
stack_slots = 14
compiler = turbofan
address = 0x108400082ae1

Instructions (size = 536)
0x108400082b20     0  488d1df9ffffff REX.W leaq rbx,[rip+0xfffffff9]
0x108400082b27     7  483bd9         REX.W cmpq rbx,rcx
0x108400082b2a     a  7418           jz 0x108400082b44  <+0x24>
0x108400082b2c     c  48ba6800000000000000 REX.W movq rdx,0x68
0x108400082b36    16  49bae0938c724b560000 REX.W movq r10,0x564b728c93e0  (Abort)    ;; off heap target
0x108400082b40    20  41ffd2         call r10
0x108400082b43    23  cc             int3l
0x108400082b44    24  8b59d0         movl rbx,[rcx-0x30]
0x108400082b47    27  4903dd         REX.W addq rbx,r13
0x108400082b4a    2a  f6430701       testb [rbx+0x7],0x1
0x108400082b4e    2e  740d           jz 0x108400082b5d  <+0x3d>
0x108400082b50    30  49bae0f781724b560000 REX.W movq r10,0x564b7281f7e0  (CompileLazyDeoptimizedCode)    ;; off heap target
0x108400082b5a    3a  41ffe2         jmp r10
0x108400082b5d    3d  55             push rbp
0x108400082b5e    3e  4889e5         REX.W movq rbp,rsp
0x108400082b61    41  56             push rsi
0x108400082b62    42  57             push rdi
0x108400082b63    43  48ba4200000000000000 REX.W movq rdx,0x42
0x108400082b6d    4d  4c8b15c4ffffff REX.W movq r10,[rip+0xffffffc4]
0x108400082b74    54  41ffd2         call r10
0x108400082b77    57  cc             int3l
0x108400082b78    58  4883ec18       REX.W subq rsp,0x18
0x108400082b7c    5c  488975a0       REX.W movq [rbp-0x60],rsi
0x108400082b80    60  488b4dd0       REX.W movq rcx,[rbp-0x30]
0x108400082b84    64  f6c101         testb rcx,0x1
0x108400082b87    67  0f8557010000   jnz 0x108400082ce4  <+0x1c4>
0x108400082b8d    6d  81f9204e0000   cmpl rcx,0x4e20
0x108400082b93    73  0f8c0b000000   jl 0x108400082ba4  <+0x84>
0x108400082b99    79  488b45d8       REX.W movq rax,[rbp-0x28]
0x108400082b9d    7d  488be5         REX.W movq rsp,rbp
0x108400082ba0    80  5d             pop rbp
0x108400082ba1    81  c20800         ret 0x8
0x108400082ba4    84  493b6560       REX.W cmpq rsp,[r13+0x60] (external value (StackGuard::address_of_jslimit()))
0x108400082ba8    88  0f8669000000   jna 0x108400082c17  <+0xf7>
0x108400082bae    8e  488bf9         REX.W movq rdi,rcx
0x108400082bb1    91  d1ff           sarl rdi, 1
0x108400082bb3    93  4c8bc7         REX.W movq r8,rdi
0x108400082bb6    96  4183c002       addl r8,0x2
0x108400082bba    9a  0f8030010000   jo 0x108400082cf0  <+0x1d0>
0x108400082bc0    a0  83c701         addl rdi,0x1
0x108400082bc3    a3  0f8033010000   jo 0x108400082cfc  <+0x1dc>
0x108400082bc9    a9  e921000000     jmp 0x108400082bef  <+0xcf>
0x108400082bce    ae  6690           nop
0x108400082bd0    b0  488bcf         REX.W movq rcx,rdi
0x108400082bd3    b3  83c102         addl rcx,0x2
0x108400082bd6    b6  0f802c010000   jo 0x108400082d08  <+0x1e8>
0x108400082bdc    bc  4c8bc7         REX.W movq r8,rdi
0x108400082bdf    bf  4183c001       addl r8,0x1
0x108400082be3    c3  0f802b010000   jo 0x108400082d14  <+0x1f4>
0x108400082be9    c9  498bf8         REX.W movq rdi,r8
0x108400082bec    cc  4c8bc1         REX.W movq r8,rcx
0x108400082bef    cf  81ff10270000   cmpl rdi,0x2710
0x108400082bf5    d5  0f8d0b000000   jge 0x108400082c06  <+0xe6>
0x108400082bfb    db  493b6560       REX.W cmpq rsp,[r13+0x60] (external value (StackGuard::address_of_jslimit()))
0x108400082bff    df  77cf           ja 0x108400082bd0  <+0xb0>
0x108400082c01    e1  e943000000     jmp 0x108400082c49  <+0x129>
0x108400082c06    e6  498bc8         REX.W movq rcx,r8
0x108400082c09    e9  4103c8         addl rcx,r8
0x108400082c0c    ec  0f8061000000   jo 0x108400082c73  <+0x153>
0x108400082c12    f2  488bc1         REX.W movq rax,rcx
0x108400082c15    f5  eb86           jmp 0x108400082b9d  <+0x7d>
0x108400082c17    f7  33c0           xorl rax,rax
0x108400082c19    f9  48bef50c240884100000 REX.W movq rsi,0x108408240cf5    ;; object: 0x108408240cf5 <NativeContext[261]>
0x108400082c23   103  48bb101206724b560000 REX.W movq rbx,0x564b72061210    ;; external reference (Runtime::StackGuard)
0x108400082c2d   10d  488bf8         REX.W movq rdi,rax
0x108400082c30   110  4c8bc6         REX.W movq r8,rsi
0x108400082c33   113  49ba2089a3724b560000 REX.W movq r10,0x564b72a38920  (CEntry_Return1_DontSaveFPRegs_ArgvOnStack_NoBuiltinExit)    ;; off heap target
0x108400082c3d   11d  41ffd2         call r10
0x108400082c40   120  488b4dd0       REX.W movq rcx,[rbp-0x30]
0x108400082c44   124  e965ffffff     jmp 0x108400082bae  <+0x8e>
0x108400082c49   129  48897da8       REX.W movq [rbp-0x58],rdi
0x108400082c4d   12d  488b1dd1ffffff REX.W movq rbx,[rip+0xffffffd1]
0x108400082c54   134  33c0           xorl rax,rax
0x108400082c56   136  48bef50c240884100000 REX.W movq rsi,0x108408240cf5    ;; object: 0x108408240cf5 <NativeContext[261]>
0x108400082c60   140  4c8b15ceffffff REX.W movq r10,[rip+0xffffffce]
0x108400082c67   147  41ffd2         call r10
0x108400082c6a   14a  488b7da8       REX.W movq rdi,[rbp-0x58]
0x108400082c6e   14e  e95dffffff     jmp 0x108400082bd0  <+0xb0>
0x108400082c73   153  48b968ea2f744b560000 REX.W movq rcx,0x564b742fea68    ;; external reference (Heap::NewSpaceAllocationTopAddress())
0x108400082c7d   15d  488b39         REX.W movq rdi,[rcx]
0x108400082c80   160  4c8d4f0c       REX.W leaq r9,[rdi+0xc]
0x108400082c84   164  4c8945b0       REX.W movq [rbp-0x50],r8
0x108400082c88   168  49bb70ea2f744b560000 REX.W movq r11,0x564b742fea70    ;; external reference (Heap::NewSpaceAllocationLimitAddress())
0x108400082c92   172  4d390b         REX.W cmpq [r11],r9
0x108400082c95   175  0f8721000000   ja 0x108400082cbc  <+0x19c>
0x108400082c9b   17b  ba0c000000     movl rdx,0xc
0x108400082ca0   180  49ba200282724b560000 REX.W movq r10,0x564b72820220  (AllocateRegularInYoungGeneration)    ;; off heap target
0x108400082caa   18a  41ffd2         call r10
0x108400082cad   18d  488d78ff       REX.W leaq rdi,[rax-0x1]
0x108400082cb1   191  488b0dbdffffff REX.W movq rcx,[rip+0xffffffbd]
0x108400082cb8   198  4c8b45b0       REX.W movq r8,[rbp-0x50]
0x108400082cbc   19c  4c8d4f0c       REX.W leaq r9,[rdi+0xc]
0x108400082cc0   1a0  4c8909         REX.W movq [rcx],r9
0x108400082cc3   1a3  488d4f01       REX.W leaq rcx,[rdi+0x1]
0x108400082cc7   1a7  498bbd40010000 REX.W movq rdi,[r13+0x140] (root (heap_number_map))
0x108400082cce   1ae  8979ff         movl [rcx-0x1],rdi
0x108400082cd1   1b1  c4c1032ac0     vcvtlsi2sd xmm0,xmm15,r8
0x108400082cd6   1b6  c5fb114103     vmovsd [rcx+0x3],xmm0
0x108400082cdb   1bb  488bc1         REX.W movq rax,rcx
0x108400082cde   1be  e9bafeffff     jmp 0x108400082b9d  <+0x7d>
0x108400082ce3   1c3  90             nop
0x108400082ce4   1c4  49c7c500000000 REX.W movq r13,0x0
0x108400082ceb   1cb  e850f30300     call 0x1084000c2040     ;; eager deoptimization bailout
0x108400082cf0   1d0  49c7c501000000 REX.W movq r13,0x1
0x108400082cf7   1d7  e844f30300     call 0x1084000c2040     ;; eager deoptimization bailout
0x108400082cfc   1dc  49c7c502000000 REX.W movq r13,0x2
0x108400082d03   1e3  e838f30300     call 0x1084000c2040     ;; eager deoptimization bailout
0x108400082d08   1e8  49c7c503000000 REX.W movq r13,0x3
0x108400082d0f   1ef  e82cf30300     call 0x1084000c2040     ;; eager deoptimization bailout
0x108400082d14   1f4  49c7c504000000 REX.W movq r13,0x4
0x108400082d1b   1fb  e820f30300     call 0x1084000c2040     ;; eager deoptimization bailout
0x108400082d20   200  49c7c505000000 REX.W movq r13,0x5
0x108400082d27   207  e814f30700     call 0x108400102040     ;; lazy deoptimization bailout
0x108400082d2c   20c  49c7c506000000 REX.W movq r13,0x6
0x108400082d33   213  e808f30700     call 0x108400102040     ;; lazy deoptimization bailout

Source positions:
 pc offset  position
        f7         0

Inlined functions (count = 1)
 0x10840824fff5 <SharedFunctionInfo something>

Deoptimization Input Data (deopt points = 7)
 index  bytecode-offset    pc
     0               22    NA 
     1                2    NA 
     2               46    NA 
     3                2    NA 
     4               46    NA 
     5               27   120 
     6               27   14a 

Safepoints (size = 50)
0x108400082c40     120   200  10000010000000 (sp -> fp)       5
0x108400082c6a     14a   20c  10000000000000 (sp -> fp)       6
0x108400082cad     18d    NA  00000000000000 (sp -> fp)  <none>

RelocInfo (size = 34)
0x108400082b38  off heap target
0x108400082b52  off heap target
0x108400082c1b  full embedded object  (0x108408240cf5 <NativeContext[261]>)
0x108400082c25  external reference (Runtime::StackGuard)  (0x564b72061210)
0x108400082c35  off heap target
0x108400082c58  full embedded object  (0x108408240cf5 <NativeContext[261]>)
0x108400082c75  external reference (Heap::NewSpaceAllocationTopAddress())  (0x564b742fea68)
0x108400082c8a  external reference (Heap::NewSpaceAllocationLimitAddress())  (0x564b742fea70)
0x108400082ca2  off heap target
0x108400082cec  runtime entry  (eager deoptimization bailout)
0x108400082cf8  runtime entry  (eager deoptimization bailout)
0x108400082d04  runtime entry  (eager deoptimization bailout)
0x108400082d10  runtime entry  (eager deoptimization bailout)
0x108400082d1c  runtime entry  (eager deoptimization bailout)
0x108400082d28  runtime entry  (lazy deoptimization bailout)
0x108400082d34  runtime entry  (lazy deoptimization bailout)

--- End code ---
$ 

Building Google Test

$ mkdir lib
$ mkdir deps ; cd deps
$ git clone git@github.com:google/googletest.git
$ cd googletest/googletest
$ /usr/bin/clang++ --std=c++14 -Iinclude -I. -pthread -c src/gtest-all.cc
$ ar -rv libgtest-linux.a gtest-all.o 
$ cp libgtest-linux.a ../../../../lib/gtest

Linking issue:

./lib/gtest/libgtest-linux.a(gtest-all.o):gtest-all.cc:function testing::internal::BoolFromGTestEnv(char const*, bool): error: undefined reference to 'std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >::c_str() const'
$ nm lib/gtest/libgtest-linux.a | grep basic_string | c++filt 
....

There are a lot of symbols listed above but the point is that in the object file of libgtest-linux.a these symbols were compiled in. Now, when we compile v8 and the tests we are using -std=c++14 and we have to use the same when compiling gtest. Lets try that. Just adding that does not help in this case. We need to check which c++ headers are being used:

$ /usr/bin/clang++ -print-search-dirs
programs: =/usr/bin:/usr/bin/../lib/gcc/x86_64-redhat-linux/9/../../../../x86_64-redhat-linux/bin
libraries: =/usr/lib64/clang/9.0.0:
            /usr/bin/../lib/gcc/x86_64-redhat-linux/9:
            /usr/bin/../lib/gcc/x86_64-redhat-linux/9/../../../../lib64:
            /usr/bin/../lib64:
            /lib/../lib64:
            /usr/lib/../lib64:
            /usr/bin/../lib/gcc/x86_64-redhat-linux/9/../../..:
            /usr/bin/../lib:
            /lib:/usr/lib
$ 

Lets search for the string header and inspect the namespace in that header:

$ find /usr/ -name string
/usr/include/c++/9/debug/string
/usr/include/c++/9/experimental/string
/usr/include/c++/9/string
/usr/src/debug/gcc-9.2.1-1.fc31.x86_64/obj-x86_64-redhat-linux/x86_64-redhat-linux/libstdc++-v3/include/string
$ vi /usr/include/c++/9/string

So this looks alright and thinking about this a little more I've been bitten by the linking with different libc++ symbols issue (again). When we compile using Make we are using the c++ headers that are shipped with v8 (clang libc++). Take the string header for example in v8/buildtools/third_party/libc++/trunk/include/string which is from clang's c++ library which does not use namespaces (__11 or __14 etc).

But when I compiled gtest did not specify the istystem include path and the default would be used adding symbols with __11 into them. When the linker tries to find these symbols it fails as it does not have any such symbols in the libraries that it searches.

Create a simple test linking with the standard build of gtest to see if that compiles and runs:

$ /usr/bin/clang++ -std=c++14 -I./deps/googletest/googletest/include  -L$PWD/lib -g -O0 -o test/simple_test test/main.cc test/simple.cc lib/libgtest.a -lpthread

That worked and does not segfault.

But when I run the version that is built using the makefile I get:

lldb) target create "./test/persistent-object_test"
Current executable set to './test/persistent-object_test' (x86_64).
(lldb) r
Process 1024232 launched: '/home/danielbevenius/work/google/learning-v8/test/persistent-object_test' (x86_64)
warning: (x86_64) /lib64/libgcc_s.so.1 unsupported DW_FORM values: 0x1f20 0x1f21

[ FATAL ] Process 1024232 stopped
* thread #1, name = 'persistent-obje', stop reason = signal SIGSEGV: invalid address (fault address: 0x33363658)
    frame #0: 0x00007ffff7c0a7b0 libc.so.6`__GI___libc_free + 32
libc.so.6`__GI___libc_free:
->  0x7ffff7c0a7b0 <+32>: mov    rax, qword ptr [rdi - 0x8]
    0x7ffff7c0a7b4 <+36>: lea    rsi, [rdi - 0x10]
    0x7ffff7c0a7b8 <+40>: test   al, 0x2
    0x7ffff7c0a7ba <+42>: jne    0x7ffff7c0a7f0            ; <+96>
(lldb) bt
* thread #1, name = 'persistent-obje', stop reason = signal SIGSEGV: invalid address (fault address: 0x33363658)
  * frame #0: 0x00007ffff7c0a7b0 libc.so.6`__GI___libc_free + 32
    frame #1: 0x000000000042bb58 persistent-object_test`std::__1::basic_stringbuf<char, std::__1::char_traits<char>, std::__1::allocator<char> >::~basic_stringbuf(this=0x000000000046e908) at iosfwd:130:32
    frame #2: 0x000000000042ba4f persistent-object_test`std::__1::basic_stringstream<char, std::__1::char_traits<char>, std::__1::allocator<char> >::~basic_stringstream(this=0x000000000046e8f0, vtt=0x000000000044db28) at iosfwd:139:32
    frame #3: 0x0000000000420176 persistent-object_test`std::__1::basic_stringstream<char, std::__1::char_traits<char>, std::__1::allocator<char> >::~basic_stringstream(this=0x000000000046e8f0) at iosfwd:139:32
    frame #4: 0x000000000042bacc persistent-object_test`std::__1::basic_stringstream<char, std::__1::char_traits<char>, std::__1::allocator<char> >::~basic_stringstream(this=0x000000000046e8f0) at iosfwd:139:32
    frame #5: 0x0000000000427f4e persistent-object_test`testing::internal::scoped_ptr<std::__1::basic_stringstream<char, std::__1::char_traits<char>, std::__1::allocator<char> > >::reset(this=0x00007fffffffcee8, p=0x0000000000000000) at gtest-port.h:1216:9
    frame #6: 0x0000000000427ee9 persistent-object_test`testing::internal::scoped_ptr<std::__1::basic_stringstream<char, std::__1::char_traits<char>, std::__1::allocator<char> > >::~scoped_ptr(this=0x00007fffffffcee8) at gtest-port.h:1201:19
    frame #7: 0x000000000041f265 persistent-object_test`testing::Message::~Message(this=0x00007fffffffcee8) at gtest-message.h:89:18
    frame #8: 0x00000000004235ec persistent-object_test`std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > testing::internal::StreamableToString<int>(streamable=0x00007fffffffcf9c) at gtest-message.h:247:3
    frame #9: 0x000000000040d2bd persistent-object_test`testing::internal::FormatFileLocation(file="/home/danielbevenius/work/google/learning-v8/deps/googletest/googletest/src/gtest-internal-inl.h", line=663) at gtest-port.cc:946:28
    frame #10: 0x000000000041b7e2 persistent-object_test`testing::internal::GTestLog::GTestLog(this=0x00007fffffffd060, severity=GTEST_FATAL, file="/home/danielbevenius/work/google/learning-v8/deps/googletest/googletest/src/gtest-internal-inl.h", line=663) at gtest-port.cc:972:18
    frame #11: 0x000000000042242c persistent-object_test`testing::internal::UnitTestImpl::AddTestInfo(this=0x000000000046e480, set_up_tc=(persistent-object_test`testing::Test::SetUpTestCase() at gtest.h:427), tear_down_tc=(persistent-object_test`testing::Test::TearDownTestCase() at gtest.h:435), test_info=0x000000000046e320)(), void (*)(), testing::TestInfo*) at gtest-internal-inl.h:663:7
    frame #12: 0x000000000040d04f persistent-object_test`testing::internal::MakeAndRegisterTestInfo(test_case_name="Persistent", name="object", type_param=0x0000000000000000, value_param=0x0000000000000000, code_location=<unavailable>, fixture_class_id=0x000000000046d748, set_up_tc=(persistent-object_test`testing::Test::SetUpTestCase() at gtest.h:427), tear_down_tc=(persistent-object_test`testing::Test::TearDownTestCase() at gtest.h:435), factory=0x000000000046e300)(), void (*)(), testing::internal::TestFactoryBase*) at gtest.cc:2599:22
    frame #13: 0x00000000004048b8 persistent-object_test`::__cxx_global_var_init() at persistent-object_test.cc:5:1
    frame #14: 0x00000000004048e9 persistent-object_test`_GLOBAL__sub_I_persistent_object_test.cc at persistent-object_test.cc:0
    frame #15: 0x00000000004497a5 persistent-object_test`__libc_csu_init + 69
    frame #16: 0x00007ffff7ba512e libc.so.6`__libc_start_main + 126
    frame #17: 0x0000000000404eba persistent-object_test`_start + 42

Google test (gtest) linking issue

This issue came up when linking a unit test with gtest:

/usr/bin/ld: ./lib/gtest/libgtest-linux.a(gtest-all.o): in function `testing::internal::BoolFromGTestEnv(char const*, bool)':
/home/danielbevenius/work/google/learning-v8/deps/googletest/googletest/src/gtest-port.cc:1259: undefined reference to `std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> >::~basic_string()'

So this indicated that the object files in libgtest-linux.a where infact using headers from libc++ and not libstc++. This was a really stupig mistake on my part, I'd not specified the output file explicitly (-o) so this was getting added into the current working directory, but the file included in the archive was taken from within deps/googltest/googletest/ directory which was old and compiled using libc++.

Peristent cast-function-type

This issue was seen in Node.js when compiling with GCC. It can also been see if building V8 using GCC and also enabling -Wcast-function-type in BUILD.gn:

      "-Wcast-function-type",

There are unit tests in V8 that also produce this warning, for example test/cctest/test-global-handles.cc: Original:

g++ -MMD -MF obj/test/cctest/cctest_sources/test-global-handles.o.d -DV8_INTL_SUPPORT -DUSE_UDEV -DUSE_AURA=1 -DUSE_GLIB=1 -DUSE_NSS_CERTS=1 -DUSE_X11=1 -D_FILE_OFFSET_BITS=64 -D_LARGEFILE_SOURCE -D_LARGEFILE64_SOURCE -D__STDC_CONSTANT_MACROS -D__STDC_FORMAT_MACROS -DCR_SYSROOT_HASH=9c905c99558f10e19cc878b5dca1d4bd58c607ae -D_DEBUG -DDYNAMIC_ANNOTATIONS_ENABLED=1 -DENABLE_DISASSEMBLER -DV8_TYPED_ARRAY_MAX_SIZE_IN_HEAP=64 -DENABLE_GDB_JIT_INTERFACE -DENABLE_MINOR_MC -DOBJECT_PRINT -DV8_TRACE_MAPS -DV8_ENABLE_ALLOCATION_TIMEOUT -DV8_ENABLE_FORCE_SLOW_PATH -DV8_ENABLE_DOUBLE_CONST_STORE_CHECK -DV8_INTL_SUPPORT -DENABLE_HANDLE_ZAPPING -DV8_SNAPSHOT_NATIVE_CODE_COUNTERS -DV8_CONCURRENT_MARKING -DV8_ENABLE_LAZY_SOURCE_POSITIONS -DV8_CHECK_MICROTASKS_SCOPES_CONSISTENCY -DV8_EMBEDDED_BUILTINS -DV8_WIN64_UNWINDING_INFO -DV8_ENABLE_REGEXP_INTERPRETER_THREADED_DISPATCH -DV8_SNAPSHOT_COMPRESSION -DV8_ENABLE_CHECKS -DV8_COMPRESS_POINTERS -DV8_31BIT_SMIS_ON_64BIT_ARCH -DV8_DEPRECATION_WARNINGS -DV8_IMMINENT_DEPRECATION_WARNINGS -DV8_TARGET_ARCH_X64 -DV8_HAVE_TARGET_OS -DV8_TARGET_OS_LINUX -DDEBUG -DDISABLE_UNTRUSTED_CODE_MITIGATIONS -DV8_ENABLE_CHECKS -DV8_COMPRESS_POINTERS -DV8_31BIT_SMIS_ON_64BIT_ARCH -DV8_DEPRECATION_WARNINGS -DV8_IMMINENT_DEPRECATION_WARNINGS -DU_USING_ICU_NAMESPACE=0 -DU_ENABLE_DYLOAD=0 -DUSE_CHROMIUM_ICU=1 -DU_STATIC_IMPLEMENTATION -DICU_UTIL_DATA_IMPL=ICU_UTIL_DATA_FILE -DUCHAR_TYPE=uint16_t -I../.. -Igen -I../../include -Igen/include -I../.. -Igen -I../../third_party/icu/source/common -I../../third_party/icu/source/i18n -I../../include -I../../tools/debug_helper -fno-strict-aliasing --param=ssp-buffer-size=4 -fstack-protector -funwind-tables -fPIC -pipe -B../../third_party/binutils/Linux_x64/Release/bin -pthread -m64 -march=x86-64 -Wno-builtin-macro-redefined -D__DATE__= -D__TIME__= -D__TIMESTAMP__= -Wall -Wno-unused-local-typedefs -Wno-maybe-uninitialized -Wno-deprecated-declarations -Wno-comments -Wno-packed-not-aligned -Wno-missing-field-initializers -Wno-unused-parameter -fno-omit-frame-pointer -g2 -Wno-strict-overflow -Wno-return-type -Wcast-function-type -O3 -fno-ident -fdata-sections -ffunction-sections -fvisibility=default -std=gnu++14 -Wno-narrowing -Wno-class-memaccess -fno-exceptions -fno-rtti --sysroot=../../build/linux/debian_sid_amd64-sysroot -c ../../test/cctest/test-global-handles.cc -o obj/test/cctest/cctest_sources/test-global-handles.o
In file included from ../../include/v8-inspector.h:14,
                 from ../../src/execution/isolate.h:15,
                 from ../../src/api/api.h:10,
                 from ../../src/api/api-inl.h:8,
                 from ../../test/cctest/test-global-handles.cc:28:
../../include/v8.h: In instantiation of ‘void v8::PersistentBase<T>::SetWeak(P*, typename v8::WeakCallbackInfo<P>::Callback, v8::WeakCallbackType) [with P = v8::Global<v8::Object>; T = v8::Object; typename v8::WeakCallbackInfo<P>::Callback = void (*)(const v8::WeakCallbackInfo<v8::Global<v8::Object> >&)]’:
../../test/cctest/test-global-handles.cc:292:47:   required from here
../../include/v8.h:10750:16: warning: cast between incompatible function types from ‘v8::WeakCallbackInfo<v8::Global<v8::Object> >::Callback’ {aka ‘void (*)(const v8::WeakCallbackInfo<v8::Global<v8::Object> >&)’} to ‘Callback’ {aka ‘void (*)(const v8::WeakCallbackInfo<void>&)’} [-Wcast-function-type]
10750 |                reinterpret_cast<Callback>(callback), type);
      |                ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
../../include/v8.h: In instantiation of ‘void v8::PersistentBase<T>::SetWeak(P*, typename v8::WeakCallbackInfo<P>::Callback, v8::WeakCallbackType) [with P = v8::internal::{anonymous}::FlagAndGlobal; T = v8::Object; typename v8::WeakCallbackInfo<P>::Callback = void (*)(const v8::WeakCallbackInfo<v8::internal::{anonymous}::FlagAndGlobal>&)]’:
../../test/cctest/test-global-handles.cc:493:53:   required from here
../../include/v8.h:10750:16: warning: cast between incompatible function types from ‘v8::WeakCallbackInfo<v8::internal::{anonymous}::FlagAndGlobal>::Callback’ {aka ‘void (*)(const v8::WeakCallbackInfo<v8::internal::{anonymous}::FlagAndGlobal>&)’} to ‘Callback’ {aka ‘void (*)(const v8::WeakCallbackInfo<void>&)’} [-Wcast-function-type]

Formatted for git commit message:

g++ -MMD -MF obj/test/cctest/cctest_sources/test-global-handles.o.d 
...
In file included from ../../include/v8-inspector.h:14,
                 from ../../src/execution/isolate.h:15,
                 from ../../src/api/api.h:10,
                 from ../../src/api/api-inl.h:8,
                 from ../../test/cctest/test-global-handles.cc:28:
../../include/v8.h:
In instantiation of ‘void v8::PersistentBase<T>::SetWeak(
    P*,
    typename v8::WeakCallbackInfo<P>::Callback,
    v8::WeakCallbackType)
[with 
  P = v8::Global<v8::Object>; 
  T = v8::Object;
  typename v8::WeakCallbackInfo<P>::Callback =
  void (*)(const v8::WeakCallbackInfo<v8::Global<v8::Object> >&)
]’:
../../test/cctest/test-global-handles.cc:292:47:   required from here
../../include/v8.h:10750:16: warning:
cast between incompatible function types from
‘v8::WeakCallbackInfo<v8::Global<v8::Object> >::Callback’ {aka
‘void (*)(const v8::WeakCallbackInfo<v8::Global<v8::Object> >&)’} to 
‘Callback’ {aka ‘void (*)(const v8::WeakCallbackInfo<void>&)’}
[-Wcast-function-type]
10750 |                reinterpret_cast<Callback>(callback), type);
      |                ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

This commit suggests adding a pragma specifically for GCC to suppress this warning. The motivation for this is that there were quite a few of these warnings in the Node.js build, but these have been suppressed by adding a similar pragma but around the include of v8.h [1].

[1] https://github.com/nodejs/node/blob/331d63624007be4bf49d6d161bdef2b5e540affa/src/node.h#L63-L70

$ 
In file included from persistent-obj.cc:8:
/home/danielbevenius/work/google/v8_src/v8/include/v8.h: In instantiation of ‘void v8::PersistentBase<T>::SetWeak(P*, typename v8::WeakCallbackInfo<P>::Callback, v8::WeakCallbackType) [with P = Something; T = v8::Object; typename v8::WeakCallbackInfo<P>::Callback = void (*)(const v8::WeakCallbackInfo<Something>&)]’:

persistent-obj.cc:57:38:   required from here
/home/danielbevenius/work/google/v8_src/v8/include/v8.h:10750:16: warning: cast between incompatible function types from ‘v8::WeakCallbackInfo<Something>::Callback’ {aka ‘void (*)(const v8::WeakCallbackInfo<Something>&)’} to ‘Callback’ {aka ‘void (*)(const v8::WeakCallbackInfo<void>&)’} [-Wcast-function-type]
10750 |                reinterpret_cast<Callback>(callback), type);
      |                ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Currently, we have added a pragma to avoid this warning in node.js but we'd like to add this in v8 and closer to the actual code that is causing it. In node we have to set the praga on the header.

template <class T>
template <typename P>
V8_INLINE void PersistentBase<T>::SetWeak(
    P* parameter,
    typename WeakCallbackInfo<P>::Callback callback,
    WeakCallbackType type) {
  typedef typename WeakCallbackInfo<void>::Callback Callback;
  V8::MakeWeak(reinterpret_cast<internal::Address*>(this->val_), parameter,
               reinterpret_cast<Callback>(callback), type);
}

Notice the second parameter is typename WeakCallbackInfo<P>::Callback which is a typedef:

  typedef void (*Callback)(const WeakCallbackInfo<T>& data);

This is a function declaration for Callback which is a function that takes a reference to a const WeakCallbackInfo and returns void. So we could define it like this:

void WeakCallback(const v8::WeakCallbackInfo<Something>& data) {
  Something* obj = data.GetParameter();
  std::cout << "in make weak callback..." << '\n';
}

And the trying to cast it into:

  typedef typename v8::WeakCallbackInfo<void>::Callback Callback;
  Callback cb = reinterpret_cast<Callback>(WeakCallback);

This is done as V8::MakeWeak has the following signature:

void V8::MakeWeak(i::Address* location, void* parameter,
                  WeakCallbackInfo<void>::Callback weak_callback,
                  WeakCallbackType type) {
  i::GlobalHandles::MakeWeak(location, parameter, weak_callback, type);
}

gdb warnings

warning: Could not find DWO CU obj/v8_compiler/common-node-cache.dwo(0x42b8adb87d74d56b) referenced by CU at offset 0x206f7 [in module /home/danielbevenius/work/google/learning-v8/hello-world]

This can be worked around by specifying the --cd argument to gdb:

$ gdb --cd=/home/danielbevenius/work/google/v8_src/v8/out/x64.release --args /home/danielbevenius/work/google/learning-v8/hello-world

Building with g++

Update args.gn to include:

is_clang = false

Next I got the following error when trying to compile:

$ ninja -v -C out/x64.release/ obj/test/cctest/cctest_sources/test-global-handles.o
ux/debian_sid_amd64-sysroot -fexceptions -frtti -c ../../src/torque/instance-type-generator.cc -o obj/torque_base/instance-type-generator.o
In file included from /usr/include/c++/9/bits/stl_algobase.h:59,
                 from /usr/include/c++/9/memory:62,
                 from ../../src/torque/implementation-visitor.h:8,
                 from ../../src/torque/instance-type-generator.cc:5:
/usr/include/c++/9/x86_64-redhat-linux/bits/c++config.h:3:10: fatal error: bits/wordsize.h: No such file or directory
    3 | #include <bits/wordsize.h>
      |          ^~~~~~~~~~~~~~~~~
compilation terminated.
ninja: build stopped: subcommand failed.
$ export CPATH=/usr/include
third_party/binutils/Linux_x64/Release/bin/ld.gold: error: cannot open /usr/lib64/libatomic.so.1.2.0: No such file or directory
$ sudo dnf install -y libatomic

I still got an error because of a warning but I'm trying to build using:

treat_warnings_as_errors = false

Lets see how that works out. I also had to use gnus linker by disableing gold:

use_gold = false

CodeStubAssembler

This history of this is that JavaScript builtins used be written in assembly which gave very good performance but made porting V8 to different architectures more difficult as these builtins had to have specific implementations for each supported architecture, so it dit not scale very well. With the addition of features to the JavaScript specifications having to support new features meant having to implement them for all platforms which made it difficult to keep up and deliver these new features.

The goal is to have the perfomance of handcoded assembly but not have to write it for every platform. So a portable assembly language was build on top of Tubofans backend. This is an API that generates Turbofan's machine-level IR. This IR can be used by Turbofan to produce very good machine code on all platforms. So one "only" has to implement one component/function/feature (not sure what to call this) and then it can be made available to all platforms. They no longer have to maintain all that handwritten assembly.

Just to be clear CSA is a C++ API that is used to generate IR which is then compiled in to machine code for the target instruction set architectur.

Torque

Torque is a DLS language to avoid having to use the CodeStubAssembler directly (it is still used behind the scene). This language is statically typed, garbage collected, and compatible with JavaScript.

The JavaScript standard library was implemented in V8 previously using hand written assembly. But as we mentioned in the previous section this did not scale.

It could have been written in JavaScript too, and I think this was done in the past but this has some issues as builtins would need warmup time to become optimized, there were also issues with monkey-patching and exposing VM internals unintentionally.

Is torque run a build time, I'm thinking yes as it would have to generate the c++ code.

There is a main function in torque.cc which will be built into an executable

$ ./out/x64.release_gcc/torque --help
Unexpected command-line argument "--help", expected a .tq file.

The files that are processed by torque are defined in BUILD.gc in the torque_files section. There is also a template named run_torque. I've noticed that this template and others in GN use the script tools/run.py. This is apperently because GN can only execute scripts at the moment and what this script does is use python to create a subprocess with the passed in argument:

$ gn help action

And a template is way to reuse code in GN.

There is a make target that shows what is generated by torque:

$ make torque-example

This will create a directory in the current directory named gen/torque-generated. Notice that this directory contains c++ headers and sources.

It take torque-example.tq as input. For this file the following header will be generated:

#ifndef V8_GEN_TORQUE_GENERATED_TORQUE_EXAMPLE_TQ_H_                            
#define V8_GEN_TORQUE_GENERATED_TORQUE_EXAMPLE_TQ_H_                            
                                                                                
#include "src/builtins/builtins-promise.h"                                      
#include "src/compiler/code-assembler.h"                                        
#include "src/codegen/code-stub-assembler.h"                                    
#include "src/utils/utils.h"                                                    
#include "torque-generated/field-offsets-tq.h"                                  
#include "torque-generated/csa-types-tq.h"                                      
                                                                                
namespace v8 {                                                                  
namespace internal {                                                            
                                                                                
void HelloWorld_0(compiler::CodeAssemblerState* state_);                        

}  // namespace internal                                                        
}  // namespace v8                                                              
                                                                                
#endif  // V8_GEN_TORQUE_GENERATED_TORQUE_EXAMPLE_TQ_H_

This is only to show the generated files and make it clear that torque will generate these file which will then be compiled during the v8 build. So, lets try copying example-torque.tq to v8/src/builtins directory.

$ cp torque-example.tq ../v8_src/v8/src/builtins/

This is not enough to get it included in the build, we have to update BUILD.gn and add this file to the torque_files list. After running the build we can see that there is a file named src/builtins/torque-example-tq-csa.h generated along with a .cc.

To understand how this works I'm going to use https://v8.dev/docs/torque-builtins as a starting point:

  transitioning javascript builtin                                              
  MathIs42(js-implicit context: NativeContext, receiver: JSAny)(x: JSAny): Boolean {
    const number: Number = ToNumber_Inline(x);                                  
    typeswitch (number) {                                                       
      case (smi: Smi): {                                                        
        return smi == 42 ? True : False;                                        
      }                                                                         
      case (heapNumber: HeapNumber): {                                          
        return Convert<float64>(heapNumber) == 42 ? True : False;               
      }                                                                         
    }                                                                           
  }                   

This has been updated to work with the latest V8 version.

Next, we need to update src/init/bootstrappers.cc to add/install this function on the math object:

  SimpleInstallFunction(isolate_, math, "is42", Builtins::kMathIs42, 1, true);

After this we need to rebuild v8:

$ env CPATH=/usr/include ninja -v -C out/x64.release_gcc
$ d8
d8> Math.is42(42)
true
d8> Math.is42(2)
false

If we look at the generated code that Torque has produced in out/x64.release_gcc/gen/torque-generated/src/builtins/math-tq-csa.cc (we can run it through the preprocessor using):

$ clang++ --sysroot=build/linux/debian_sid_amd64-sysroot -isystem=./buildtools/third_party/libc++/trunk/include -isystem=buildtools/third_party/libc++/trunk/include -I. -E out/x64.release_gcc/gen/torque-generated/src/builtins/math-tq-csa.cc > math.cc.pp

If we open math.cc.pp and search for Is42 we can find:

class MathIs42Assembler : public CodeStubAssembler {                            
 public:                                                                        
  using Descriptor = Builtin_MathIs42_InterfaceDescriptor;                      
  explicit MathIs42Assembler(compiler::CodeAssemblerState* state) : CodeStubAssembler(state) {}
  void GenerateMathIs42Impl();                                                  
  Node* Parameter(Descriptor::ParameterIndices index) {                         
    return CodeAssembler::Parameter(static_cast<int>(index));                   
  }                                                                             
};                                                                              
                                                                                
void Builtins::Generate_MathIs42(compiler::CodeAssemblerState* state) {         
  MathIs42Assembler assembler(state);                                           
  state->SetInitialDebugInformation("MathIs42", "out/x64.release_gcc/gen/torque-generated/src/builtins/math-tq-csa.cc", 2121);
  if (Builtins::KindOf(Builtins::kMathIs42) == Builtins::TFJ) {                 
    assembler.PerformStackCheck(assembler.GetJSContextParameter());             
  }                                                                             
  assembler.GenerateMathIs42Impl();                                             
}                                                                               
                                                                                
void MathIs42Assembler::GenerateMathIs42Impl() {     
  ...

So this is what gets generated by the Torque compiler and what we see above is CodeStubAssemble class.

If we take a look in out/x64.release_gcc/gen/torque-generated/builtin-definitions-tq.h we can find the following line that has been generated:

TFJ(MathIs42, 1, kReceiver, kX) \                                               

Now, there is a section about the TF_BUILTIN macro, and it will create function declarations, and function and class definitions:

Now, in src/builtins/builtins.h we have the following macros:

class Builtins {
 public:

  enum Name : int32_t {
#define DEF_ENUM(Name, ...) k##Name,                                            
    BUILTIN_LIST(DEF_ENUM, DEF_ENUM, DEF_ENUM, DEF_ENUM, DEF_ENUM, DEF_ENUM,    
                 DEF_ENUM)                                                      
#undef DEF_ENUM 
    ...
  }

#define DECLARE_TF(Name, ...) \                                                 
  static void Generate_##Name(compiler::CodeAssemblerState* state);             
                                                                                
  BUILTIN_LIST(IGNORE_BUILTIN, DECLARE_TF, DECLARE_TF, DECLARE_TF, DECLARE_TF,  
               IGNORE_BUILTIN, DECLARE_ASM)

And BUILTINS_LIST is declared in src/builtins/builtins-definitions.h and this file includes:

#include "torque-generated/builtin-definitions-tq.h"

#define BUILTIN_LIST(CPP, TFJ, TFC, TFS, TFH, BCH, ASM)  \                          
  BUILTIN_LIST_BASE(CPP, TFJ, TFC, TFS, TFH, ASM)        \                          
  BUILTIN_LIST_FROM_TORQUE(CPP, TFJ, TFC, TFS, TFH, ASM) \                          
  BUILTIN_LIST_INTL(CPP, TFJ, TFS)                       \                          
  BUILTIN_LIST_BYTECODE_HANDLERS(BCH)     

Notice BUILTIN_LIST_FROM_TORQUE, this is how our MathIs42 gets included from builtin-definitions-tq.h. This is in turn included by builtins.h.

If we take a look at the this header after it has gone through the preprocessor we can see what has been generated for MathIs42:

$ clang++ --sysroot=build/linux/debian_sid_amd64-sysroot -isystem=./buildtools/third_party/libc++/trunk/include -isystem=buildtools/third_party/libc++/trunk/include -I. -I./out/x64.release_gcc/gen/ -E src/builtins/builtins.h > builtins.h.pp

First MathIs42 will be come a member in the Name enum of the Builtins class:

class Builtins {
 public:

  enum Name : int32_t { 
    ...
    kMathIs42,
  };

  static void Generate_MathIs42(compiler::CodeAssemblerState* state); 

We should also take a look in src/builtins/builtins-descriptors.h as the BUILTIN_LIST is used there two and specifically to our current example there is a DEFINE_TFJ_INTERFACE_DESCRIPTOR macro used:

BUILTIN_LIST(IGNORE_BUILTIN, DEFINE_TFJ_INTERFACE_DESCRIPTOR,
             DEFINE_TFC_INTERFACE_DESCRIPTOR, DEFINE_TFS_INTERFACE_DESCRIPTOR,
             DEFINE_TFH_INTERFACE_DESCRIPTOR, IGNORE_BUILTIN,
             DEFINE_ASM_INTERFACE_DESCRIPTOR)

#define DEFINE_TFJ_INTERFACE_DESCRIPTOR(Name, Argc, ...)                \
  struct Builtin_##Name##_InterfaceDescriptor {                         \
    enum ParameterIndices {                                             \
      kJSTarget = compiler::CodeAssembler::kTargetParameterIndex,       \
      ##__VA_ARGS__,                                                    \
      kJSNewTarget,                                                     \
      kJSActualArgumentsCount,                                          \
      kContext,                                                         \
      kParameterCount,                                                  \
    };                                                                  \
  }; 

So the above will generate the following code but this time for builtins.cc:

$ clang++ --sysroot=build/linux/debian_sid_amd64-sysroot -isystem=./buildtools/third_party/libc++/trunk/include -isystem=buildtools/third_party/libc++/trunk/include -I. -I./out/x64.release_gcc/gen/ -E src/builtins/builtins.cc > builtins.cc.pp
struct Builtin_MathIs42_InterfaceDescriptor { 
  enum ParameterIndices { 
    kJSTarget = compiler::CodeAssembler::kTargetParameterIndex,
    kReceiver,
    kX,
    kJSNewTarget,
    kJSActualArgumentsCount,
    kContext,
    kParameterCount,
  };

const BuiltinMetadata builtin_metadata[] = {
  ...
  {"MathIs42", Builtins::TFJ, {1, 0}}
  ...
};

BuiltinMetadata is a struct defined in builtins.cc and in our case the name is passed, then the type, and the last struct is specifying the number of parameters and the last 0 is unused as far as I can tell and only there make it different from the constructor that takes an Address parameter.

So, where is Generate_MathIs42 used:

void SetupIsolateDelegate::SetupBuiltinsInternal(Isolate* isolate) {
  Code code;
  ...
  code = BuildWithCodeStubAssemblerJS(isolate, index, &Builtins::Generate_MathIs42, 1, "MathIs42");
  AddBuiltin(builtins, index++, code);
  ...

BuildWithCodeStubAssemblerJS can be found in src/builtins/setup-builtins-internal.cc

Code BuildWithCodeStubAssemblerJS(Isolate* isolate, int32_t builtin_index,
                                  CodeAssemblerGenerator generator, int argc,
                                  const char* name) {
  Zone zone(isolate->allocator(), ZONE_NAME);
  const int argc_with_recv = (argc == kDontAdaptArgumentsSentinel) ? 0 : argc + 1;
  compiler::CodeAssemblerState state(
      isolate, &zone, argc_with_recv, Code::BUILTIN, name,
      PoisoningMitigationLevel::kDontPoison, builtin_index);
  generator(&state);
  Handle<Code> code = compiler::CodeAssembler::GenerateCode(
      &state, BuiltinAssemblerOptions(isolate, builtin_index));
  return *code;

Lets add a conditional break point so that we can stop in this function when MathIs42 is passed in:

(gdb) br setup-builtins-internal.cc:161
(gdb) cond 1 ((int)strcmp(name, "MathIs42")) == 0

We can see that we first create a new CodeAssemblerState, which we say previously was that type that the Generate_MathIs42 function takes. TODO: look into this class a litte more. After this generator will be called with the newly created state passed in:

(gdb) p generator
$8 = (v8::internal::(anonymous namespace)::CodeAssemblerGenerator) 0x5619fd61b66e <v8::internal::Builtins::Generate_MathIs42(v8::internal::compiler::CodeAssemblerState*)>

TODO: Take a closer look at generate and how that code works. After generate returns we will have the following call:

  generator(&state);                                                               
  Handle<Code> code = compiler::CodeAssembler::GenerateCode(                       
      &state, BuiltinAssemblerOptions(isolate, builtin_index));                    
  return *code;

Then next thing that will happen is the code returned will be added to the builtins by calling SetupIsolateDelegate::AddBuiltin:

void SetupIsolateDelegate::AddBuiltin(Builtins* builtins, int index, Code code) {
  builtins->set_builtin(index, code);                                           
} 

set_builtins can be found in src/builtins/builtins.cc` and looks like this:

void Builtins::set_builtin(int index, Code builtin) {                           
  isolate_->heap()->set_builtin(index, builtin);                                
}

And Heap::set_builtin does:

 void Heap::set_builtin(int index, Code builtin) {
  isolate()->builtins_table()[index] = builtin.ptr();
}

So this is how the builtins_table is populated.

And when is SetupBuiltinsInternal called?
It is called from SetupIsolateDelegat::SetupBuiltins which is called from Isolate::Init.

Just to recap before I loose track of what is going on...We have math.tq, which is the torque source file. This is parsed by the torque compiler/parser and it will generate c++ headers and source files, one of which will be a CodeStubAssembler class for our MathI42 function. It will also generate the "torque-generated/builtin-definitions-tq.h. After this has happened the sources need to be compiled into object files. After that if a snapshot is configured to be created, mksnapshot will create a new Isolate and in that process the MathIs42 builtin will get added. Then a context will be created and saved. The snapshot can then be deserialized into an Isoalte as some later point.

Alright, so we have seen what gets generated for the function MathIs42 but how does this get "hooked" but to enable us to call Math.is42(11)?

In bootstrapper.cc we can see a number of lines:

 SimpleInstallFunction(isolate_, math, "trunc", Builtins::kMathTrunc, 1, true); 

And we are going to add a line like the following:

 SimpleInstallFunction(isolate_, math, "is42", Builtins::kMathIs42, 1, true);

The signature for SimpleInstallFunction looks like this

V8_NOINLINE Handle<JSFunction> SimpleInstallFunction(
    Isolate* isolate, Handle<JSObject> base, const char* name,
    Builtins::Name call, int len, bool adapt,
    PropertyAttributes attrs = DONT_ENUM) {
  Handle<String> internalized_name = isolate->factory()->InternalizeUtf8String(name);
  Handle<JSFunction> fun = SimpleCreateFunction(isolate, internalized_name, call, len, adapt);       
  JSObject::AddProperty(isolate, base, internalized_name, fun, attrs);          
  return fun;                                                                   
} 

So we see that the function is added as a property to the Math object. Notice that we also have to add kMathIs42 to the Builtins class which is now part of the builtins_table_ array which we went through above.

Transitioning/Transient

In torgue source files we can sometimes see types declared as transient, and functions that have a transitioning specifier. In V8 HeapObjects can change at runtime (I think an example of this would be deleting an element in an array which would transition it to a different type of array HoleyElementArray or something like that. TODO: verify and explain this). And a function that calls JavaScript which cause such a transition is marked with transitioning.

Callables

Are like functions is js/c++ but have some additional capabilities and there are several different types of callables:

macro callables

These correspond to generated CodeStubAssebler C++ that will be inlined at the callsite.

builtin callables

These will become V8 builtins with info added to builtin-definitions.h (via the include of torque-generated/builtin-definitions-tq.h). There is only one copy of this and this will be a call instead of being inlined as is the case with macros.

runtime callables

intrinsic callables

Explicit parameters

macros and builtins can have parameters. For example:

@export
macro HelloWorld1(msg: JSAny) {
  Print(msg);
}

And we can call this from another macro like this:

@export
macro HelloWorld() {
  HelloWorld1('Hello World');
}

Implicit parameters

In the previous section we showed explicit parameters but we can also have implicit parameters:

@export
macro HelloWorld2(implicit msg: JSAny)() {
  Print(msg);
}
@export
macro HelloWorld() {
  const msg = 'Hello implicit';
  HelloWorld2();
}

Troubleshooting

Compilation error when including `src/objects/objects-inl.h:

/home/danielbevenius/work/google/v8_src/v8/src/objects/object-macros.h:263:14: error: no declaration matches ‘bool v8::internal::HeapObject::IsJSCollator() const’

Does this need i18n perhaps?

$ gn args --list out/x64.release_gcc | grep i18n
v8_enable_i18n_support
usr/bin/ld: /tmp/ccJOrUMl.o: in function `v8::internal::MaybeHandle<v8::internal::Object>::Check() const':
/home/danielbevenius/work/google/v8_src/v8/src/handles/maybe-handles.h:44: undefined reference to `V8_Fatal(char const*, ...)'
collect2: error: ld returned 1 exit status

V8_Fatal is referenced but not defined in v8_monolith.a:

$ nm libv8_monolith.a | grep V8_Fatal | c++filt 
...
U V8_Fatal(char const*, int, char const*, ...)

And I thought it might be defined in libv8_libbase.a but it is the same there. Actually, I was looking at the wrong symbol. This was not from the logging.o object file. If we look at it we find:

v8_libbase/logging.o:
...
0000000000000000 T V8_Fatal(char const*, int, char const*, ...)

In out/x64.release/obj/logging.o we can find it defined:

$ nm -C  libv8_libbase.a | grep -A 50 logging.o | grep V8_Fatal
0000000000000000 T V8_Fatal(char const*, int, char const*, ...)

T means that the symbol is in the text section. So if the linker is able to find libv8_libbase.a it should be able to resolve this.

So we need to make sure the linker can find the directory where the libraries are located ('-Wl,-Ldir'), and also that it will include the library ('-Wl,-llibname')

With this in place I can see that the linker can open the archive:

attempt to open /home/danielbevenius/work/google/v8_src/v8/out/x64.release_gcc/obj/libv8_libbase.so failed
attempt to open /home/danielbevenius/work/google/v8_src/v8/out/x64.release_gcc/obj/libv8_libbase.a succeeded
/home/danielbevenius/work/google/v8_src/v8/out/x64.release_gcc/obj/libv8_libbase.a

But I'm still getting the same linking error. If we look closer at the error message we can see that it is maybe-handles.h that is complaining. Could it be that the order is incorrect when linking. libv8_libbase.a needs to come after libv8_monolith Something I noticed is that even though the library libv8_libbase.a is found it does not look like the linker actually reads the object files. I can see that it does this for libv8_monolith.a:

(/home/danielbevenius/work/google/v8_src/v8/out/x64.release_gcc/obj/libv8_monolith.a)common-node-cache.o

Hmm, actually looking at the signature of the function it is V8_Fatal(char const*, ...) and not char const*, int, char const*, ...)

For a debug build it will be:

    void V8_Fatal(const char* file, int line, const char* format, ...);

And else

    void V8_Fatal(const char* format, ...);

So it looks like I need to set debug to false. With this the V8_Fatal symbol in logging.o is:

$ nm -C out/x64.release_gcc/obj/v8_libbase/logging.o | grep V8_Fatal
0000000000000000 T V8_Fatal(char const*, ...)

V8 Build artifacts

What is actually build when you specify v8_monolithic: When this type is chosen the build cannot be a component build, there is an assert for this. In this case a static library build:

if (v8_monolithic) {                                                            
  # A component build is not monolithic.                                        
  assert(!is_component_build)                                                   
                                                                                
  # Using external startup data would produce separate files.                   
  assert(!v8_use_external_startup_data)                                         
  v8_static_library("v8_monolith") {                                            
    deps = [                                                                    
      ":v8",                                                                    
      ":v8_libbase",                                                            
      ":v8_libplatform",                                                        
      ":v8_libsampler",                                                         
      "//build/win:default_exe_manifest",                                       
    ]                                                                           
                                                                                
    configs = [ ":internal_config" ]                                            
  }                                                                             
}

Notice that the builtin function is called static_library so is a template that can be found in gni/v8.gni

v8_static_library: This will use source_set instead of creating a static library when compiling. When set to false, the object files that would be included in the linker command. The can speed up the build as the creation of the static libraries is skipped. But this does not really help when linking to v8 externally as from this project.

is_component_build: This will compile targets declared as components as shared libraries. All the v8_components in BUILD.gn will be built as .so files in the output director (not the obj directory which is the case for static libraries).

So the only two options are the v8_monolith or is_component_build where it might be an advantage of being able to build a single component and not have to rebuild the whole monolith at times.

wee8

libwee8 can be produced which is a library which only supports WebAssembly and does not support JavaScript.

$ ninja -C out/wee8 wee8

V8 Internal Isolate

src/execution/isolate.h is where you can find the v8::internal::Isolate.

class V8_EXPORT_PRIVATE Isolate final : private HiddenFactory {

And HiddenFactory is just to allow Isolate to inherit privately from Factory which can be found in src/heap/factory.h.

Startup Walk through

This section will walk through the start up on V8 by using the hello_world example in this project:

$ LD_LIBRARY_PATH=../v8_src/v8/out/x64.release_gcc/ lldb ./hello-world
(lldb) br s -n main
Breakpoint 1: where = hello-world`main + 25 at hello-world.cc:41:38, address = 0x0000000000402821
    V8::InitializeExternalStartupData(argv[0]);

This call will land in api.cc which will just delegate the call to and internal (internal namespace that is). If you try to step into this function you will just land on the next line in hello_world. This is because we compiled v8 without external start up data so this function will be empty:

$ objdump -Cd out/x64.release_gcc/obj/v8_base_without_compiler/startup-data-util.o
Disassembly of section .text._ZN2v88internal37InitializeExternalStartupDataFromFileEPKc:

0000000000000000 <v8::internal::InitializeExternalStartupDataFromFile(char const*)>:
   0:    c3                       retq

Next, we have:

    std::unique_ptr<Platform> platform = platform::NewDefaultPlatform();

This will land in src/libplatform/default-platform.cc which will create a new DefaultPlatform.

Isolate* isolate = Isolate::New(create_params);

This will call Allocate:

Isolate* isolate = Allocate();
Isolate* Isolate::Allocate() {
  return reinterpret_cast<Isolate*>(i::Isolate::New());
}

Remember that the internal Isolate can be found in src/execution/isolate.h. In src/execution/isolate.cc we find Isolate::New

Isolate* Isolate::New(IsolateAllocationMode mode) {
  std::unique_ptr<IsolateAllocator> isolate_allocator = std::make_unique<IsolateAllocator>(mode);
  void* isolate_ptr = isolate_allocator->isolate_memory();
  Isolate* isolate = new (isolate_ptr) Isolate(std::move(isolate_allocator));

So we first create an IsolateAllocator instance which will allocate memory for a single Isolate instance. This is then passed into the Isolate constructor, notice the usage of new here, this is just a normal heap allocation.

The default new operator has been deleted and an override provided that takes a void pointer, which is just returned:

  void* operator new(size_t, void* ptr) { return ptr; }
  void* operator new(size_t) = delete;
  void operator delete(void*) = delete;

In this case it just returns the memory allocateed by isolate-memory(). The reason for doing this is that using the new operator not only invokes the new operator but the compiler will also add a call the types constructor passing in the address of the allocated memory.

Isolate::Isolate(std::unique_ptr<i::IsolateAllocator> isolate_allocator)
    : isolate_data_(this),
      isolate_allocator_(std::move(isolate_allocator)),
      id_(isolate_counter.fetch_add(1, std::memory_order_relaxed)),
      allocator_(FLAG_trace_zone_stats
                     ? new VerboseAccountingAllocator(&heap_, 256 * KB)
                     : new AccountingAllocator()),
      builtins_(this),
      rail_mode_(PERFORMANCE_ANIMATION),
      code_event_dispatcher_(new CodeEventDispatcher()),
      jitless_(FLAG_jitless),
#if V8_SFI_HAS_UNIQUE_ID
      next_unique_sfi_id_(0),
#endif
      cancelable_task_manager_(new CancelableTaskManager()) {

Notice that isolate_data_ will be populated by calling the constructor which takes an pointer to an Isolate.

class IsolateData final {
 public:
  explicit IsolateData(Isolate* isolate) : stack_guard_(isolate) {}

Back in Isolate's constructor we have:

#define ISOLATE_INIT_LIST(V)                                                   \
  /* Assembler state. */                                                       \
  V(FatalErrorCallback, exception_behavior, nullptr)                           \
  ...

#define ISOLATE_INIT_EXECUTE(type, name, initial_value) \                           
  name##_ = (initial_value);                                                        
  ISOLATE_INIT_LIST(ISOLATE_INIT_EXECUTE)                                           
#undef ISOLATE_INIT_EXECUTE

So lets expand the first entry to understand what is going on:

   exception_behavior_ = (nullptr);
   oom_behavior_ = (nullptr);
   event_logger_ = (nullptr);
   allow_code_gen_callback_ = (nullptr);
   modify_code_gen_callback_ = (nullptr);
   allow_wasm_code_gen_callback_ = (nullptr);
   wasm_module_callback_ = (&NoExtension);
   wasm_instance_callback_ = (&NoExtension);
   wasm_streaming_callback_ = (nullptr);
   wasm_threads_enabled_callback_ = (nullptr);
   wasm_load_source_map_callback_ = (nullptr);
   relocatable_top_ = (nullptr);
   string_stream_debug_object_cache_ = (nullptr);
   string_stream_current_security_token_ = (Object());
   api_external_references_ = (nullptr);
   external_reference_map_ = (nullptr);
   root_index_map_ = (nullptr);
   default_microtask_queue_ = (nullptr);
   turbo_statistics_ = (nullptr);
   code_tracer_ = (nullptr);
   per_isolate_assert_data_ = (0xFFFFFFFFu);
   promise_reject_callback_ = (nullptr);
   snapshot_blob_ = (nullptr);
   code_and_metadata_size_ = (0);
   bytecode_and_metadata_size_ = (0);
   external_script_source_size_ = (0);
   is_profiling_ = (false);
   num_cpu_profilers_ = (0);
   formatting_stack_trace_ = (false);
   debug_execution_mode_ = (DebugInfo::kBreakpoints);
   code_coverage_mode_ = (debug::CoverageMode::kBestEffort);
   type_profile_mode_ = (debug::TypeProfileMode::kNone);
   last_stack_frame_info_id_ = (0);
   last_console_context_id_ = (0);
   inspector_ = (nullptr);
   next_v8_call_is_safe_for_termination_ = (false);
   only_terminate_in_safe_scope_ = (false);
   detailed_source_positions_for_profiling_ = (FLAG_detailed_line_info);
   embedder_wrapper_type_index_ = (-1);
   embedder_wrapper_object_index_ = (-1);

So all of the entries in this list will become private members of the Isolate class after the preprocessor is finished. There will also be public assessor to get and set these initial values values (which is the last entry in the ISOLATE_INIT_LIST above.

Back in isolate.cc constructor we have:

#define ISOLATE_INIT_ARRAY_EXECUTE(type, name, length) \
  memset(name##_, 0, sizeof(type) * length);
  ISOLATE_INIT_ARRAY_LIST(ISOLATE_INIT_ARRAY_EXECUTE)
#undef ISOLATE_INIT_ARRAY_EXECUTE
#define ISOLATE_INIT_ARRAY_LIST(V)                                             \
  /* SerializerDeserializer state. */                                          \
  V(int32_t, jsregexp_static_offsets_vector, kJSRegexpStaticOffsetsVectorSize) \
  ...

  InitializeDefaultEmbeddedBlob();
  MicrotaskQueue::SetUpDefaultMicrotaskQueue(this);

After that we have created a new Isolate, we were in this function call:

  Isolate* isolate = new (isolate_ptr) Isolate(std::move(isolate_allocator));

After this we will be back in api.cc:

  Initialize(isolate, params);
void Isolate::Initialize(Isolate* isolate,
                         const v8::Isolate::CreateParams& params) {

We are not using any external snapshot data so the following will be false:

  if (params.snapshot_blob != nullptr) {
    i_isolate->set_snapshot_blob(params.snapshot_blob);
  } else {
    i_isolate->set_snapshot_blob(i::Snapshot::DefaultSnapshotBlob());
(gdb) p snapshot_blob_
$7 = (const v8::StartupData *) 0x0
(gdb) n
(gdb) p i_isolate->snapshot_blob_
$8 = (const v8::StartupData *) 0x7ff92d7d6cf0 <v8::internal::blob>

snapshot_blob_ is also one of the members that was set up with ISOLATE_INIT_LIST. So we are setting up the Isolate instance for creation.

Isolate::Scope isolate_scope(isolate);                                        
if (!i::Snapshot::Initialize(i_isolate)) { 

In src/snapshot/snapshot-common.cc we find

bool Snapshot::Initialize(Isolate* isolate) {
  ...
  const v8::StartupData* blob = isolate->snapshot_blob();
  Vector<const byte> startup_data = ExtractStartupData(blob);
  Vector<const byte> read_only_data = ExtractReadOnlyData(blob);
  SnapshotData startup_snapshot_data(MaybeDecompress(startup_data));
  SnapshotData read_only_snapshot_data(MaybeDecompress(read_only_data));
  StartupDeserializer startup_deserializer(&startup_snapshot_data);
  ReadOnlyDeserializer read_only_deserializer(&read_only_snapshot_data);
  startup_deserializer.SetRehashability(ExtractRehashability(blob));
  read_only_deserializer.SetRehashability(ExtractRehashability(blob));

  bool success = isolate->InitWithSnapshot(&read_only_deserializer, &startup_deserializer);

So we get the blob and create deserializers for it which are then passed to isolate->InitWithSnapshot which delegated to Isolate::Init. The blob will have be create previously using mksnapshot (more on this can be found later).

This will use a FOR_EACH_ISOLATE_ADDRESS_NAME macro to assign to the isolate_addresses_ field:

isolate_addresses_[IsolateAddressId::kHandlerAddress] = reinterpret_cast<Address>(handler_address());
isolate_addresses_[IsolateAddressId::kCEntryFPAddress] = reinterpret_cast<Address>(c_entry_fp_address());
isolate_addresses_[IsolateAddressId::kCFunctionAddress] = reinterpret_cast<Address>(c_function_address());
isolate_addresses_[IsolateAddressId::kContextAddress] = reinterpret_cast<Address>(context_address());
isolate_addresses_[IsolateAddressId::kPendingExceptionAddress] = reinterpret_cast<Address>(pending_exception_address());
isolate_addresses_[IsolateAddressId::kPendingHandlerContextAddress] = reinterpret_cast<Address>(pending_handler_context_address());
 isolate_addresses_[IsolateAddressId::kPendingHandlerEntrypointAddress] = reinterpret_cast<Address>(pending_handler_entrypoint_address());
 isolate_addresses_[IsolateAddressId::kPendingHandlerConstantPoolAddress] = reinterpret_cast<Address>(pending_handler_constant_pool_address());
 isolate_addresses_[IsolateAddressId::kPendingHandlerFPAddress] = reinterpret_cast<Address>(pending_handler_fp_address());
 isolate_addresses_[IsolateAddressId::kPendingHandlerSPAddress] = reinterpret_cast<Address>(pending_handler_sp_address());
 isolate_addresses_[IsolateAddressId::kExternalCaughtExceptionAddress] = reinterpret_cast<Address>(external_caught_exception_address());
 isolate_addresses_[IsolateAddressId::kJSEntrySPAddress] = reinterpret_cast<Address>(js_entry_sp_address());

After this we have a number of members that are assigned to:

  compilation_cache_ = new CompilationCache(this);
  descriptor_lookup_cache_ = new DescriptorLookupCache();
  inner_pointer_to_code_cache_ = new InnerPointerToCodeCache(this);
  global_handles_ = new GlobalHandles(this);
  eternal_handles_ = new EternalHandles();
  bootstrapper_ = new Bootstrapper(this);
  handle_scope_implementer_ = new HandleScopeImplementer(this);
  load_stub_cache_ = new StubCache(this);
  store_stub_cache_ = new StubCache(this);
  materialized_object_store_ = new MaterializedObjectStore(this);
  regexp_stack_ = new RegExpStack();
  regexp_stack_->isolate_ = this;
  date_cache_ = new DateCache();
  heap_profiler_ = new HeapProfiler(heap());
  interpreter_ = new interpreter::Interpreter(this);
  compiler_dispatcher_ =
      new CompilerDispatcher(this, V8::GetCurrentPlatform(), FLAG_stack_size);

After this we have:

isolate_data_.external_reference_table()->Init(this);

This will land in src/codegen/external-reference-table.cc where we have:

void ExternalReferenceTable::Init(Isolate* isolate) {                              
  int index = 0;                                                                   
  Add(kNullAddress, &index);                                                       
  AddReferences(isolate, &index);                                                  
  AddBuiltins(&index);                                                             
  AddRuntimeFunctions(&index);                                                     
  AddIsolateAddresses(isolate, &index);                                            
  AddAccessors(&index);                                                            
  AddStubCache(isolate, &index);                                                   
  AddNativeCodeStatsCounters(isolate, &index);                                     
  is_initialized_ = static_cast<uint32_t>(true);                                   
                                                                                   
  CHECK_EQ(kSize, index);                                                          
}

void ExternalReferenceTable::Add(Address address, int* index) {                 
ref_addr_[(*index)++] = address;                                                
} 

Address ref_addr_[kSize];

Now, lets take a look at AddReferences:

Add(ExternalReference::abort_with_reason().address(), index); 

What are ExternalReferences?
They represent c++ addresses used in generated code.

After that we have AddBuiltins:

static const Address c_builtins[] = {                                         
      (reinterpret_cast<v8::internal::Address>(&Builtin_HandleApiCall)), 
      ...

Address Builtin_HandleApiCall(int argc, Address* args, Isolate* isolate);

I can see that the function declaration is in external-reference.h but the implementation is not there. Instead this is defined in src/builtins/builtins-api.cc:

BUILTIN(HandleApiCall) {                                                           
(will expand to:)

V8_WARN_UNUSED_RESULT static Object Builtin_Impl_HandleApiCall(
      BuiltinArguments args, Isolate* isolate);

V8_NOINLINE static Address Builtin_Impl_Stats_HandleApiCall(
      int args_length, Address* args_object, Isolate* isolate) {
    BuiltinArguments args(args_length, args_object);
    RuntimeCallTimerScope timer(isolate,
                                RuntimeCallCounterId::kBuiltin_HandleApiCall);
    TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.runtime"), "V8.Builtin_HandleApiCall");
    return CONVERT
}
V8_WARN_UNUSED_RESULT Address Builtin_HandleApiCall(
      int args_length, Address* args_object, Isolate* isolate) {
    DCHECK(isolate->context().is_null() || isolate->context().IsContext());
    if (V8_UNLIKELY(TracingFlags::is_runtime_stats_enabled())) {
      return Builtin_Impl_Stats_HandleApiCall(args_length, args_object, isolate);
    }
    BuiltinArguments args(args_length, args_object);
    return CONVERT_OBJECT(Builtin_Impl_HandleApiCall(args, isolate));
  }

  V8_WARN_UNUSED_RESULT static Object Builtin_Impl_HandleApiCall(
      BuiltinArguments args, Isolate* isolate) {
    HandleScope scope(isolate);                                                      
    Handle<JSFunction> function = args.target();                                  
    Handle<Object> receiver = args.receiver();                                    
    Handle<HeapObject> new_target = args.new_target();                               
    Handle<FunctionTemplateInfo> fun_data(function->shared().get_api_func_data(), 
                                        isolate);                                  
    if (new_target->IsJSReceiver()) {                                                
      RETURN_RESULT_OR_FAILURE(                                                   
          isolate, HandleApiCallHelper<true>(isolate, function, new_target,          
                                             fun_data, receiver, args));             
    } else {                                                                         
      RETURN_RESULT_OR_FAILURE(                                                      
          isolate, HandleApiCallHelper<false>(isolate, function, new_target,         
                                            fun_data, receiver, args));            
    }
  }

The BUILTIN macro can be found in src/builtins/builtins-utils.h:

#define BUILTIN(name)                                                       \
  V8_WARN_UNUSED_RESULT static Object Builtin_Impl_##name(                  \
      BuiltinArguments args, Isolate* isolate);
  if (setup_delegate_ == nullptr) {                                                 
    setup_delegate_ = new SetupIsolateDelegate(create_heap_objects);            
  } 

  if (!setup_delegate_->SetupHeap(&heap_)) {                                    
    V8::FatalProcessOutOfMemory(this, "heap object creation");                  
    return false;                                                               
  }    

This does nothing in the current code path and the code comment says that the heap will be deserialized from the snapshot and true will be returned.

InitializeThreadLocal();
startup_deserializer->DeserializeInto(this);
DisallowHeapAllocation no_gc;                                               
isolate->heap()->IterateSmiRoots(this);                                     
isolate->heap()->IterateStrongRoots(this, VISIT_FOR_SERIALIZATION);         
Iterate(isolate, this);                                                     
isolate->heap()->IterateWeakRoots(this, VISIT_FOR_SERIALIZATION);           
DeserializeDeferredObjects();                                               
RestoreExternalReferenceRedirectors(accessor_infos());                      
RestoreExternalReferenceRedirectors(call_handler_infos());

In heap.cc we find IterateSmiRootswhich takes a pointer to aRootVistor`. RootVisitor is used for visiting and modifying (optionally) the pointers contains in roots. This is used in garbage collection and also in serializing and deserializing snapshots.

Roots

RootVistor:

class RootVisitor {
 public:
  virtual void VisitRootPointers(Root root, const char* description,
                                 FullObjectSlot start, FullObjectSlot end) = 0;

  virtual void VisitRootPointer(Root root, const char* description,
                                FullObjectSlot p) {
    VisitRootPointers(root, description, p, p + 1);
  }
 
  static const char* RootName(Root root);

Root is an enum in src/object/visitors.h. This enum is generated by a macro and expands to:

enum class Root {                                                               
  kStringTable,
  kExternalStringsTable,
  kReadOnlyRootList,
  kStrongRootList,
  kSmiRootList,
  kBootstrapper,
  kTop,
  kRelocatable,
  kDebug,
  kCompilationCache,
  kHandleScope,
  kBuiltins,
  kGlobalHandles,
  kEternalHandles,
  kThreadManager,
  kStrongRoots,
  kExtensions,
  kCodeFlusher,
  kPartialSnapshotCache,
  kReadOnlyObjectCache,
  kWeakCollections,
  kWrapperTracing,
  kUnknown,
  kNumberOfRoots                                                            
}; 

These can be displayed using:

$ ./test/roots_test --gtest_filter=RootsTest.visitor_roots

Just to keep things clear for myself here, these visitor roots are only used for GC and serialization/deserialization (at least I think so) and should not be confused with the RootIndex enum in src/roots/roots.h.

Lets set a break point in mksnapshot and see if we can find where one of the above Root enum elements is used to make it a little more clear what these are used for.

$ lldb ../v8_src/v8/out/x64.debug/mksnapshot 
(lldb) target create "../v8_src/v8/out/x64.debug/mksnapshot"
Current executable set to '../v8_src/v8/out/x64.debug/mksnapshot' (x86_64).
(lldb) br s -n main
Breakpoint 1: where = mksnapshot`main + 42, address = 0x00000000009303ca
(lldb) r

What this does is that it creates an V8 environment (Platform, Isolate, Context) and then saves it to a file, either a binary file on disk but it can also save it to a .cc file that can be used in programs in which case the binary is a byte array. It does this in much the same way as the hello-world example create a platform and then initializes it, and the creates and initalizes a new Isolate. After the Isolate a new Context will be create using the Isolate. If there was an embedded-src flag passed to mksnaphot it will be run.

StartupSerializer will use the Root enum elements for example and the deserializer will use the same enum elements.

Adding a script to a snapshot:

$ gdb ../v8_src/v8/out/x64.release_gcc/mksnapshot --embedded-src="$PWD/embed.js"

TODO: Look into CreateOffHeapTrampolines.

So the VisitRootPointers function takes one of these Root's and visits all those roots. In our case the first Root to be visited is Heap::IterateSmiRoots:

void Heap::IterateSmiRoots(RootVisitor* v) {                                        
  ExecutionAccess access(isolate());                                                
  v->VisitRootPointers(Root::kSmiRootList, nullptr,                                 
                       roots_table().smi_roots_begin(),                             
                       roots_table().smi_roots_end());                              
  v->Synchronize(VisitorSynchronization::kSmiRootList);                             
}

And here we can see that it is using Root::kSmiRootList, and passing nullptr for the description argument (I wonder what this is used for?). Next, comes the start and end arguments.

(lldb) p roots_table().smi_roots_begin()
(v8::internal::FullObjectSlot) $5 = {
  v8::internal::SlotBase<v8::internal::FullObjectSlot, unsigned long, 8> = (ptr_ = 50680614097760)
}

We can list all the values of roots_table using:

(lldb) expr -A -- roots_table()

In src/snapshot/deserializer.cc we can find VisitRootPointers:

void Deserializer::VisitRootPointers(Root root, const char* description,
                                     FullObjectSlot start, FullObjectSlot end)
  ReadData(FullMaybeObjectSlot(start), FullMaybeObjectSlot(end),
           SnapshotSpace::kNew, kNullAddress);

Notice that description is never used. ReadDatais in the same source file:

The class SnapshotByteSource has a data member that is initialized upon construction from a const char* or a Vector. Where is this done?
This was done back in Snapshot::Initialize:

  const v8::StartupData* blob = isolate->snapshot_blob();                       
  Vector<const byte> startup_data = ExtractStartupData(blob);                   
  Vector<const byte> read_only_data = ExtractReadOnlyData(blob);                
  SnapshotData startup_snapshot_data(MaybeDecompress(startup_data));            
  SnapshotData read_only_snapshot_data(MaybeDecompress(read_only_data));        
  StartupDeserializer startup_deserializer(&startup_snapshot_data); 
(lldb) expr *this
(v8::internal::SnapshotByteSource) $30 = (data_ = "`\x04", length_ = 125752, position_ = 1)

All the roots in a heap are declared in src/roots/roots.h. You can access the roots using RootsTable via the Isolate using isolate_data->roots() or by using isolate->roots_table. The roots_ field is an array of Address elements:

class RootsTable {                                                              
 public:
  static constexpr size_t kEntriesCount = static_cast<size_t>(RootIndex::kRootListLength);
  ...
 private:
  Address roots_[kEntriesCount];                                                
  static const char* root_names_[kEntriesCount]; 

RootIndex is generated by a macro

enum class RootIndex : uint16_t {

The complete enum can be displayed using:

$ ./test/roots_test --gtest_filter=RootsTest.list_root_index

Lets take a look at an entry:

(lldb) p roots_[(uint16_t)RootIndex::kError_string]
(v8::internal::Address) $1 = 42318447256121

Now, there are functions in factory which can be used to retrieve these addresses, like factory->Error_string():

(lldb) expr *isolate->factory()->Error_string()
(v8::internal::String) $9 = {
  v8::internal::TorqueGeneratedString<v8::internal::String, v8::internal::Name> = {
    v8::internal::Name = {
      v8::internal::TorqueGeneratedName<v8::internal::Name, v8::internal::PrimitiveHeapObject> = {
        v8::internal::PrimitiveHeapObject = {
          v8::internal::TorqueGeneratedPrimitiveHeapObject<v8::internal::PrimitiveHeapObject, v8::internal::HeapObject> = {
            v8::internal::HeapObject = {
              v8::internal::Object = {
                v8::internal::TaggedImpl<v8::internal::HeapObjectReferenceType::STRONG, unsigned long> = (ptr_ = 42318447256121)
              }
            }
          }
        }
      }
    }
  }
}
(lldb) expr $9.length()
(int32_t) $10 = 5
(lldb) expr $9.Print()
#Error

These accessor functions declarations are generated by the ROOT_LIST(ROOT_ACCESSOR)) macros:

#define ROOT_ACCESSOR(Type, name, CamelName) inline Handle<Type> name();           
  ROOT_LIST(ROOT_ACCESSOR)                                                         
#undef ROOT_ACCESSOR

And the definitions can be found in src/heap/factory-inl.h and look like this The implementations then look like this:

String ReadOnlyRoots::Error_string() const { 
  return  String::unchecked_cast(Object(at(RootIndex::kError_string)));
} 

Handle<String> ReadOnlyRoots::Error_string_handle() const {
  return Handle<String>(&at(RootIndex::kError_string)); 
}

The unit test roots_test shows and example of this.

This shows the usage of root entries but where are the roots added to this array. roots_ is a member of IsolateData in src/execution/isolate-data.h:

  RootsTable roots_;

We can inspect the roots_ content by using the interal Isolate:

(lldb) f
frame #0: 0x00007ffff6261cdf libv8.so`v8::Isolate::Initialize(isolate=0x00000eb900000000, params=0x00007fffffffd0d0) at api.cc:8269:31
   8266    void Isolate::Initialize(Isolate* isolate,
   8267                             const v8::Isolate::CreateParams& params) {

(lldb) expr i_isolate->isolate_data_.roots_
(v8::internal::RootsTable) $5 = {
  roots_ = {
    [0] = 0
    [1] = 0
    [2] = 0

So we can see that the roots are intially zero:ed out. And the type of roots_ is an array of Address's.

    frame #3: 0x00007ffff6c33d58 libv8.so`v8::internal::Deserializer::VisitRootPointers(this=0x00007fffffffcce0, root=kReadOnlyRootList, description=0x0000000000000000, start=FullObjectSlot @ 0x00007fffffffc530, end=FullObjectSlot @ 0x00007fffffffc528) at deserializer.cc:94:11
    frame #4: 0x00007ffff6b6212f libv8.so`v8::internal::ReadOnlyRoots::Iterate(this=0x00007fffffffc5c8, visitor=0x00007fffffffcce0) at roots.cc:21:29
    frame #5: 0x00007ffff6c46fee libv8.so`v8::internal::ReadOnlyDeserializer::DeserializeInto(this=0x00007fffffffcce0, isolate=0x00000f7500000000) at read-only-deserializer.cc:41:18
    frame #6: 0x00007ffff66af631 libv8.so`v8::internal::ReadOnlyHeap::DeseralizeIntoIsolate(this=0x000000000049afb0, isolate=0x00000f7500000000, des=0x00007fffffffcce0) at read-only-heap.cc:85:23
    frame #7: 0x00007ffff66af5de libv8.so`v8::internal::ReadOnlyHeap::SetUp(isolate=0x00000f7500000000, des=0x00007fffffffcce0) at read-only-heap.cc:78:53

This will land us in roots.cc ReadOnlyRoots::Iterate(RootVisitor* visitor):

void ReadOnlyRoots::Iterate(RootVisitor* visitor) {                                
  visitor->VisitRootPointers(Root::kReadOnlyRootList, nullptr,                     
                             FullObjectSlot(read_only_roots_),                     
                             FullObjectSlot(&read_only_roots_[kEntriesCount])); 
  visitor->Synchronize(VisitorSynchronization::kReadOnlyRootList);                 
} 

Deserializer::VisitRootPointers calls Deserializer::ReadData and the roots_ array is still zero:ed out when we enter this function.

void Deserializer::VisitRootPointers(Root root, const char* description,
                                     FullObjectSlot start, FullObjectSlot end) {
  ReadData(FullMaybeObjectSlot(start), FullMaybeObjectSlot(end),
           SnapshotSpace::kNew, kNullAddress);

Notice that we called VisitRootPointer and pased in Root:kReadOnlyRootList, nullptr (the description), and start and end addresses as FullObjectSlots. The signature of VisitRootPointers looks like this:

virtual void VisitRootPointers(Root root, const char* description,            
                                 FullObjectSlot start, FullObjectSlot end)

In our case we are using the address of read_only_roots_ from src/roots/roots.h and the end is found by using the static member of ReadOnlyRoots::kEntrysCount.

The switch statement in ReadData is generated by macros so lets take a look at an expanded snippet to understand what is going on:

template <typename TSlot>
bool Deserializer::ReadData(TSlot current, TSlot limit,
                            SnapshotSpace source_space,
                            Address current_object_address) {
  Isolate* const isolate = isolate_;
  ...
  while (current < limit) {                                                     
    byte data = source_.Get();                                                  

So current is the start address of the read_only_list and limit the end. source_ is a member of ReadOnlyDeserializer and is of type SnapshotByteSource.

source_ got populated back in Snapshot::Initialize(internal_isolate):

const v8::StartupData* blob = isolate->snapshot_blob();
Vector<const byte> read_only_data = ExtractReadOnlyData(blob);
ReadOnlyDeserializer read_only_deserializer(&read_only_snapshot_data);

And ReadOnlyDeserializer extends Deserialier (src/snapshot/deserializer.h) which has a constructor that sets the source_ member to data->Payload(). So source_ is will be pointer to an instance of SnapshotByteSource which can be found in src/snapshot-source-sink.h:

class SnapshotByteSource final {
 public:
  SnapshotByteSource(const char* data, int length)
      : data_(reinterpret_cast<const byte*>(data)),
        length_(length),
        position_(0) {}

  byte Get() {                                                                  
    return data_[position_++];                                                  
  }
  ...
 private:
  const byte* data_;
  int length_;
  int posistion_;

Alright, so we are calling source_.Get() which we can see returns the current entry from the byte array data_ and increment the position. So with that in mind lets take closer look at the switch statment:

  while (current < limit) {                                                     
    byte data = source_.Get();                                                  
    switch (data) {                                                             
      case kNewObject + static_cast<int>(SnapshotSpace::kNew):
        current = ReadDataCase<TSlot, kNewObject, SnapshotSpace::kNew>(isolate, current, current_object_address, data, write_barrier_needed);
        break;
      case kNewObject + static_cast<int>(SnapshotSpace::kOld):
        [[clang::fallthrough]];
      case kNewObject + static_cast<int>(SnapshotSpace::kCode):
        [[clang::fallthrough]];
      case kNewObject + static_cast<int>(SnapshotSpace::kMap):
        static_assert((static_cast<int>(SnapshotSpace::kMap) & ~kSpaceMask) == 0, "(static_cast<int>(SnapshotSpace::kMap) & ~kSpaceMask) == 0");
        [[clang::fallthrough]];
      ...

We can see that switch statement will assign the passed-in current with a new instance of ReadDataCase.

  current = ReadDataCase<TSlot, kNewObject, SnapshotSpace::kNew>(isolate,
      current, current_object_address, data, write_barrier_needed);

Notice that kNewObject is the type of SerializerDeserliazer::Bytecode that is to be read (I think), this enum can be found in src/snapshot/serializer-common.h. TSlot I think stands for the "Type of Slot", which in our case is a FullMaybyObjectSlot.

  HeapObject heap_object;
  if (bytecode == kNewObject) {                                                 
    heap_object = ReadObject(space);   

ReadObject is also in deserializer.cc :

Address address = allocator()->Allocate(space, size);
HeapObject obj = HeapObject::FromAddress(address);
isolate_->heap()->OnAllocationEvent(obj, size);

Alright, lets set a watch point on the roots_ array to see when the first entry
is populated and try to figure this out that way:
```console
(lldb) watch set variable  isolate->isolate_data_.roots_.roots_[0]
Watchpoint created: Watchpoint 5: addr = 0xf7500000080 size = 8 state = enabled type = w
    declare @ '/home/danielbevenius/work/google/v8_src/v8/src/heap/read-only-heap.cc:28'
    watchpoint spec = 'isolate->isolate_data_.roots_.roots_[0]'
    new value: 0
(lldb) r

Watchpoint 5 hit:
old value: 0
new value: 16995320070433
Process 1687448 stopped
* thread #1, name = 'hello-world', stop reason = watchpoint 5
    frame #0: 0x00007ffff664e5b1 libv8.so`v8::internal::FullMaybeObjectSlot::store(this=0x00007fffffffc3b0, value=MaybeObject @ 0x00007fffffffc370) const at slots-inl.h:74:1
   71      
   72      void FullMaybeObjectSlot::store(MaybeObject value) const {
   73        *location() = value.ptr();
-> 74      }
   75 

We can verify that location actually contains the address of roots_[0]:

(lldb) expr -f hex -- this->ptr_
(v8::internal::Address) $164 = 0x00000f7500000080
(lldb) expr -f hex -- &this->isolate_->isolate_data_.roots_.roots_[0]
(v8::internal::Address *) $171 = 0x00000f7500000080

(lldb) expr -f hex -- value.ptr()
(unsigned long) $184 = 0x00000f7508040121
(lldb) expr -f hex -- isolate_->isolate_data_.roots_.roots_[0]
(v8::internal::Address) $183 = 0x00000f7508040121

The first entry is free_space_map.

(lldb) expr v8::internal::Map::unchecked_cast(v8::internal::Object(value->ptr()))
(v8::internal::Map) $185 = {
  v8::internal::HeapObject = {
    v8::internal::Object = {
      v8::internal::TaggedImpl<v8::internal::HeapObjectReferenceType::STRONG, unsigned long> = (ptr_ = 16995320070433)
    }
  }

Next, we will go through the while loop again:

(lldb) expr -f hex -- isolate_->isolate_data_.roots_.roots_[1]
(v8::internal::Address) $191 = 0x0000000000000000
(lldb) expr -f hex -- &isolate_->isolate_data_.roots_.roots_[1]
(v8::internal::Address *) $192 = 0x00000f7500000088
(lldb) expr -f hex -- location()
(v8::internal::SlotBase<v8::internal::FullMaybeObjectSlot, unsigned long, 8>::TData *) $194 = 0x00000f7500000088

Notice that in Deserializer::Write we have:

  dest.store(value);
  return dest + 1;

And it's current value is:

(v8::internal::Address) $197 = 0x00000f7500000088

Which is the same address as roots_[1] that we just wrote to.

If we know the type that an Address points to we can use the Type::cast(Object obj) to cast it into a pointer of that type. I think this works will all types.

(lldb) expr -A -f hex  -- v8::internal::Oddball::cast(v8::internal::Object(isolate_->isolate_data_.roots_.roots_[4]))
(v8::internal::Oddball) $258 = {
  v8::internal::TorqueGeneratedOddball<v8::internal::Oddball, v8::internal::PrimitiveHeapObject> = {
    v8::internal::PrimitiveHeapObject = {
      v8::internal::TorqueGeneratedPrimitiveHeapObject<v8::internal::PrimitiveHeapObject, v8::internal::HeapObject> = {
        v8::internal::HeapObject = {
          v8::internal::Object = {
            v8::internal::TaggedImpl<v8::internal::HeapObjectReferenceType::STRONG, unsigned long> = (ptr_ = 0x00000f750804030d)
          }
        }
      }
    }
  }
}

You can also just cast it to an object and try printing it:

(lldb) expr -A -f hex  -- v8::internal::Object(isolate_->isolate_data_.roots_.roots_[4]).Print()
#undefined

This is actually the Oddball UndefinedValue so it makes sense in this case I think. With this value in the roots_ array we can use the function ReadOnlyRoots::undefined_value():

(lldb) expr v8::internal::ReadOnlyRoots(&isolate_->heap_).undefined_value()
(v8::internal::Oddball) $265 = {
  v8::internal::TorqueGeneratedOddball<v8::internal::Oddball, v8::internal::PrimitiveHeapObject> = {
    v8::internal::PrimitiveHeapObject = {
      v8::internal::TorqueGeneratedPrimitiveHeapObject<v8::internal::PrimitiveHeapObject, v8::internal::HeapObject> = {
        v8::internal::HeapObject = {
          v8::internal::Object = {
            v8::internal::TaggedImpl<v8::internal::HeapObjectReferenceType::STRONG, unsigned long> = (ptr_ = 16995320070925)
          }
        }
      }
    }
  }
}

So how are these roots used, take the above undefined_value for example?
Well most things (perhaps all) that are needed go via the Factory which the internal Isolate is a type of. In factory we can find:

Handle<Oddball> Factory::undefined_value() {
  return Handle<Oddball>(&isolate()->roots_table()[RootIndex::kUndefinedValue]);
}

Notice that this is basically what we did in the debugger before but here it is wrapped in Handle so that it can be tracked by the GC.

The unit test isolate_test explores the internal isolate and has example of usages of the above mentioned methods.

InitwithSnapshot will call Isolate::Init:

bool Isolate::Init(ReadOnlyDeserializer* read_only_deserializer,
                   StartupDeserializer* startup_deserializer) {

#define ASSIGN_ELEMENT(CamelName, hacker_name)                  \
  isolate_addresses_[IsolateAddressId::k##CamelName##Address] = \
      reinterpret_cast<Address>(hacker_name##_address());
  FOR_EACH_ISOLATE_ADDRESS_NAME(ASSIGN_ELEMENT)
#undef ASSIGN_ELEMENT
  Address isolate_addresses_[kIsolateAddressCount + 1] = {};
(gdb) p isolate_addresses_
$16 = {0 <repeats 13 times>}

Lets take a look at the expanded code in Isolate::Init:

$ clang++ -I./out/x64.release/gen -I. -I./include -E src/execution/isolate.cc > output
isolate_addresses_[IsolateAddressId::kHandlerAddress] = reinterpret_cast<Address>(handler_address());
isolate_addresses_[IsolateAddressId::kCEntryFPAddress] = reinterpret_cast<Address>(c_entry_fp_address());
isolate_addresses_[IsolateAddressId::kCFunctionAddress] = reinterpret_cast<Address>(c_function_address());
isolate_addresses_[IsolateAddressId::kContextAddress] = reinterpret_cast<Address>(context_address());
isolate_addresses_[IsolateAddressId::kPendingExceptionAddress] = reinterpret_cast<Address>(pending_exception_address());
isolate_addresses_[IsolateAddressId::kPendingHandlerContextAddress] = reinterpret_cast<Address>(pending_handler_context_address());
isolate_addresses_[IsolateAddressId::kPendingHandlerEntrypointAddress] = reinterpret_cast<Address>(pending_handler_entrypoint_address());
isolate_addresses_[IsolateAddressId::kPendingHandlerConstantPoolAddress] = reinterpret_cast<Address>(pending_handler_constant_pool_address());
isolate_addresses_[IsolateAddressId::kPendingHandlerFPAddress] = reinterpret_cast<Address>(pending_handler_fp_address());
isolate_addresses_[IsolateAddressId::kPendingHandlerSPAddress] = reinterpret_cast<Address>(pending_handler_sp_address());
isolate_addresses_[IsolateAddressId::kExternalCaughtExceptionAddress] = reinterpret_cast<Address>(external_caught_exception_address());
isolate_addresses_[IsolateAddressId::kJSEntrySPAddress] = reinterpret_cast<Address>(js_entry_sp_address());

Then functions, like handler_address() are implemented as:

inline Address* handler_address() { return &thread_local_top()->handler_; }   
(gdb) x/x isolate_addresses_[0]
0x1a3500003240:    0x00000000

At this point in the program we have only set the entries to point contain the addresses specified in ThreadLocalTop, At the time there are initialized the will mostly be initialized to kNullAddress:

static const Address kNullAddress = 0;

And notice that the functions above return pointers so later these pointers can be updated to point to something. What/when does this happen? Lets continue and find out...

Back in Isolate::Init we have:

  compilation_cache_ = new CompilationCache(this);
  descriptor_lookup_cache_ = new DescriptorLookupCache();
  inner_pointer_to_code_cache_ = new InnerPointerToCodeCache(this);
  global_handles_ = new GlobalHandles(this);
  eternal_handles_ = new EternalHandles();
  bootstrapper_ = new Bootstrapper(this);
  handle_scope_implementer_ = new HandleScopeImplementer(this);
  load_stub_cache_ = new StubCache(this);
  store_stub_cache_ = new StubCache(this);
  materialized_object_store_ = new MaterializedObjectStore(this);
  regexp_stack_ = new RegExpStack();
  regexp_stack_->isolate_ = this;
  date_cache_ = new DateCache();
  heap_profiler_ = new HeapProfiler(heap());
  interpreter_ = new interpreter::Interpreter(this);

  compiler_dispatcher_ =
      new CompilerDispatcher(this, V8::GetCurrentPlatform(), FLAG_stack_size);

  // SetUp the object heap.
  DCHECK(!heap_.HasBeenSetUp());
  heap_.SetUp();

  ...
  InitializeThreadLocal();

Lets take a look at InitializeThreadLocal

void Isolate::InitializeThreadLocal() {
  thread_local_top()->Initialize(this);
  clear_pending_exception();
  clear_pending_message();
  clear_scheduled_exception();
}
void Isolate::clear_pending_exception() {
  DCHECK(!thread_local_top()->pending_exception_.IsException(this));
  thread_local_top()->pending_exception_ = ReadOnlyRoots(this).the_hole_value();
}

ReadOnlyRoots

#define ROOT_ACCESSOR(Type, name, CamelName) \
  V8_INLINE class Type name() const;         \
  V8_INLINE Handle<Type> name##_handle() const;

  READ_ONLY_ROOT_LIST(ROOT_ACCESSOR)
#undef ROOT_ACCESSOR

This will expand to a number of function declarations that looks like this:

$ clang++ -I./out/x64.release/gen -I. -I./include -E src/roots/roots.h > output
inline __attribute__((always_inline)) class Map free_space_map() const;
inline __attribute__((always_inline)) Handle<Map> free_space_map_handle() const;

The Map class is what all HeapObject use to describe their structure. Notice that there is also a Handle declared. These are generated by a macro in roots-inl.h:

Map ReadOnlyRoots::free_space_map() const { 
  ((void) 0);
  return Map::unchecked_cast(Object(at(RootIndex::kFreeSpaceMap)));
} 

Handle<Map> ReadOnlyRoots::free_space_map_handle() const {
  ((void) 0);
  return Handle<Map>(&at(RootIndex::kFreeSpaceMap));
}

Notice that this is using the RootIndex enum that was mentioned earlier:

  return Map::unchecked_cast(Object(at(RootIndex::kFreeSpaceMap)));

In object/map.h there is the following line:

  DECL_CAST(Map)

Which can be found in objects/object-macros.h:

#define DECL_CAST(Type)                                 \
  V8_INLINE static Type cast(Object object);            \
  V8_INLINE static Type unchecked_cast(Object object) { \
    return bit_cast<Type>(object);                      \
  }

This will expand to something like

  static Map cast(Object object);
  static Map unchecked_cast(Object object) {
    return bit_cast<Map>(object);
  }

And the Object part is the Object contructor that takes an Address:

  explicit constexpr Object(Address ptr) : TaggedImpl(ptr) {}

That leaves the at function which is a private function in ReadOnlyRoots:

  V8_INLINE Address& at(RootIndex root_index) const;

So we are now back in Isolate::Init after the call to InitializeThreadLocal we have:

setup_delegate_->SetupBuiltins(this);

In the following line in api.cc, where does i::OBJECT_TEMPLATE_INFO_TYPE come from:

  i::Handle<i::Struct> struct_obj = isolate->factory()->NewStruct(
      i::OBJECT_TEMPLATE_INFO_TYPE, i::AllocationType::kOld);

InstanceType

The enum InstanceType is defined in src/objects/instance-type.h:

#include "torque-generated/instance-types-tq.h" 

enum InstanceType : uint16_t {
  ...   
#define MAKE_TORQUE_INSTANCE_TYPE(TYPE, value) TYPE = value,                    
  TORQUE_ASSIGNED_INSTANCE_TYPES(MAKE_TORQUE_INSTANCE_TYPE)                     
#undef MAKE_TORQUE_INSTANCE_TYPE 
  ...
};

And in gen/torque-generated/instance-types-tq.h we can find:

#define TORQUE_ASSIGNED_INSTANCE_TYPES(V) \                                     
  ...
  V(OBJECT_TEMPLATE_INFO_TYPE, 79) \                                      
  ...

There is list in src/objects/objects-definitions.h:

#define STRUCT_LIST_GENERATOR_BASE(V, _)                                      \
  ...
  V(_, OBJECT_TEMPLATE_INFO_TYPE, ObjectTemplateInfo, object_template_info)   \
  ...
template <typename Impl>
Handle<Struct> FactoryBase<Impl>::NewStruct(InstanceType type,
                                            AllocationType allocation) {
  Map map = Map::GetInstanceTypeMap(read_only_roots(), type);

If we look in Map::GetInstanceTypeMap in map.cc we find:

  Map map;
  switch (type) {
#define MAKE_CASE(TYPE, Name, name) \
  case TYPE:                        \
    map = roots.name##_map();       \
    break;
    STRUCT_LIST(MAKE_CASE)
#undef MAKE_CASE

Now, we know that our type is:

(gdb) p type
$1 = v8::internal::OBJECT_TEMPLATE_INFO_TYPE
    map = roots.object_template_info_map();       \

And we can inspect the output of the preprocessor of roots.cc and find:

Map ReadOnlyRoots::object_template_info_map() const { 
  ((void) 0);
  return Map::unchecked_cast(Object(at(RootIndex::kObjectTemplateInfoMap)));
}

And this is something we have seen before.

One things I ran into was wanting to print the InstanceType using the overloaded << operator which is defined for the InstanceType in objects.cc.

std::ostream& operator<<(std::ostream& os, InstanceType instance_type) {
  switch (instance_type) {
#define WRITE_TYPE(TYPE) \
  case TYPE:             \
    return os << #TYPE;
    INSTANCE_TYPE_LIST(WRITE_TYPE)
#undef WRITE_TYPE
  }
  UNREACHABLE();
}

The code I'm using is the followig:

  i::InstanceType type = map.instance_type();
  std::cout << "object_template_info_map type: " << type << '\n';

This will cause the UNREACHABLE() function to be called and a Fatal error thrown. But note that the following line works:

  std::cout << "object_template_info_map type: " << v8::internal::OBJECT_TEMPLATE_INFO_TYPE << '\n';

And prints

object_template_info_map type: OBJECT_TEMPLATE_INFO_TYPE

In the switch/case block above the case for this value is:

  case OBJECT_TEMPLATE_INFO_TYPE:
    return os << "OBJECT_TEMPLATE_INFO_TYPE"

When map.instance_type() is called, it returns a value of 1023 but the value of OBJECT_TEMPLATE_INFO_TYPE is:

OBJECT_TEMPLATE_INFO_TYPE = 79

And we can confirm this using:

  std::cout << "object_template_info_map type: " << static_cast<uint16_t>(v8::internal::OBJECT_TEMPLATE_INFO_TYPE) << '\n';

Which will print:

object_template_info_map type: 79

IsolateData

Context creation

When we create a new context using:

  Local<ObjectTemplate> global = ObjectTemplate::New(isolate_);
  Local<Context> context = Context::New(isolate_, nullptr, global);

The Context class in include/v8.h declares New as follows:

static Local<Context> New(Isolate* isolate,
    ExtensionConfiguration* extensions = nullptr,
    MaybeLocal<ObjectTemplate> global_template = MaybeLocal<ObjectTemplate>(),
    MaybeLocal<Value> global_object = MaybeLocal<Value>(),
    DeserializeInternalFieldsCallback internal_fields_deserializer = DeserializeInternalFieldsCallback(),
    MicrotaskQueue* microtask_queue = nullptr);

When a step into Context::New(isolate_, nullptr, global) this will first break in the constructor of DeserializeInternalFieldsCallback in v8.h which has default values for the callback function and data_args (both are nullptr). After that gdb will break in MaybeLocal and setting val_ to nullptr. Next it will break in Local::operator* for the value of global which is then passed to the MaybeLocalv8::ObjectTemplate constructor. After those break points the break point will be in api.cc and v8::Context::New. New will call NewContext in api.cc.

There will be some checks and logging/tracing and then a call to CreateEnvironment:

i::Handle<i::Context> env = CreateEnvironment<i::Context>(                         
    isolate,
    extensions,
    global_template, 
    global_object,                           
    context_snapshot_index, 
    embedder_fields_deserializer, 
    microtask_queue); 

The first line in CreateEnironment is:

ENTER_V8_FOR_NEW_CONTEXT(isolate);

Which is a macro defined in api.cc

i::VMState<v8::OTHER> __state__((isolate)); \                                 
i::DisallowExceptions __no_exceptions__((isolate)) 

So the first break point we break on will be the execution/vm-state-inl.h and VMState's constructor:

template <StateTag Tag>                                                         
VMState<Tag>::VMState(Isolate* isolate)                                         
    : isolate_(isolate), previous_tag_(isolate->current_vm_state()) {           
  isolate_->set_current_vm_state(Tag);                                          
} 

In gdb you'll see this:

(gdb) s
v8::internal::VMState<(v8::StateTag)5>::VMState (isolate=0x372500000000, this=<synthetic pointer>) at ../../src/api/api.cc:6005
6005          context_snapshot_index, embedder_fields_deserializer, microtask_queue);
(gdb) s
v8::internal::Isolate::current_vm_state (this=0x372500000000) at ../../src/execution/isolate.h:1072
1072      THREAD_LOCAL_TOP_ACCESSOR(StateTag, current_vm_state)

Notice that VMState's constructor sets its previous_tag_ to isolate->current_vm_state() which is generated by the macro THREAD_LOCAL_TOP_ACCESSOR. The next break point will be:

#0  v8::internal::PerIsolateAssertScopeDebugOnly<(v8::internal::PerIsolateAssertType)5, false>::PerIsolateAssertScopeDebugOnly (
    isolate=0x372500000000, this=0x7ffc7b51b500) at ../../src/common/assert-scope.h:107
107      explicit PerIsolateAssertScopeDebugOnly(Isolate* isolate)

We can find that DisallowExceptions is defined in src/common/assert-scope.h as:

using DisallowExceptions =                                                      
    PerIsolateAssertScopeDebugOnly<NO_EXCEPTION_ASSERT, false>;

After all that we can start to look at the code in CreateEnvironment.

    // Create the environment.                                                       
    InvokeBootstrapper<ObjectType> invoke;                                           
    result = invoke.Invoke(isolate, maybe_proxy, proxy_template, extensions,    
                           context_snapshot_index, embedder_fields_deserializer,
                           microtask_queue);  


template <typename ObjectType>                                                  
struct InvokeBootstrapper;                                                        
                                                                                     
template <>                                                                     
struct InvokeBootstrapper<i::Context> {                                         
  i::Handle<i::Context> Invoke(                                                 
      i::Isolate* isolate, i::MaybeHandle<i::JSGlobalProxy> maybe_global_proxy, 
      v8::Local<v8::ObjectTemplate> global_proxy_template,                      
      v8::ExtensionConfiguration* extensions, size_t context_snapshot_index,    
      v8::DeserializeInternalFieldsCallback embedder_fields_deserializer,       
      v8::MicrotaskQueue* microtask_queue) {                                         
    return isolate->bootstrapper()->CreateEnvironment(                               
        maybe_global_proxy, global_proxy_template, extensions,                       
        context_snapshot_index, embedder_fields_deserializer, microtask_queue); 
  }                                                                                  
};

Bootstrapper can be found in src/init/bootstrapper.cc:

HandleScope scope(isolate_);                                                      
Handle<Context> env;                                                              
  {                                                                                 
    Genesis genesis(isolate_, maybe_global_proxy, global_proxy_template,            
                    context_snapshot_index, embedder_fields_deserializer,           
                    microtask_queue);                                               
    env = genesis.result();                                                         
    if (env.is_null() || !InstallExtensions(env, extensions)) {                     
      return Handle<Context>();                                                     
    }                                                                               
  }                 

Notice that the break point will be in the HandleScope constructor. Then a new instance of Genesis is created which performs some actions in its constructor.

global_proxy = isolate->factory()->NewUninitializedJSGlobalProxy(instance_size);

This will land in factory.cc:

Handle<Map> map = NewMap(JS_GLOBAL_PROXY_TYPE, size);

size will be 16 in this case. NewMap is declared in factory.h which has default values for its parameters:

  Handle<Map> NewMap(InstanceType type, int instance_size,                      
                     ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND,  
                     int inobject_properties = 0);

In Factory::InitializeMap we have the following check:

DCHECK_EQ(map.GetInObjectProperties(), inobject_properties);

Remember that I called Context::New with the following arguments:

  Local<ObjectTemplate> global = ObjectTemplate::New(isolate_);
  Local<Context> context = Context::New(isolate_, nullptr, global);

VMState

TaggedImpl

Has a single private member which is declared as:

StorageType ptr_;

An instance can be created using:

  i::TaggedImpl<i::HeapObjectReferenceType::STRONG, i::Address>  tagged{};

Storage type can also be Tagged_t which is defined in globals.h:

 using Tagged_t = uint32_t;

It looks like it can be a different value when using pointer compression.

Object (internal)

This class extends TaggedImpl:

class Object : public TaggedImpl<HeapObjectReferenceType::STRONG, Address> {       

An Object can be created using the default constructor, or by passing in an Address which will delegate to TaggedImpl constructors. Object itself does not have any members (apart from ptr_ which is inherited from TaggedImpl that is). So if we create an Object on the stack this is like a pointer/reference to an object:

+------+
|Object|
|------|
|ptr_  |---->
+------+

Now, ptr_ is a TaggedImpl so it would be a Smi in which case it would just contains the value directly, for example a small integer:

+------+
|Object|
|------|
|  18  |
+------+

Handle

A Handle is similar to a Object and ObjectSlot in that it also contains an Address member (called location_ and declared in HandleBase), but with the difference is that Handles can be relocated by the garbage collector.

HeapObject

NewContext

When we create a new context using:

const v8::Local<v8::ObjectTemplate> obt = v8::Local<v8::ObjectTemplate>();
v8::Handle<v8::Context> context = v8::Context::New(isolate_, nullptr, obt);

The above is using the static function New declared in include/v8.h

static Local<Context> New(                                                    
    Isolate* isolate,
    ExtensionConfiguration* extensions = nullptr,           
    MaybeLocal<ObjectTemplate> global_template = MaybeLocal<ObjectTemplate>(),
    MaybeLocal<Value> global_object = MaybeLocal<Value>(),                    
    DeserializeInternalFieldsCallback internal_fields_deserializer = DeserializeInternalFieldsCallback(),                                  
    MicrotaskQueue* microtask_queue = nullptr);

The implementation for this function can be found in src/api/api.cc How does a Local become a MaybeLocal in this above case?
This is because MaybeLocal has a constructor that takes a Local<S> and this will be casted into the val_ member of the MaybeLocal instance.

Genesis

TODO

What is the difference between a Local and a Handle?

Currently, the torque generator will generate Print functions that look like the following:

template <>                                                                     
void TorqueGeneratedEnumCache<EnumCache, Struct>::EnumCachePrint(std::ostream& os) {
  this->PrintHeader(os, "TorqueGeneratedEnumCache");
  os << "\n - keys: " << Brief(this->keys());
  os << "\n - indices: " << Brief(this->indices());
  os << "\n";
}

Notice the last line where the newline character is printed as a string. This would just be a char instead '\n'.

There are a number of things that need to happen only once upon startup for each process. These things are placed in V8::InitializeOncePerProcessImpl which can be found in src/init/v8.cc. This is called by v8::V8::Initialize().

  CpuFeatures::Probe(false);                                                    
  ElementsAccessor::InitializeOncePerProcess();                                 
  Bootstrapper::InitializeOncePerProcess();                                     
  CallDescriptors::InitializeOncePerProcess();                                  
  wasm::WasmEngine::InitializeOncePerProcess();

ElementsAccessor populates the accessor_array with Elements listed in ELEMENTS_LIST. TODO: take a closer look at Elements.

v8::Isolate::Initialize will set up the heap.

i_isolate->heap()->ConfigureHeap(params.constraints);

It is when we create an new Context that Genesis is created. This will call Snapshot::NewContextFromSnapshot. So the context is read from the StartupData* blob with ExtractContextData(blob).

What is the global proxy?

Builtins runtime error

Builtins is a member of Isolate and an instance is created by the Isolate constructor. We can inspect the value of initialized_ and that it is false:

(gdb) p *this->builtins()
$3 = {static kNoBuiltinId = -1, static kFirstWideBytecodeHandler = 1248, static kFirstExtraWideBytecodeHandler = 1398, 
  static kLastBytecodeHandlerPlusOne = 1548, static kAllBuiltinsAreIsolateIndependent = true, isolate_ = 0x0, initialized_ = false, 
  js_entry_handler_offset_ = 0}

The above is printed form Isolate's constructor and it is not changes in the contructor.

This is very strange, while I though that the initialized_ was being updated it now looks like there might be two instances, one with has this value as false and the other as true. And also one has a nullptr as the isolate and the other as an actual value. For example, when I run the hello-world example:

$4 = (v8::internal::Builtins *) 0x33b20000a248
(gdb) p &builtins_
$5 = (v8::internal::Builtins *) 0x33b20000a248

Notice that these are poiting to the same location in memory.

(gdb) p &builtins_
$1 = (v8::internal::Builtins *) 0x25210000a248
(gdb) p builtins()
$2 = (v8::internal::Builtins *) 0x25210000a228

Alright, so after looking into this closer I noticed that I was including internal headers in the test itself. When I include src/builtins/builtins.h I will get an implementation of isolate->builtins() in the object file which is in the shared library libv8.so, but the field is part of object file that is part of the cctest. This will be a different method and not the method that is in libv8_v8.so shared library.

As I'm only interested in exploring v8 internals and my goal is only for each unit test to verify my understanding I've statically linked those object files needed, like builtins.o and code.o to the test.

 Fatal error in ../../src/snapshot/read-only-deserializer.cc, line 35
# Debug check failed: !isolate->builtins()->is_initialized().
#
#
#
#FailureMessage Object: 0x7ffed92ceb20
==== C stack trace ===============================

    /home/danielbevenius/work/google/v8_src/v8/out/x64.release_gcc/libv8_libbase.so(v8::base::debug::StackTrace::StackTrace()+0x1d) [0x7fabe6c348c1]
    /home/danielbevenius/work/google/v8_src/v8/out/x64.release_gcc/libv8_libplatform.so(+0x652d9) [0x7fabe6cac2d9]
    /home/danielbevenius/work/google/v8_src/v8/out/x64.release_gcc/libv8_libbase.so(V8_Fatal(char const*, int, char const*, ...)+0x172) [0x7fabe6c2416d]
    /home/danielbevenius/work/google/v8_src/v8/out/x64.release_gcc/libv8_libbase.so(v8::base::SetPrintStackTrace(void (*)())+0) [0x7fabe6c23de0]
    /home/danielbevenius/work/google/v8_src/v8/out/x64.release_gcc/libv8_libbase.so(V8_Dcheck(char const*, int, char const*)+0x2d) [0x7fabe6c241b1]
    /home/danielbevenius/work/google/v8_src/v8/out/x64.release_gcc/libv8.so(v8::internal::ReadOnlyDeserializer::DeserializeInto(v8::internal::Isolate*)+0x192) [0x7fabe977c468]
    /home/danielbevenius/work/google/v8_src/v8/out/x64.release_gcc/libv8.so(v8::internal::ReadOnlyHeap::DeseralizeIntoIsolate(v8::internal::Isolate*, v8::internal::ReadOnlyDeserializer*)+0x4f) [0x7fabe91e5a7d]
    /home/danielbevenius/work/google/v8_src/v8/out/x64.release_gcc/libv8.so(v8::internal::ReadOnlyHeap::SetUp(v8::internal::Isolate*, v8::internal::ReadOnlyDeserializer*)+0x66) [0x7fabe91e5a2a]
    /home/danielbevenius/work/google/v8_src/v8/out/x64.release_gcc/libv8.so(v8::internal::Isolate::Init(v8::internal::ReadOnlyDeserializer*, v8::internal::StartupDeserializer*)+0x70b) [0x7fabe90633bb]
    /home/danielbevenius/work/google/v8_src/v8/out/x64.release_gcc/libv8.so(v8::internal::Isolate::InitWithSnapshot(v8::internal::ReadOnlyDeserializer*, v8::internal::StartupDeserializer*)+0x7b) [0x7fabe906299f]
    /home/danielbevenius/work/google/v8_src/v8/out/x64.release_gcc/libv8.so(v8::internal::Snapshot::Initialize(v8::internal::Isolate*)+0x1e9) [0x7fabe978d941]
    /home/danielbevenius/work/google/v8_src/v8/out/x64.release_gcc/libv8.so(v8::Isolate::Initialize(v8::Isolate*, v8::Isolate::CreateParams const&)+0x33d) [0x7fabe8d999e3]
    /home/danielbevenius/work/google/v8_src/v8/out/x64.release_gcc/libv8.so(v8::Isolate::New(v8::Isolate::CreateParams const&)+0x28) [0x7fabe8d99b66]
    ./test/builtins_test() [0x4135a2]
    ./test/builtins_test() [0x43a1b7]
    ./test/builtins_test() [0x434c99]
    ./test/builtins_test() [0x41a3a7]
    ./test/builtins_test() [0x41aafb]
    ./test/builtins_test() [0x41b085]
    ./test/builtins_test() [0x4238e0]
    ./test/builtins_test() [0x43b1aa]
    ./test/builtins_test() [0x435773]
    ./test/builtins_test() [0x422836]
    ./test/builtins_test() [0x412ea4]
    ./test/builtins_test() [0x412e3d]
    /lib64/libc.so.6(__libc_start_main+0xf3) [0x7fabe66b31a3]
    ./test/builtins_test() [0x412d5e]
Illegal instruction (core dumped)

The issue here is that I'm including the header in the test, which means that code will be in the object code of the test, while the implementation part will be in the linked dynamic library which is why these are pointing to different areas in memory. The one retreived by the function call will use the

Goma

I've goma referenced in a number of places so just makeing a note of what it is here: Goma is googles internal distributed compile service.

WebAssembly

This section is going to take a closer look at how wasm works in V8.

We can use a wasm module like this:

  const buffer = fixtures.readSync('add.wasm'); 
  const module = new WebAssembly.Module(buffer);                             
  const instance = new WebAssembly.Instance(module);                        
  instance.exports.add(3, 4);

Where is the WebAssembly object setup? We have sen previously that objects and function are added in src/init/bootstrapper.cc and for Wasm there is a function named Genisis::InstallSpecialObjects which calls:

  WasmJs::Install(isolate, true);

This call will land in src/wasm/wasm-js.cc where we can find:

void WasmJs::Install(Isolate* isolate, bool exposed_on_global_object) {
  ...
  Handle<String> name = v8_str(isolate, "WebAssembly")
  ...
  NewFunctionArgs args = NewFunctionArgs::ForFunctionWithoutCode(               
      name, isolate->strict_function_map(), LanguageMode::kStrict);             
  Handle<JSFunction> cons = factory->NewFunction(args);                         
  JSFunction::SetPrototype(cons, isolate->initial_object_prototype());          
  Handle<JSObject> webassembly =                                                
      factory->NewJSObject(cons, AllocationType::kOld); 
  JSObject::AddProperty(isolate, webassembly, factory->to_string_tag_symbol(),  
                        name, ro_attributes);                                   

  InstallFunc(isolate, webassembly, "compile", WebAssemblyCompile, 1);          
  InstallFunc(isolate, webassembly, "validate", WebAssemblyValidate, 1);            
  InstallFunc(isolate, webassembly, "instantiate", WebAssemblyInstantiate, 1);
  ...
  Handle<JSFunction> module_constructor =                                       
      InstallConstructorFunc(isolate, webassembly, "Module", WebAssemblyModule);
  ...
}

And all the rest of the functions that are available on the WebAssembly object are setup in the same function.

(lldb) br s -name Genesis::InstallSpecialObjects

Now, lets also set a break point in WebAssemblyModule:

(lldb) br s -n WebAssemblyModule
(lldb) r
  v8::Isolate* isolate = args.GetIsolate();                                         
  i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);                   
  if (i_isolate->wasm_module_callback()(args)) return;                              

Notice the wasm_module_callback() function which is a function that is setup on the internal Isolate in src/execution/isolate.h:

#define ISOLATE_INIT_LIST(V)                                                   \
  ...
  V(ExtensionCallback, wasm_module_callback, &NoExtension)                     \
  V(ExtensionCallback, wasm_instance_callback, &NoExtension)                   \
  V(WasmStreamingCallback, wasm_streaming_callback, nullptr)                   \
  V(WasmThreadsEnabledCallback, wasm_threads_enabled_callback, nullptr)        \
  V(WasmLoadSourceMapCallback, wasm_load_source_map_callback, nullptr) 

#define GLOBAL_ACCESSOR(type, name, initialvalue)                \              
  inline type name() const {                                     \              
    DCHECK(OFFSET_OF(Isolate, name##_) == name##_debug_offset_); \              
    return name##_;                                              \              
  }                                                              \              
  inline void set_##name(type value) {                           \              
    DCHECK(OFFSET_OF(Isolate, name##_) == name##_debug_offset_); \              
    name##_ = value;                                             \              
  }                                                                             
  ISOLATE_INIT_LIST(GLOBAL_ACCESSOR)                                            
#undef GLOBAL_ACCESSOR

So this would be expanded by the preprocessor into:

inline ExtensionCallback wasm_module_callback() const {
  ((void) 0);
  return wasm_module_callback_;
}
inline void set_wasm_module_callback(ExtensionCallback value) {
  ((void) 0);
  wasm_module_callback_ = value;
}

Also notice that if wasm_module_callback() return true the WebAssemblyModule fuction will return and no further processing of the instructions in that function will be done. NoExtension is a function that looks like this:

bool NoExtension(const v8::FunctionCallbackInfo<v8::Value>&) { return false; }

And is set as the default function for module/instance callbacks.

Looking a little further we can see checks for WASM Threads support (TODO: take a look at this). And then we have:

  module_obj = i_isolate->wasm_engine()->SyncCompile(                             
        i_isolate, enabled_features, &thrower, bytes);

SyncCompile can be found in src/wasm/wasm-engine.cc and will call DecodeWasmModule which can be found in src/wasm/module-decoder.cc.

ModuleResult result = DecodeWasmModule(enabled, bytes.start(), bytes.end(),
                                       false, kWasmOrigin, 
                                       isolate->counters(), allocator()); 
ModuleResult DecodeWasmModule(const WasmFeatures& enabled,                      
                              const byte* module_start, const byte* module_end, 
                              bool verify_functions, ModuleOrigin origin,       
                              Counters* counters,                               
                              AccountingAllocator* allocator) {
  ...
  ModuleDecoderImpl decoder(enabled, module_start, module_end, origin);
  return decoder.DecodeModule(counters, allocator, verify_functions);

DecodeModuleHeader:

  uint32_t magic_word = consume_u32("wasm magic");

This will land in src/wasm/decoder.h consume_little_endian(name):


A wasm module has the following preamble:

magic nr: 0x6d736100 
version: 0x1

These can be found as a constant in src/wasm/wasm-constants.h:

constexpr uint32_t kWasmMagic = 0x6d736100; 
constexpr uint32_t kWasmVersion = 0x01;

After the DecodeModuleHeader the code will iterate of the sections (type, import, function, table, memory, global, export, start, element, code, data, custom). For each section DecodeSection will be called:

DecodeSection(section_iter.section_code(), section_iter.payload(),
              offset, verify_functions);

There is an enum named SectionCode in src/wasm/wasm-constants.h which contains the various sections which is used in switch statement in DecodeSection . Depending on the section_code there are DecodeSection methods that will be called. In our case section_code is:

(lldb) expr section_code
(v8::internal::wasm::SectionCode) $5 = kTypeSectionCode

And this will match the kTypeSectionCode and DecodeTypeSection will be called.

ValueType can be found in src/wasm/value-type.h and there are types for each of the currently supported types:

constexpr ValueType kWasmI32 = ValueType(ValueType::kI32);                      
constexpr ValueType kWasmI64 = ValueType(ValueType::kI64);                      
constexpr ValueType kWasmF32 = ValueType(ValueType::kF32);                      
constexpr ValueType kWasmF64 = ValueType(ValueType::kF64);                      
constexpr ValueType kWasmAnyRef = ValueType(ValueType::kAnyRef);                
constexpr ValueType kWasmExnRef = ValueType(ValueType::kExnRef);                
constexpr ValueType kWasmFuncRef = ValueType(ValueType::kFuncRef);              
constexpr ValueType kWasmNullRef = ValueType(ValueType::kNullRef);              
constexpr ValueType kWasmS128 = ValueType(ValueType::kS128);                    
constexpr ValueType kWasmStmt = ValueType(ValueType::kStmt);                    
constexpr ValueType kWasmBottom = ValueType(ValueType::kBottom);

FunctionSig is declared with a using statement in value-type.h:

using FunctionSig = Signature<ValueType>;

We can find Signature in src/codegen/signature.h:

template <typename T>
class Signature : public ZoneObject {
 public:
  constexpr Signature(size_t return_count, size_t parameter_count,
                      const T* reps)
      : return_count_(return_count),
        parameter_count_(parameter_count),
        reps_(reps) {}

The return count can be zero, one (or greater if multi-value return types are enabled). The parameter count also makes sense, but reps is not clear to me what that represents.

(lldb) fr v
(v8::internal::Signature<v8::internal::wasm::ValueType> *) this = 0x0000555555583950
(size_t) return_count = 1
(size_t) parameter_count = 2
(const v8::internal::wasm::ValueType *) reps = 0x0000555555583948

Before the call to Signatures construtor we have:

    // FunctionSig stores the return types first.                               
    ValueType* buffer = zone->NewArray<ValueType>(param_count + return_count);  
    uint32_t b = 0;                                                             
    for (uint32_t i = 0; i < return_count; ++i) buffer[b++] = returns[i];           
    for (uint32_t i = 0; i < param_count; ++i) buffer[b++] = params[i];         
                                                                                
    return new (zone) FunctionSig(return_count, param_count, buffer);

So reps_ contains the return (re?) and the params (ps?).

After the DecodeWasmModule has returned in SyncCompile we will have a ModuleResult. This will be compiled to NativeModule:

ModuleResult result =                                                         
      DecodeWasmModule(enabled, bytes.start(), bytes.end(), false, kWasmOrigin, 
                       isolate->counters(), allocator());
Handle<FixedArray> export_wrappers;                                           
  std::shared_ptr<NativeModule> native_module =                                 
      CompileToNativeModule(isolate, enabled, thrower,                          
                            std::move(result).value(), bytes, &export_wrappers);

CompileToNativeModule can be found in module-compiler.cc

TODO: CompileNativeModule...

There is an example in wasm_test.cc.

ExtensionCallback

Is a typedef defined in include/v8.h:

typedef bool (*ExtensionCallback)(const FunctionCallbackInfo<Value>&); 

JSEntry

TODO: This section should describe the functions calls below.

 * frame #0: 0x00007ffff79a52e4 libv8.so`v8::(anonymous namespace)::WebAssemblyModule(v8::FunctionCallbackInfo<v8::Value> const&) [inlined] v8::FunctionCallbackInfo<v8::Value>::GetIsolate(this=0x00007fffffffc9a0) const at v8.h:11204:40
    frame #1: 0x00007ffff79a52e4 libv8.so`v8::(anonymous namespace)::WebAssemblyModule(args=0x00007fffffffc9a0) at wasm-js.cc:638
    frame #2: 0x00007ffff6fe9e92 libv8.so`v8::internal::FunctionCallbackArguments::Call(this=0x00007fffffffca40, handler=CallHandlerInfo @ 0x00007fffffffc998) at api-arguments-inl.h:158:3
    frame #3: 0x00007ffff6fe7c42 libv8.so`v8::internal::MaybeHandle<v8::internal::Object> v8::internal::(anonymous namespace)::HandleApiCallHelper<true>(isolate=<unavailable>, function=Handle<v8::internal::HeapObject> @ 0x00007fffffffca20, new_target=<unavailable>, fun_data=<unavailable>, receiver=<unavailable>, args=BuiltinArguments @ 0x00007fffffffcae0) at builtins-api.cc:111:36
    frame #4: 0x00007ffff6fe67d4 libv8.so`v8::internal::Builtin_Impl_HandleApiCall(args=BuiltinArguments @ 0x00007fffffffcb20, isolate=0x00000f8700000000) at builtins-api.cc:137:5
    frame #5: 0x00007ffff6fe6319 libv8.so`v8::internal::Builtin_HandleApiCall(args_length=6, args_object=0x00007fffffffcc10, isolate=0x00000f8700000000) at builtins-api.cc:129:1
    frame #6: 0x00007ffff6b2c23f libv8.so`Builtins_CEntry_Return1_DontSaveFPRegs_ArgvOnStack_BuiltinExit + 63
    frame #7: 0x00007ffff68fde25 libv8.so`Builtins_JSBuiltinsConstructStub + 101
    frame #8: 0x00007ffff6daf46d libv8.so`Builtins_ConstructHandler + 1485
    frame #9: 0x00007ffff690e1d5 libv8.so`Builtins_InterpreterEntryTrampoline + 213
    frame #10: 0x00007ffff6904b5a libv8.so`Builtins_JSEntryTrampoline + 90
    frame #11: 0x00007ffff6904938 libv8.so`Builtins_JSEntry + 120
    frame #12: 0x00007ffff716ba0c libv8.so`v8::internal::(anonymous namespace)::Invoke(v8::internal::Isolate*, v8::internal::(anonymous namespace)::InvokeParams const&) [inlined] v8::internal::GeneratedCode<unsigned long, unsigned long, unsigned long, unsigned long, unsigned long, long, unsigned long**>::Call(this=<unavailable>, args=17072495001600, args=<unavailable>, args=17072631376141, args=17072630006049, args=<unavailable>, args=<unavailable>) at simulator.h:142:12
    frame #13: 0x00007ffff716ba01 libv8.so`v8::internal::(anonymous namespace)::Invoke(isolate=<unavailable>, params=0x00007fffffffcf50)::InvokeParams const&) at execution.cc:367
    frame #14: 0x00007ffff716aa10 libv8.so`v8::internal::Execution::Call(isolate=0x00000f8700000000, callable=<unavailable>, receiver=<unavailable>, argc=<unavailable>, argv=<unavailable>) at execution.cc:461:10

CustomArguments

Subclasses of CustomArguments, like PropertyCallbackArguments and FunctionCallabackArguments are used for setting up and accessing values on the stack, and also the subclasses provide methods to call various things like CallNamedSetter for PropertyCallbackArguments and Call for FunctionCallbackArguments.

FunctionCallbackArguments

class FunctionCallbackArguments                                                 
    : public CustomArguments<FunctionCallbackInfo<Value> > {
  FunctionCallbackArguments(internal::Isolate* isolate, internal::Object data,  
                            internal::HeapObject callee,                        
                            internal::Object holder,                            
                            internal::HeapObject new_target,                    
                            internal::Address* argv, int argc);

This class is in the namespace v8::internal so I'm curious why the explicit namespace is used here?

BuiltinArguments

This class extends JavaScriptArguments

class BuiltinArguments : public JavaScriptArguments {
 public:
  BuiltinArguments(int length, Address* arguments)
      : Arguments(length, arguments) {

  static constexpr int kNewTargetOffset = 0;
  static constexpr int kTargetOffset = 1;
  static constexpr int kArgcOffset = 2;
  static constexpr int kPaddingOffset = 3;
                                                                                
  static constexpr int kNumExtraArgs = 4;
  static constexpr int kNumExtraArgsWithReceiver = 5;

JavaScriptArguments is declared in src/common/global.h`:

using JavaScriptArguments = Arguments<ArgumentsType::kJS>;

Arguments can be found in src/execution/arguments.hand is templated with the a type of ArgumentsType (in src/common/globals.h):

enum class ArgumentsType {                                                          
  kRuntime,                                                                         
  kJS,                                                                              
}; 

An instance of Arguments only has a length which is the number of arguments, and an Address pointer which points to the first argument. The functions it provides allows for getting/setting specific arguments and handling various types (like Handle<S>, smi, etc). It also overloads the operator[] allowing to specify an index and getting back an Object to that argument. In BuiltinArguments the constants specify the index's and provides functions to get them:

  inline Handle<Object> receiver() const;                                       
  inline Handle<JSFunction> target() const;                                     
  inline Handle<HeapObject> new_target() const;

NativeContext

Can be found in src/objects/contexts.h and has the following definition:

class NativeContext : public Context {
 public:

  DECL_PRIMITIVE_ACCESSORS(microtask_queue, MicrotaskQueue*)

  V8_EXPORT_PRIVATE void AddOptimizedCode(Code code);
  void SetOptimizedCodeListHead(Object head);
  Object OptimizedCodeListHead();
  void SetDeoptimizedCodeListHead(Object head);
  Object DeoptimizedCodeListHead();
  inline OSROptimizedCodeCache GetOSROptimizedCodeCache();
  void ResetErrorsThrown();
  void IncrementErrorsThrown();
  int GetErrorsThrown();

src/parsing/parser.h we can find:

class V8_EXPORT_PRIVATE Parser : public NON_EXPORTED_BASE(ParserBase<Parser>) { 
  ...
  enum CompletionKind {                                                             
    kNormalCompletion,                                                              
    kThrowCompletion,                                                               
    kAbruptCompletion                                                               
  };

But I can't find any usages of this enum?

Internal fields/methods

When you see something like [[Notation]] you can think of this as a field in an object that is not exposed to JavaScript user code but internal to the JavaScript engine. These can also be used for internal methods.

Author: Danbev
Source Code: https://github.com/danbev/learning-v8 
License: 

#node #nodejs #v8 #learning 

Duong Tran

Duong Tran

1653317820

Xây Dựng Ứng Dụng Đặt Hàng Theo Thời Gian Thực Với React + WebSockets

Trong hướng dẫn này, chúng ta sẽ xem cách xây dựng ứng dụng web Đặt hàng, mà chúng ta sẽ sử dụng để hiển thị thông tin về tiền điện tử theo thời gian thực.

Chúng tôi sẽ sử dụng React với Typescript để tạo giao diện người dùng, Redux để quản lý trạng thái ứng dụng và các thành phần được tạo kiểu để áp dụng kiểu. Và cuối cùng, nhưng không kém phần quan trọng, chúng tôi sẽ sử dụng WebSockets để tìm nạp các nguồn cấp dữ liệu.

GitHub Repo

💡 Nếu bạn muốn bỏ qua phần đọc, đây 💁 là kho lưu trữ GitHub với README chi tiết 🙌, và tại đây bạn có thể xem bản demo trực tiếp.

Sổ đặt hàng là gì?

Sổ đặt hàng là một ứng dụng thường hiển thị một số loại thông tin liên quan đến việc mua và bán hàng hóa.

💡 Trường hợp sử dụng phổ biến nhất là hiển thị dữ liệu cho các tài sản khác nhau, chẳng hạn như cổ phiếu, trái phiếu, tiền tệ và thậm chí cả tiền điện tử.

Tại sao tôi cần một cuốn sách đặt hàng?

Trên thực tế, Sổ đặt hàng được các thương nhân sử dụng để theo dõi sự biến động của giá đấu thầu và giá chào bán của một số sản phẩm nhất định - tiền tệ, cổ phiếu, v.v.

Điều này đang diễn ra theo thời gian thực, vì vậy những thay đổi có thể rất nhanh chóng. Đây là nơi WebSockets sẽ có ích, như bạn sẽ thấy ở phần sau.

Trong quá khứ, người ta đã làm điều gì đó tương tự trên giấy, nhưng phần 'thời gian thực' là điều không thể, tất nhiên.

Một Sổ Đặt Hàng thông thường thường có hai mặt: mua (hoặc đấu thầu), được hiển thị bằng màu xanh lá cây ở bên trái và bán (hoặc hỏi), màu đỏ, ở bên phải.

Sổ đặt hàng cổ điển

Sách đặt hàng cổ điển

Kế hoạch cho Ứng dụng Đặt hàng của chúng tôi

Ứng dụng Đặt hàng của chúng tôi sẽ bao gồm năm phần:

  • xem chính sách đặt hàng
  • nhóm hộp chọn
  • Nút chuyển đổi nguồn cấp dữ liệu
  • Nút Kill Feed
  • Thông báo trạng thái.

Thiết kế ứng dụng sẽ như hình bên dưới. Lưu ý rằng thành phần Thông báo trạng thái, mà bạn sẽ thấy trong triển khai của tôi, bị thiếu trên các ảnh chụp màn hình này:

Bố cục trên màn hình

Bố cục trên màn hình

 

Bố cục di động

Bố cục di động

Tính năng ứng dụng

Quyển sổ đặc Mua hàng

Sổ lệnh có hai mặt: bên mua và bên bán.

Cả hai bên đều chứa thông tin về số lượng lệnh đã mở ở mỗi mức giá.

Mỗi cấp độ hiển thị:

  • Giá : đây là những gì xác định mức độ. Vì các lệnh phải được đặt ở mức giá bằng bội số của kích thước thị trường đã chọn (0,5), mỗi cấp độ sẽ tăng 0,5 (miễn là có một lệnh mở ở cấp độ đó).
  • Quy mô : tổng số lượng hợp đồng có được từ các lệnh mở đã được đặt ở cấp độ này.
  • Tổng : tổng số hợp đồng thu được từ các lệnh mở nằm trong sổ ở cấp độ này trở lên. Để tính tổng của một cấp nhất định, chúng tôi lấy kích thước của cấp hiện tại và tính tổng các kích thước dẫn đến mức giá này trong sổ đặt hàng. Tổng số cũng được sử dụng để tính toán công cụ hiển thị độ sâu (các thanh màu phía sau các cấp độ). Độ sâu của mỗi cấp được tính bằng cách lấy tổng của cấp đó làm tỷ lệ phần trăm của tổng cao nhất trong sách.

Nhóm hộp chọn

Theo mặc định, các đơn đặt hàng được nhóm theo kích thước vé của thị trường đã chọn (0,5).

Việc chuyển đổi nhóm có thể nằm trong khoảng 0,5, 1, 2,5 đối với thị trường XBTUSD và 0,05, 0,1 và 0,25 đối với thị trường ETHUSD.

Đối với các cấp độ nhóm, chúng tôi kết hợp các cấp độ được làm tròn xuống với kích thước nhóm gần nhất - ví dụ: nếu chúng ta thay đổi nhóm của mình từ 0,5 thành 1 thì chúng ta sẽ kết hợp dữ liệu từ giá 1000 và 1000,5 và hiển thị nó dưới một cấp duy nhất trong sổ đặt hàng với giá 1000.

Nút chuyển đổi nguồn cấp dữ liệu

Nút này chuyển đổi thị trường đã chọn giữa PI_XBTUSD và PI_ETHUSD. Đây là hai thị trường chúng tôi sẽ hỗ trợ -> Bitcoin / USD và Ethereum / USD.

Nó hỗ trợ logic phân nhóm động và xử lý các nhóm cho XBT (0,5, 1, 2,5) và nhóm cho ETH (0,05, 0,1, 0,25).

Nút hủy nguồn cấp dữ liệu

Nhấp vào nút này sẽ dừng nguồn cấp dữ liệu.

Sau đó, nhấp vào nút này lần thứ hai sẽ làm mới nguồn cấp dữ liệu.

Thông báo trạng thái

Thông báo này sẽ hiển thị thị trường hiện đang được chọn. Nó cũng sẽ hiển thị một thông báo cho biết nguồn cấp dữ liệu đã bị hủy.

Tech Stack cho ứng dụng của chúng tôi

Dưới đây là danh sách các công nghệ chính mà chúng tôi sẽ sử dụng:

  • Phản ứng với TypeScript ( yarn create react-app my-app --template typescript) - một thư viện giao diện người dùng mà chúng tôi sẽ sử dụng để xây dựng giao diện người dùng cho ứng dụng của chúng tôi.
  • Redux - một thư viện quản lý trạng thái mà chúng tôi sẽ sử dụng để quản lý trạng thái ứng dụng của chúng tôi.
  • WebSockets - Đối WebSockettượng cung cấp API để tạo và quản lý kết nối WebSocket tới máy chủ, cũng như để gửi và nhận dữ liệu trên kết nối. Chúng tôi sẽ sử dụng nó để thực hiện logic tiêu thụ nguồn cấp dữ liệu trực tiếp cũng như có thể dừng và gia hạn.
  • Styled-components - thư viện CSS trong JS cho phép bạn xác định kiểu CSS của các thành phần của mình bằng cách sử dụng các ký tự mẫu ES6. Chúng tôi sẽ sử dụng nó để thêm phong cách cho ứng dụng của mình và làm cho giao diện đẹp hơn. Nó sử dụng các ký tự mẫu được gắn thẻ để tạo kiểu cho các thành phần của bạn và loại bỏ ánh xạ giữa các thành phần và kiểu. Điều này có nghĩa là khi bạn xác định phong cách của mình, bạn thực sự đang tạo một thành phần React bình thường có các phong cách của bạn gắn liền với nó.
  • react-testing-library - Đây React Testing Librarylà một giải pháp rất nhẹ để kiểm tra các thành phần React. Chúng tôi sẽ sử dụng nó để kiểm tra các thành phần giao diện người dùng của ứng dụng của chúng tôi.
  • Jest - một Khung thử nghiệm JavaScript đã trở thành tiêu chuẩn thực tế khi chúng ta nói về việc thử nghiệm các ứng dụng React. Chúng tôi sẽ sử dụng nó để viết một số bài kiểm tra đơn vị sẽ bao gồm các chức năng giảm thiểu mà chúng tôi có trong ứng dụng của mình.

Cách xây dựng ứng dụng

Từ thời điểm này trở đi, tôi sẽ cố gắng hướng dẫn bạn quy trình mà tôi đã tuân theo khi xây dựng cái này.

💡 Tôi phải nói rằng những gì tôi đang cho bạn thấy ở đây chỉ là một cách để tạo ra một ứng dụng như vậy - nhưng nó không phải là cách trong bất kỳ khía cạnh nào. Có lẽ những người có nhiều kinh nghiệm hơn về tiền điện tử sẽ làm điều đó tốt hơn.

Cấu trúc dự án

Cấu trúc dự án khá đơn giản. Chúng tôi đang sử dụng React và các thành phần được tạo kiểu, điều này làm cho cách cấu trúc này rất thuận tiện.

Đầu tiên chúng ta hãy xem nó trông như thế nào và sau đó tôi sẽ giải thích những gì và tại sao.

Cấu trúc dự án

Cấu trúc dự án

Như bạn có thể thấy trên hình trên, tôi đã tổ chức hầu hết các thành phần trong các thư mục. Mỗi thư mục chứa một index.tsxtệp, một styles.tsxvà một .test.tsxtệp.

index.tsx - chứa mã chịu trách nhiệm về logic thành phần.

styles.tsx - chứa mã chịu trách nhiệm tạo kiểu cho thành phần. Đây là nơi các thành phần được tạo kiểu tỏa sáng.

.text.tsx - chúng chứa các bài kiểm tra đơn vị thành phần.

Hãy để tôi cung cấp cho bạn một bản tóm tắt ngắn về ý tưởng đằng sau mỗi thành phần trong componentsthư mục. Bắt đầu từ trên xuống dưới:

Nút hiển thị một nút có tiêu đề và màu nền nhất định. Nó được sử dụng cho hai nút ở chân trang Toggle FeedKill Feed / Renew Feed.

DepthVisualizer là thành phần chịu trách nhiệm vẽ nền màu đỏ và xanh lá cây mà bạn đang thấy đằng sau các con số. Nó thực hiện điều này bằng cách hiển thị một hàng (một phần tử HTML div) với chiều rộng nhất định, vị trí là bên trái (Giá thầu) hoặc bên phải (Câu hỏi).

Footer - không có nhiều điều để nói ở đây, nó chứa hai nút được sử dụng trong ứng dụng.

GroupingSelectBox kết xuất hộp chọn mà chúng tôi sử dụng để thay đổi giá trị nhóm, sử dụng bộ giảm setGrouping để sửa đổi trạng thái ứng dụng khi nhóm đang được thay đổi.

Header hiển thị tiêu đề của ứng dụng cũng như thành phần GroupingSelectBox.

Trình tải hiển thị hoạt ảnh đang tải được thực hiện bằng cách tận dụng SVG .

Sổ đặt hàng chứa logic cốt lõi của ứng dụng. Các thành phần được phân tách nằm trong các thư mục con và logic quản lý trạng thái Redux cũng nằm ở đây.

Spread hiển thị giá trị spread, được hiển thị ở giữa tiêu đề (trong chế độ xem trên màn hình). Bản thân thành phần chứa các phương pháp ngắn để tính toán số tiền và giá trị phần trăm.

StatusMessage là một thành phần nhỏ được sử dụng để hiển thị các thông báo trạng thái. Về cơ bản, nó cho thấy thị trường nào hiện đang được hiển thị và liệu nguồn cấp dữ liệu có bị giết hay không.

Hiệu suất kết xuất

Đây là thời điểm tốt để nói về hiệu suất kết xuấttạo kiểu nội tuyến một chút.

Kết xuất là quá trình React yêu cầu các thành phần của bạn mô tả những gì họ muốn phần giao diện người dùng của họ trông như thế nào dựa trên sự kết hợp hiện tại của các đạo cụ và trạng thái.

Quá trình này được kích hoạt bởi sự thay đổi trạng thái trong thành phần của bạn. Sự thay đổi này có thể do một số đạo cụ bị thay đổi hoặc do một số logic bên trong của thành phần.

Vấn đề ở đây là khi kết xuất lại xảy ra một cách không cần thiết, nó sẽ làm giảm hiệu suất của ứng dụng của chúng tôi. Đây chính xác là những gì đã xảy ra với tôi khi tôi giới thiệu việc triển khai ban đầu của thành phần DepthVisualizer . Nó đã sử dụng các thành phần được tạo kiểu, đó là JavaScript, cho phần vẽ.

Để giải quyết vấn đề này, tôi đã thay đổi thành phần để sử dụng các kiểu nội tuyến, đó là CSS thuần túy, thay vì CSS trong cách tiếp cận JS. Nói cách khác, nút thắt cổ chai của tôi là sử dụng hoạt ảnh JavaScript, đây là lý do nổi tiếng làm giảm hiệu suất.

Đây là cách nó trông như bây giờ:

const DepthVisualizer: FunctionComponent<DepthVisualizerProps> = ({windowWidth, depth, orderType }) => {
  return <div style={{
    backgroundColor: `${orderType === OrderType.BIDS ? DepthVisualizerColors.BIDS : DepthVisualizerColors.ASKS}`,
    height: "1.250em",
    width: `${depth}%`,
    position: "relative",
    top: 21,
    left: `${orderType === OrderType.BIDS && windowWidth > MOBILE_WIDTH ? `${100 - depth}%` : 0}`,
    marginTop: -24,
    zIndex: 1,
  }} />;
};

export default DepthVisualizer;

Tạo kiểu nội tuyến là khi bạn viết CSS cùng với đánh dấu, dưới dạng các giá trị cho stylethuộc tính. Đây là điều KHÔNG được coi là một thực hành tốt, nhưng như bạn có thể thấy ở đây, có những trường hợp cần thiết phải sử dụng nó.

💡 Thông thường, bạn sẽ trích xuất mã CSS của mình thành một tệp riêng biệt.

Chân trang một thành phần giả đơn giản được sử dụng để hiển thị hai nút ở chân trang của ứng dụng.

Các thành phần giả, còn được gọi là các thành phần không trạng thái hoặc đại diện, là các thành phần không giữ trạng thái và thường được sử dụng chỉ để trực quan hóa dữ liệu theo một cách nào đó. Dữ liệu này đang được chuyển qua đạo cụ. Ví dụ isFeedKilledcờ trong thành phần trên.

Nếu một thành phần như vậy cần thực hiện một số loại tương tác, nó thường thực hiện điều này bằng cách chấp nhận (một lần nữa thông qua đạo cụ, ví dụ toggleFeedCallback) các hàm gọi lại có thể được thực thi khi tương tác đó xảy ra. Ví dụ nhấp vào một nút.

Ở phía đối diện, chúng ta có thể có các thành phần thông minh hoặc trạng thái đầy đủ. Họ là những người được kết nối với trạng thái ứng dụng và có thể thao tác trực tiếp. Thông thường chúng là những người đọc dữ liệu từ trạng thái và chuyển nó đến các thành phần không trạng thái thông qua đạo cụ của chúng.

GroupingSelectBox chứa phần tử Chọn mà bạn có thể sử dụng để chuyển đổi giữa các nhóm.

Header là phần tiêu đề của ứng dụng. Nó sẽ cẩn thận để thiết lập đúng cách bố trí bao gồm tiêu đề 'Sổ đặt hàng' ở bên trái và hộp chọn ở bên phải.

Bộ tải được sử dụng như một chỉ báo khi dữ liệu chưa được tải. Nó tận dụng một hoạt ảnh SVG mà tôi đã tìm thấy trực tuyến.

Order Book là nơi điều thực sự đang xảy ra. Cái này bao gồm một số thành phần nhỏ hơn:

  • TableContainer - được sử dụng để tạo kiểu cho các khung nhìn cho cả hai bên Tỷ lệ cược và Cược.
  • TitleRow - đây là thành phần chịu trách nhiệm hiển thị tiêu đề của các cột: giải thưởng, kích thước và tổng số tương ứng.

Cách xây dựng giao diện người dùng với React và các thành phần được tạo kiểu

Khi chúng ta nói về cấu trúc dựa trên thành phần, chẳng hạn như cấu trúc mà React cung cấp cho chúng ta, thư viện thành phần được tạo kiểu có thể là một trong những lựa chọn đầu tiên bạn có thể thực hiện khi cần tạo kiểu.

Giống như Josh Comeau nói trong bài báo chi tiết của mình :

💡 Đó là một công cụ tuyệt vời. Theo nhiều cách, nó đã thay đổi cách tôi nghĩ về kiến ​​trúc CSS và đã giúp tôi giữ cho codebase của mình sạch sẽ và có tính mô-đun, giống như React!

Như tên của gợi ý lib, chúng ta có thể dễ dàng tạo kiểu cho các thành phần của mình bằng cách sử dụng CSS-in-JS pattern . Đây là một ví dụ về cách tôi sử dụng nó để viết các kiểu cho Buttonthành phần của mình:

import styled from "styled-components";

interface ContainerProps {
  backgroundColor: string;
}

export const Container = styled.button<ContainerProps>`
  padding: .3em .7em;
  margin: 1em;
  border-radius: 4px;
  border: none;
  color: white;
  background: ${props => props.backgroundColor};
  font-family: "Calibri", sans-serif;
  font-size: 1.2em;
  
  &:hover {
    cursor: pointer;
    opacity: .8;
  }
`

Lưu ý cách tôi đang sử dụng một interfacetrong tệp kiểu của mình và cũng như thuộc backgroundtính được chuyển như một đối số qua props. Đây là một phần của câu chuyện CSS-in-JS.

Khả năng sử dụng mã CSS trong JavaScript hoặc (như ai đó có thể nói) ngược lại rất tiện dụng. Ví dụ: khi chúng ta cần một thành phần trông khác nhau tùy thuộc vào một thứ gì đó, chúng ta có thể chuyển qua các đạo cụ của nó một tham số để xác định điều này.

Vì mọi phong cách thực sự là một thành phần, nên cách viết các phong cách này giống như viết các thành phần React. Ý tôi là, cuối cùng, mọi thứ đều là các thành phần, phải không?

Khả năng đáp ứng và phát hiện mức độ hiển thị trang

Trong khi làm việc trên ứng dụng này, tôi đọc được ở một số nơi rằng, đối với các ứng dụng hỗ trợ cập nhật nhanh, cách thực hiện tốt là thực hiện một số loại cơ chế để tạm dừng toàn bộ nội dung khi nó không được người dùng sử dụng. Ví dụ khi người dùng thu nhỏ cửa sổ trình duyệt hoặc chỉ mở một tab khác.

Vì sổ Đặt hàng của chúng tôi đang tiêu thụ rất nhiều khối dữ liệu mới mỗi giây qua WSS, tôi cũng quyết định triển khai cơ chế như vậy.

Điều này làm là:

  • nó hiển thị một trình tải khi dữ liệu chưa có ở đó
  • nó thay đổi tiêu đề meta để biểu thị rằng ứng dụng đang ở pausedchế độ
  • nó sẽ tạm dừng công việc khi cửa sổ ứng dụng được lấy nét

hình-114

Chế độ hoạt độnghình-115Chế độ tạm dừng

Bạn có thể xem toàn bộ quá trình thực hiện ở đây .

Phần thiết yếu là trong hook useEffect, chỉ được kích hoạt một lần khi ứng dụng hiển thị lần đầu tiên.

Trong đó, chúng tôi tận dụng API khả năng hiển thị trang bằng cách đính kèm các trình lắng nghe cần thiết. Và sau đó, trong các trình xử lý , chúng tôi chỉ đơn giản thực thi logic mà chúng tôi muốn.

Phát hiện kích thước cửa sổ

Trong hầu hết mọi ứng dụng có một số mức độ phản hồi, bạn cần một số logic để phát hiện những thay đổi trong kích thước cửa sổ và thực hiện một số hành động cho phù hợp.

Nói cách khác, bạn cần biết khi nào ứng dụng của mình đang được xem ở kích thước màn hình nhất định, để bạn có thể sắp xếp các thành phần và điều chỉnh phong cách của mình để mọi thứ trông đẹp và đúng vị trí.

Điều này đặc biệt hợp lệ đối với các ứng dụng thân thiện với thiết bị di động, nơi mà khả năng đáp ứng là điều cần thiết.

Việc triển khai phát hiện thay đổi kích thước cửa sổ của chúng tôi dựa trên thuộc innerWidtghtính của đối tượng cửa sổ trình duyệtonresizesự kiện đang được kích hoạt khi nó được thay đổi kích thước.

Tôi đang đính kèm một trình lắng nghe cho sự kiện này trong một useEffecthook trong tệp App.tsx . Và sau đó, mỗi khi kích thước cửa sổ thay đổi, tôi sẽ đặt chiều rộng mới thành một biến trạng thái thông qua setWindowWidthhook.

const [windowWidth, setWindowWidth] = useState(0);
...
...

// Window width detection
useEffect(() => {
  window.onresize = () => {
    setWindowWidth(window.innerWidth);
  }
  setWindowWidth(() => window.innerWidth);
}, []);

Sau đó, truyền biến này xuống thông qua tất cả các thành phần quan tâm và sử dụng nó cho phù hợp. Ví dụ ở đây là cách tôi sử dụng nó trong Order Book / index.tsx để biết khi nào và ở đâu kết xuất thành phần TitleRow.

{windowWidth > MOBILE_WIDTH && <TitleRow windowWidth={windowWidth} reversedFieldsOrder={false} />}

hình ảnh-142

Thành phần TitleRow - chế độ xem trên màn hìnhhình ảnh-143Thành phần TitleRow - chế độ xem trên thiết bị di động

Lưu ý rằng nó xuất hiện ở các vị trí khác nhau tùy thuộc vào vị trí đó cho dù bạn đang xem ứng dụng trên máy tính để bàn hay thiết bị di động.

Bạn có thể xem xét chính thành phần và thấy cách tiếp cận tương tự của việc sử dụng chiều rộng cửa sổ ở đó.

Quản lý trạng thái với Redux

Như bạn có thể đã đoán ra, tôi đã sử dụng Redux để quản lý trạng thái của ứng dụng.

Logic chính đằng sau điều đó được tập trung trong trình giảm bớt orderbookSlice . Trong vài dòng sau, tôi sẽ hướng dẫn bạn qua nó và xem làm thế nào và tại sao tôi đã xây dựng nó theo cách đó.

Đầu tiên, chúng tôi xác định giao diện và trạng thái ban đầu của dữ liệu sổ đặt hàng của chúng tôi. Trạng thái ban đầu chứa các giá trị mặc định mà chúng ta cần có khi khởi động ứng dụng.

export interface OrderbookState {
  market: string;
  rawBids: number[][];
  bids: number[][];
  maxTotalBids: number;
  rawAsks: number[][];
  asks: number[][];
  maxTotalAsks: number;
  groupingSize: number;
}

const initialState: OrderbookState = {
  market: 'PI_XBTUSD', // PI_ETHUSD
  rawBids: [],
  bids: [],
  maxTotalBids: 0,
  rawAsks: [],
  asks: [],
  maxTotalAsks: 0,
  groupingSize: 0.5
};

Sau đó, có một số phương pháp ngắn gọn, tự giải thích giúp thao tác với dữ liệu cấp:

const removePriceLevel = (price: number, levels: number[][]): number[][] => levels.filter(level => level[0] !== price);

const updatePriceLevel = (updatedLevel: number[], levels: number[][]): number[][] => {
  return levels.map(level => {
    if (level[0] === updatedLevel[0]) {
      level = updatedLevel;
    }
    return level;
  });
};

const levelExists = (deltaLevelPrice: number, currentLevels: number[][]): boolean => currentLevels.some(level => level[0] === deltaLevelPrice);

const addPriceLevel = (deltaLevel: number[], levels: number[][]): number[][] => {
  return [ ...levels, deltaLevel ];
};

Sau đó, điều kỳ diệu thực sự đang xảy ra. Nếu kích thước được trả về bởi một delta là 0 thì mức giá đó sẽ bị xóa khỏi sổ đặt hàng. Nếu không, bạn có thể ghi đè trạng thái của mức giá đó một cách an toàn bằng dữ liệu mới được trả về bởi delta đó.

/** The orders returned by the feed are in the format
 of [price, size][].
 * @param currentLevels Existing price levels - `bids` or `asks`
 * @param orders Update of a price level
 */
const applyDeltas = (currentLevels: number[][], orders: number[][]): number[][] => {
  let updatedLevels: number[][] = currentLevels;

  orders.forEach((deltaLevel) => {
    const deltaLevelPrice = deltaLevel[0];
    const deltaLevelSize = deltaLevel[1];

    // If new size is zero - delete the price level
    if (deltaLevelSize === 0 && updatedLevels.length > ORDERBOOK_LEVELS) {
      updatedLevels = removePriceLevel(deltaLevelPrice, updatedLevels);
    } else {
      // If the price level exists and the size is not zero, update it
      if (levelExists(deltaLevelPrice, currentLevels)) {
        updatedLevels = updatePriceLevel(deltaLevel, updatedLevels);
      } else {
        // If the price level doesn't exist in the orderbook and there are less than 25 levels, add it
        if (updatedLevels.length < ORDERBOOK_LEVELS) {
          updatedLevels = addPriceLevel(deltaLevel, updatedLevels);
        }
      }
    }
  });

  return updatedLevels;
}

Những gì tiếp theo sau đây là một vài phương pháp trợ giúp. Bây giờ, hãy để tôi nói một vài lời về từng người trong số họ:

  • addTotalSums - với sự trợ giúp của phương pháp này, chúng tôi lặp lại dữ liệu đơn đặt hàng, giá thầu hoặc yêu cầu và tính tổng tổng cho từng đơn hàng đó. Sau đó, tổng giá trị tổng được sử dụng để tạo hình ảnh nền.
  • addDepths - chúng tôi sử dụng phương pháp này để tính toán cái gọi là độ sâu cho mỗi đơn hàng. Các giá trị này sẽ được sử dụng sau này bởi thành phần máy đo độ sâu để hiển thị các hàng màu đỏ và xanh lá cây trong nền.
  • getMaxTotalSum - cái này trả về giá trị tối đa của tất cả các tổng.

Mọi thứ bên dưới là những gì chúng tôi sử dụng để tạo trạng thái ứng dụng. Theo tài liệu của Bộ công cụ Redux , nó sử dụng createSliceAPI để tạo phần .

hình ảnh-116

Trạng thái Redux

Tạo một lát cắt yêu cầu một tên chuỗi để xác định lát cắt, một giá trị trạng thái ban đầu và một hoặc nhiều hàm giảm thiểu để xác định cách trạng thái có thể được cập nhật.

Sau khi một lát được tạo, chúng ta có thể xuất các trình tạo hành động Redux đã tạo và hàm giảm thiểu cho toàn bộ lát.

Vài dòng cuối cùng bao gồm các nội dung xuất được đề cập - trình tạo hành động, trình chọn lát trạng thái và trình giảm chính.

export const { addBids, addAsks, addExistingState, setGrouping, clearOrdersState } = orderbookSlice.actions;
export const selectBids = (state: RootState): number[][] => state.orderbook.bids;
export const selectAsks = (state: RootState): number[][] => state.orderbook.asks;
export const selectGrouping = (state: RootState): number => state.orderbook.groupingSize;
export const selectMarket = (state: RootState): string => state.orderbook.market;
export default orderbookSlice.reducer;

Với tất cả những điều đó, logic thao tác trạng thái của chúng ta đã hoàn thành. 🎉

Now it’s time to take a look at the protocol we used in our app to take advantage of all these rapid changes in the data we consume.

Websocket Protocol (WSS)

As you may have noticed, we're using the Web Socket communication protocol for fetching data into our application. We also use its features, as you will see in a moment, to accomplish other things (such as toggling the feeds and subscribe/unsubscribe from the data channel).

Here is how I used it.

Instead of trying to rely on manual implementation, I used the react-use-websocket package. It gives you all you need when you want to leverage WSS in a React app. If you want to go into details about this, you may take a look at their documentation.

A Few Words About My Implementation

What we need fist is the endpoint URL where the data feeds are coming from. I am sure there are multiple options out there when we talk about cryptocurrencies. In our app I used the one provided by www.cryptofacilities.com/.

const WSS_FEED_URL: string = 'wss://www.cryptofacilities.com/ws/v1';

Then the only thing we need to do to start consuming the data is to put the useWebSocket hook to work. As you may have guessed already, this hook is provided by the package mentioned above.

import useWebSocket from ["react-use-websocket"](<https://github.com/robtaussig/react-use-websocket>);

...
...
...

const { sendJsonMessage, getWebSocket } = useWebSocket(WSS_FEED_URL, {
    onOpen: () => console.log('WebSocket connection opened.'),
    onClose: () => console.log('WebSocket connection closed.'),
    shouldReconnect: (closeEvent) => true,
    onMessage: (event: WebSocketEventMap['message']) =>  processMessages(event)
  });

We pass the endpoint as the first argument and a few callback functions after that. These help us perform certain actions when one of the following happens:

  • onOpen – what to do when WebSocket connection is established.
  • onClose – what to do when WebSocket connection is terminated.
  • shouldReconnect – this is just a flag, saying if we want automatic reconnect when the connection drops for some reason.
  • onMessage – this is the main event that brings us the chunks with the data (I call processMessage method every time when that happens. This means that every time when a new chunk of data is received, we process it and display it respectively).

Down below is the method in question. It simply does two things:

  • Either calls a method called process (No pun intended 😄) – this method is called every time new data for bids or asks is received and it processes it accordingly.
  • Dispatches an event that is using one of the reducer functions we have seen earlier. This function practically creates the initial state of our application.

Để quyết định xem chúng tôi đang thêm dữ liệu vào trạng thái hiện tại hay chúng tôi nên khởi tạo nó, chúng tôi kiểm tra một thuộc tính được gọi numLevels. Đây là thứ đến từ API, lần đầu tiên chúng tôi thiết lập kết nối WebSocket.

hình-117

Trọng tải ban đầu

Phần còn lại của mã bạn thấy trong tệp này chủ yếu là để chuẩn bị và hiển thị kết quả trên màn hình.

Phần thú vị nhất sẽ là phương pháp buildPriceLevelsđược sử dụng cho cả hai nửa - giá thầu và yêu cầu. Nó sắp xếp dữ liệu, thực hiện các tính toán cần thiết và chuyển nó cho các thành phần liên quan để hình dung nó. Đó là DepthVisualizerPriceLevelRowtôi đã đề cập trước đó trong bài viết này.

Phân nhóm

Nhóm là một phần quan trọng trong cách hoạt động của sổ đặt hàng, vì nó xác định kích thước vé mà các đơn đặt hàng được nhóm lại.

Trong ứng dụng của chúng tôi, tôi đã triển khai chức năng chuyển đổi theo từng thị trường, cho phép nhóm nó như sau:

  • Giữa 0,5, 1, 2,5 cho thị trường XBTUSD.

hình ảnh-118

Phân nhóm thị trường XBTUSD

  • Giữa 0,05, 0,1 và 0,25 đối với thị trường ETHUSD.

hình ảnh-119

Phân nhóm thị trường ETHUSD

Có một ý chính ngắn mà tôi đã tạo khi cố gắng tìm ra cách triển khai logic nhóm. Bạn có thể tìm thấy nó ở đây .

Ngoài ra, ngoài ý chính đó, trong khi phát triển điều này, tôi đã thực hiện nhiều thử nghiệm từ chính dự án. Và chỉ vì đây chỉ là các tệp cục bộ trên máy tính của tôi, nên tôi sẽ xuất bản chúng ở đây cho những bạn còn tò mò hơn.

Đó là một dự án npm phụ nhỏ chỉ có một phần phụ thuộc. Đây là tệp package.json:

{
  "name": "grouping",
  "version": "1.0.0",
  "main": "index.js",
  "license": "MIT",
  "dependencies": {
    "lodash.groupby": "^4.6.0"
  }
}

Và đây là mã của chính nó:

const bids = [
    [
        50163,
        110
    ],
    [
        50162,
        13140
    ],
    [
        50158,
        3763
    ],
    [
        50156,
        1570
    ],
    [
        50155,
        21997
    ],
    [
        50152.5,
        450
    ],
    [
        50151,
        4669
    ],
    [
        50150.5,
        10329
    ],
    [
        50150,
        2500
    ],
    [
        50149.5,
        450
    ],
    [
        50149,
        4022
    ],
    [
        50148,
        20000
    ],
    [
        50147,
        5166
    ],
    [
        50146.5,
        5274
    ],
    [
        50145,
        174609
    ],
    [
        50143,
        20000
    ],
    [
        50141,
        28000
    ],
    [
        50140.5,
        5000
    ],
    [
        50138,
        6000
    ],
    [
        50132.5,
        4529
    ],
    [
        50132,
        4755
    ],
    [
        50131,
        12483
    ],
    [
        50128.5,
        61115
    ],
    [
        50128,
        23064
    ],
    [
        50125.5,
        181363
    ]
]

/* function roundDownNearest(num, acc) {
    if (acc < 0) {
        return Math.floor(num * acc) / acc;
    } else {
        return Math.floor(num / acc) * acc;
    }
} */

/* function groupByTicketSize(ticketSize, levels) {
    const result = levels.map((element, idx) => {
        const nextLevel = levels[idx + 1];

        if (nextLevel) {
            const currentPrice = element[0];
            const currentSize = element[1];
            const nextPrice = nextLevel[0];
            const nextSize = nextLevel[1];
            console.log("current level: ", element)
            console.log("next level: ", nextLevel)

            element[0] = roundDownNearest(currentPrice, ticketSize);

            if (currentPrice - nextPrice < ticketSize) {
                element[1] = currentSize + nextSize;
            }
            console.log("==================================> Result: ", element)

            return element;
        }

    }).filter(Boolean); 
   

    console.log("============================================================");
    console.log(result)
} */

const test = [
    [1004.5, 1],
    [1001.5, 1],
    [1001,   1],
    [1000.5, 1],
    [1000,   1],
    [999.5,  1],
    [999,    1],
    [990,    1],
    [988,    1]
]

function groupByTicketSize(ticketSize, levels) {
    const result = [];

    for (let i = 0; i < levels.length; i++) {
        console.log(levels[i])
        const prevLevel = levels[i-1]
        const level1 = levels[i]
        const level2 = levels[i+1]

        if (prevLevel && level1 && level1[0] - ticketSize === prevLevel) return

        if (level2 && level1[0] - level2[0] < ticketSize) {
            const newLevel = [level2[0], level1[1] + level2[1]];
            console.log("newLevel", newLevel)
            result.push(newLevel);
        } else {
            result.push(level1)
        }
    }

    console.log("============================================================");
    console.log(result)
}

// groupByTicketSize(1, bids);
groupByTicketSize(1, test);

Cách thực hiện bài kiểm tra đơn vị trên ứng dụng

For performing unit testing I used the react-testing-library.

The main idea behind it that the developer should write tests only for what the user will see and interact with. There is no much point of testing implementation details.

💡 Imagine, just to give you an example, that you have implemented a list component that is just displaying lines of textual data. Say something like a todo list.

Then imagine that this data is coming from an API call in the shape of array. A data structure that you could easily iterate through via various methods – some sort of a loop cycle, such as for() or while(). Or you could use another more functional approach, say .map() method.

Bây giờ hãy tự hỏi bản thân - đối với người dùng cuối, người sẽ chỉ nhìn thấy dữ liệu văn bản được liệt kê, việc triển khai của bạn có quan trọng không? Miễn là mọi thứ hoạt động như mong đợi và theo cách tốt, hiệu quả, câu trả lời là 'không, nó không'.

Đây là những gì các bài kiểm tra của bạn nên phản ánh.

Trong bối cảnh ứng dụng Sổ đặt hàng của chúng tôi, mỗi tệp thử nghiệm được đặt trong cùng thư mục với tệp triển khai. Hầu hết các bài kiểm tra đều ngắn và dễ hiểu, do thực tế là những bài kiểm tra này chủ yếu là hiển thị logic và chỉ có con đường hạnh phúc .

Ví dụ, chúng ta hãy xem các bài kiểm tra thành phần nút bên dưới:

import React from 'react';
import { render, screen } from '@testing-library/react';
import Button from './index';

test('renders button with title', () => {
  render(<Button backgroundColor={'red'} callback={jest.fn} title={'Toggle'} />);
  const btnElement = screen.getByText(/Toggle/i);
  expect(btnElement).toBeInTheDocument();
});

Nó chỉ xác minh rằng thành phần được hiển thị đúng cách và nó hiển thị những gì chúng tôi mong đợi người dùng nhìn thấy. Đó là tiêu đề Toggle trong trường hợp này.

Để thử nghiệm các bộ giảm tốc , tôi đã sử dụng Jest , vì đây là phần hình ảnh không phải duy nhất mà chúng tôi sẽ đề cập đến. Các bài kiểm tra này cũng khá đơn giản và dễ hiểu. Tôi sử dụng chúng để kiểm tra xem trạng thái ứng dụng ban đầu có đúng không và để xem việc thêm các mức giá vào trạng thái đó có hoạt động chính xác hay không.

Cách triển khai ứng dụng cho Vercel

Cuối cùng - thời gian triển khai. 🎉

Sau khi kết thúc quá trình phát triển và thử nghiệm ứng dụng của chúng tôi, hãy đưa nó vào hoạt động.

Tôi đã sử dụng nền tảng Vercel cho mục đích này. Họ cung cấp một giao diện khá phong phú và dễ sử dụng cũng như tích hợp cho tất cả các nền tảng kiểm soát nguồn nổi tiếng hiện có - tất nhiên là bao gồm cả GitHub (nơi repo ứng dụng của chúng tôi).

Giả sử bạn có một tài khoản GitHub, những gì bạn cần làm nếu muốn tự mình triển khai tài khoản đó là đăng nhập bằng tài khoản đó tại đây .

hình ảnh-120

Màn hình đăng nhập Vercel

Nhấp vào nút + Dự án mới ở góc trên cùng bên phải. Sau đó, nhập kho lưu trữ Git của bạn bằng cách sử dụng các tùy chọn được cung cấp trong màn hình mở ra. Đây là diện mạo của tôi:

hình-121

Màn hình Kho lưu trữ Git Nhập khẩu Vercel

Sau khi nhập dự án, bạn sẽ có thể triển khai thực tế. Khi hoàn tất, Vercel sẽ tạo URL để bạn truy cập vào ứng dụng mới được triển khai của mình.

hình ảnh-122

Màn hình triển khai sản xuất Vercel

Và tôi nghĩ rằng bạn sẽ nhận được một email cho bạn biết liệu việc triển khai của bạn có thành công hay không. Email đó cũng chứa các URL này.

hình ảnh-123

Email triển khai thành công Vercel

 

Xin chúc mừng! 👏🏻

Bây giờ bạn đã có ứng dụng Đặt hàng của riêng mình và đang chạy trực tuyến.

Cách thêm huy hiệu bản dựng trên GitHub

Đây không phải là cuốn sách liên quan đến đơn đặt hàng, nhưng tôi quyết định chia sẻ nó với bạn ở đây. Chính những chi tiết nhỏ đó đã làm cho bức tranh lớn bằng cách nào đó trở nên hoàn chỉnh và hấp dẫn hơn.

Có thể một số bạn đã tự hỏi làm thế nào bạn có thể nhận được một trong những cái gọi là huy hiệu ?

hình-124

Đây là câu trả lời: https://shields.io/ .

Bạn chuyển đến phần Other và tìm tùy chọn GitHub Deployments.

hình ảnh-125

Sau đó bấm vào đó và làm theo hướng dẫn.

Có một điều nữa bạn cần làm để có được chức năng đầy đủ. Bạn đi đến kho lưu trữ GitHub của mình → tab Tác vụ và tạo tệp quy trình làm việc mới. Bạn chỉ có thể tiếp tục và sao chép nội dung của tôi từ đây . Đặt tên là main.yml .

Điều này sẽ làm là chạy các công việc được xác định trong tệp đó. Trong trường hợp của chúng tôi, đây chỉ là công việc xây dựng về cơ bản là quay một bản dựng mới và chạy các bài kiểm tra.

Sau khi hoàn thành việc này, bạn chỉ cần thêm các dòng sau vào tệp README của mình :

<!-- prettier-ignore-start -->
[![Tests](<https://github.com/mihailgaberov/orderbook/actions/workflows/main.yml/badge.svg>)](<https://github.com/mihailgaberov/orderbook/actions/workflows/main.yml>)
[![Build Status][build-badge]][build]

[build-badge]: <https://img.shields.io/github/deployments/mihailgaberov/orderbook/production?label=vercel&logoColor=vercel>
[build]: <https://github.com/mihailgaberov/orderbook/deployments>
<!-- prettier-ignore-end -->

💡 Đừng quên đưa thông tin chi tiết của riêng bạn vào URL, đó là tên người dùng GitHub và tên kho lưu trữ của bạn.

Sau khi đẩy những thay đổi này, bạn sẽ thấy các huy hiệu hiển thị trên README của bạn: 🥳.

hình ảnh-126

Huy hiệu GitHub

Kết thúc

Nếu bạn đang đọc nó ngay từ đầu, tôi sẽ đặt tên cho bạn là một nhà vô địch. 🍾

Đó là một chuyến đi dài, nhưng hy vọng sẽ thú vị và vui vẻ khi đi cùng tôi!

Bây giờ đã đến lúc tóm tắt những gì chúng tôi đã làm ở đây và cố gắng rút ra một số thông tin chi tiết hữu ích sẽ giúp chúng tôi trong những thách thức phát triển trong tương lai.

Tôi sẽ trình bày bên dưới ý kiến ​​của tôi về những gì là thách thức nhất trong việc xây dựng ứng dụng này. Và tôi sẽ còn háo hức hơn nữa để tìm ra đâu là của bạn.

Hiệu suất kết xuất

Điều này thực sự khiến tôi khó chịu ngay từ đầu, khi tôi đang xây dựng giao diện người dùng và đang cố gắng triển khai bản vẽ các hàng mức giá.

Tôi đã đề cập trước đó về cách tôi đã xoay sở để giải quyết nó và tôi nghĩ rằng đây sẽ là điều mà tôi sẽ nhớ chắc chắn.

Nhóm chức năng

Việc thực hiện điều này cũng khá khó khăn vì có một số yếu tố tôi phải tính đến. Vì thị trường chúng ta đang ở và phạm vi mà tôi phải tính toán.

Tôi đã mất một khoảng thời gian để đánh bóng nó (hãy nhớ lại dự án mini bên cạnh và ý chính mà tôi đã chia sẻ trong các phần trước) và tôi vẫn nghĩ rằng nó có thể được cải thiện nhiều hơn nữa. Hãy thử chuyển đổi giữa các thị trường và các giá trị nhóm nhiều lần và quan sát kết quả.

Không gian để cải thiện

Một điều đã được đề cập chắc chắn là việc phân nhóm. Điều này cũng sẽ cải thiện việc hình dung các phần màu đỏ và xanh lá cây - chúng (hầu như) luôn phải tạo thành một hình tam giác không lý tưởng.

Nếu chúng ta cố gắng nhìn vào bức tranh lớn hơn, ứng dụng đặt hàng này cũng có thể là một phần của màn hình bảng điều khiển chứa đầy các vật dụng khác và tất cả chúng đều có thể tương tác giữa chúng.

Ví dụ: thay đổi nhóm của sổ đặt hàng để phản ánh việc thay đổi chế độ xem trong các tiện ích con khác - giả sử hiển thị biểu đồ thị trường như biểu đồ này bên dưới:

hình ảnh-127

Tôi thậm chí không đề cập đến việc thêm các thị trường mới như một sự cải tiến , vì điều đó khá rõ ràng. Nhưng điều này cần được tính đến khi xây dựng chức năng cho các thị trường hiện tại, để thực hiện theo cách có thể dễ dàng mở rộng. Vì vậy, việc thêm một thị trường mới vào sổ đặt hàng là một nhiệm vụ nhỏ và nhanh chóng phải làm.

Tôi nghĩ đó là tất cả từ tôi.

Cảm ơn vì đã đọc! 🙏

Nguồn: https://www.freecodecamp.org/news/react-websockets-project-build-real-time-order-book-app/

#react #websockets 

Hoang  Kim

Hoang Kim

1659012494

Cách Xác Thực Với JWT Cho Trang Web Của Bạn

Kể từ khi phát triển ứng dụng web ra đời, rất nhiều thông tin nhạy cảm được gửi qua internet khiến khái niệm xác thực là điều mà mọi nhà phát triển web nên hiểu và áp dụng trong ứng dụng để bảo mật thông tin được người dùng giao phó cho ứng dụng. Trong bài viết này, chúng ta sẽ xem xét một phương tiện xác thực cho các ứng dụng web được gọi là xác thực JWT. So với các phương pháp khác, xác thực JWT đã trở thành một yêu thích do có nhiều ưu điểm đối với các nhà phát triển.

Trước khi đi sâu vào mã hóa, chúng tôi sẽ xác định một số thuật ngữ và khái niệm chính để giúp chúng tôi hiểu cách xác thực JWT hoạt động, sau đó chúng tôi sẽ tích hợp hình thức xác thực này vào một dự án có máy chủ được tạo bằng Node.js và front-end được tạo bằng React.js một khung công tác được sử dụng rộng rãi (thực sự là yêu thích của cá nhân tôi) để phát triển front-end.

Để có thể theo dõi phần còn lại của bài viết, bạn cần những điều sau:

  • Kiến thức làm việc về JavaScript
  • Hiểu rõ về Node.js và cách sử dụng nó trong việc tạo máy chủ.
  • Làm việc hiểu biết về tạo cơ sở dữ liệu.
  • Kiến thức cơ bản về React.js
  • Postman và kiến ​​thức về cách sử dụng Postman.

JWT là gì và nó hoạt động như thế nào?

JWT là viết tắt của JSON Web Token, một tiêu chuẩn mở được sử dụng để chia sẻ thông tin bảo mật dưới dạng đối tượng JSON giữa máy khách và máy chủ. Sự hiện diện của JWT trong một yêu cầu đến máy chủ từ khách hàng cho thấy rằng thông tin đã được xác minh và độ tin cậy của nó được thiết lập vì nó được ký kỹ thuật số bằng cách sử dụng bí mật được viết bằng thuật toán mật mã để đảm bảo rằng các xác nhận quyền sở hữu không bị thay đổi sau mã thông báo được phát hành. Mặc dù không có người trung gian nào có thể sửa đổi JWT, nhưng bạn nên sử dụng nó trong môi trường HTTPS vì JWT không được mã hóa.

Xác thực JWT là một cơ chế xác thực không trạng thái được sử dụng phổ biến như một phiên không trạng thái phía máy khách. Máy chủ không phải hoàn toàn dựa vào cơ sở dữ liệu để lưu thông tin phiên. Thông tin phiên được lưu trữ trên máy khách; do đó, không cần tra cứu cơ sở dữ liệu để xác minh danh tính của người dùng yêu cầu. Nó hoạt động như thế này:

  • Người dùng đăng nhập vào một trang web hoặc ứng dụng bằng email / tên người dùng và mật khẩu để chứng minh danh tính của mình.
  • Máy chủ xác nhận danh tính của người dùng và gửi lại mã thông báo truy cập duy nhất có chứa tham chiếu đến danh tính của anh ta.
  • Sau đó, máy khách bao gồm mã thông báo truy cập duy nhất này với mọi yêu cầu đến máy chủ, vì vậy nếu mã thông báo truy cập bị sai / bị thay đổi, máy khách sẽ bị từ chối truy cập.
  • Đối với các tuyến đường được bảo vệ, một phần mềm trung gian xác thực được tạo trong máy chủ để xác nhận sự hiện diện của mã thông báo hợp lệ. Máy chủ có thể sử dụng thêm danh tính để triển khai các quyền chi tiết hơn.

1

Ưu và nhược điểm của Xác thực JWT

Có một số lợi thế:

  • Nhỏ gọn hơn: JSON ít dài dòng hơn XML, vì vậy khi nó được mã hóa, JWT nhỏ hơn mã thông báo SAML. Điều này làm cho JWT trở thành một lựa chọn tuyệt vời để được thông qua trong các môi trường HTML và HTTP.
  • An toàn hơn: JWT có thể sử dụng cặp khóa công khai / riêng tư làm chứng chỉ X.509 để ký. JWT cũng có thể được ký đối xứng bằng một bí mật được chia sẻ bằng cách sử dụng thuật toán HMAC. Và trong khi các mã thông báo SAML có thể sử dụng các cặp khóa công khai / riêng tư như JWT, việc ký XML bằng Chữ ký số XML mà không có các lỗ hổng bảo mật khó hiểu là rất khó khi so sánh với sự đơn giản của việc ký JSON. Đọc thêm về các thuật toán ký JWT tại đây .
  • Phổ biến hơn: Bộ phân tích cú pháp JSON phổ biến trong hầu hết các ngôn ngữ lập trình vì chúng ánh xạ trực tiếp đến các đối tượng. Ngược lại, XML không có ánh xạ tài liệu sang đối tượng tự nhiên, làm cho việc làm việc với JWT dễ dàng hơn so với các xác nhận SAML.
  • Dễ dàng xử lý hơn: JWT được sử dụng trên quy mô internet. Điều này có nghĩa là nó dễ dàng hơn để xử lý trên các thiết bị của người dùng, đặc biệt là thiết bị di động.

Tuy nhiên, cũng có một số nhược điểm:

  • Nếu một ứng dụng khách cần bị chặn hoặc hủy kích hoạt, ứng dụng sẽ phải đợi mã thông báo hết hạn để khóa có hiệu lực hoàn toàn.
  • Nếu khách hàng cần thay đổi mật khẩu của họ và xác thực đã được thực hiện trước đó, mã thông báo được tạo bằng mật khẩu trước đó sẽ vẫn có giá trị cho đến khi hết hạn.
  • Việc triển khai tiêu chuẩn chỉ định không có mã thông báo "làm mới". Khi hết hạn, khách hàng sẽ phải xác thực lại.
  • Không thể phá hủy mã thông báo mà không vi phạm khía cạnh “không trạng thái” của mã thông báo JWT: Ngay cả khi mã thông báo bị xóa khỏi trình duyệt, nó vẫn có giá trị cho đến khi hết hạn, vì vậy không thể đăng xuất thực sự.

Để đối phó với những thách thức này, một số thư viện JWT thêm một lớp bên trên thông số kỹ thuật tiêu chuẩn, cho phép cơ chế làm mới mã thông báo và một số tính năng như buộc người dùng xác thực lại. Dưới đây là một số khuyến nghị cho các nhà phát triển JWT.

Cấu trúc JWT là gì?

Mã thông báo web JSON ở dạng nhỏ gọn bao gồm ba phần được phân tách bằng dấu chấm, đó là:

  • Tiêu đề
  • Khối hàng
  • Chữ ký

Tiêu đề chứa hai phần: loại mã thông báo và thuật toán ký. Thuật toán ký có thể là HMAC SHA256 hoặc RSA. JSON này sau đó được mã hóa Base64Url để tạo thành phần đầu tiên của JWT. Đây là một ví dụ về tiêu đề:

{
  "alg" : "HS256",
  "typ": "JWT"
}

Trọng tải chủ yếu chứa các xác nhận quyền sở hữu. Tuyên bố là tuyên bố về một mặt hàng, trong trường hợp của chúng tôi là người dùng và dữ liệu bổ sung. Máy chủ thường sử dụng thông tin này để xác minh rằng người dùng có quyền thực hiện hành động mà họ đang yêu cầu. Ví dụ:

{
  "iss":" Signin route",
  "name": "janet",
  "sub":"2"
  "admin": true
}

Cuối cùng, chữ ký được sử dụng để xác minh rằng tin nhắn không bị thay đổi và nó cũng được sử dụng để xác minh rằng người gửi JWT là người mà nó nói. Chữ ký được tạo bằng cách lấy tiêu đề được mã hóa, trọng tải được mã hóa, bí mật và thuật toán được chỉ định trong tiêu đề và mã hóa đó. Ví dụ: nếu bạn muốn sử dụng thuật toán HMAC SHA256, chữ ký sẽ được tạo theo cách này:

HMAC256(
    base64UrlEncode(header) + "." + base64UrlEncode(payload), secret
)

Sau khi tất cả điều này được thực hiện, chúng tôi nhận được ba chuỗi Base64Url đại diện cho ba phần khác nhau của mã thông báo JWT được phân tách bằng dấu chấm có thể dễ dàng chuyển trong môi trường HTML và HTTP. Đây là một ví dụ từ https://token.dev/paseto/ hiển thị tiêu đề, trọng tải, chữ ký và ba chuỗi Base64Url của chúng tôi được phân tách bằng dấu chấm.

2

Tích hợp Xác thực JWT vào back end

Node.js là một môi trường thời gian chạy JavaScript back-end, đa nền tảng, mã nguồn mở, thực thi mã JavaScript bên ngoài trình duyệt web. Nó được thiết kế để xây dựng các ứng dụng mạng có khả năng mở rộng. Đối với tôi, Node.js là React của phát triển web back-end. Sử dụng Node.js, chúng tôi sẽ tạo các tuyến đăng nhập, đăng ký và xác thực sẽ nhận thông tin người dùng từ giao diện người dùng, băm mật khẩu nếu cần, tạo, xác minh và xác thực người dùng bất cứ khi nào người dùng đăng nhập và yêu cầu truy cập tuyến đường được bảo vệ của chúng tôi.

Cùng với Node.js cho dự án này, chúng tôi đã sử dụng PostgreSQL để tạo cơ sở dữ liệu của mình; bạn có thể tìm hiểu cách thực hiện điều đó tại đây , Knex.js để xây dựng truy vấn và bcrypt.js để băm mật khẩu của chúng tôi để nếu cơ sở dữ liệu của chúng tôi bị xâm phạm thì tin tặc sẽ không sử dụng được mật khẩu người dùng.

Tạo lộ trình đăng ký của chúng tôi

Đầu tiên, chúng ta cần cài đặt thư viện JWT và các phụ thuộc khác mà chúng ta cần cho dự án này. Để làm điều đó, chúng tôi sẽ chạy lệnh sau:

1npm i jsonwebtoken bcrypt knex postgres --save

Sau đó, chúng tôi sẽ lưu trữ bí mật của chúng tôi trong tệp .env của chúng tôi;

1REACT_APP_TOKEN= "jwtsecrettutorial"

Chúng tôi sẽ tạo điểm cuối đăng ký của mình để nhận thông tin của người dùng từ giao diện người dùng yêu cầu, băm mật khẩu, gửi thông tin đến cơ sở dữ liệu của chúng tôi, tạo mã thông báo JWT của chúng tôi và trả lời giao diện người dùng bằng mã thông báo JWT của chúng tôi;

app.post("/register", (req, res, db, bcrypt, jwt) => {
  const { email, name, password } = req.body;

  if (!email || !name || !password) {
    return res
      .status(400)
      .json(`${console.log(req.body)}incorrect form submission`);
  }

  //Hashing our password with bcrypt
  const hash = bcrypt.hashSync(password);
  db.transaction((trx) => {
    trx
      .insert({
        hash: hash,
        email: email,
      })

      //Inserting our user's info into our login and user table
      .into("login")
      .returning("email")
      .then((loginEmail) => {
        return trx("users").returning("*").insert({
          email: loginEmail[0].email,
          name: name,
          joined: new Date(),
        });
      })
      //creating the JWT token and responding to the front end with our token
      .then((user) => {
        const accessToken = jwt.sign({ email }, process.env.REACT_APP_TOKEN, {
          expiresIn: "3000s",
        });
        res.json({ accessToken });
      });
  })
    .then(trx.commit)
    .catch(trx.rollback);
});

3

Thông tin của khách hàng đã được gửi đến máy chủ bằng Postman trong hình trên. Sau khi lưu thông tin của khách hàng, máy chủ sẽ phản hồi bằng mã thông báo JWT cho một yêu cầu tiếp theo.

Tạo lộ trình Đăng nhập / Đăng nhập của chúng tôi

Đối với lộ trình đăng nhập, chúng tôi sẽ tạo điểm cuối của mình để nhận thông tin người dùng từ yêu cầu giao diện người dùng, xác minh xem người dùng có tồn tại trong cơ sở dữ liệu của chúng tôi hay không và nếu người dùng tồn tại, mã thông báo JWT sẽ được tạo và gửi đến phía máy khách ; mã thông báo này sẽ được sử dụng cho một yêu cầu API tiếp theo.

app.post("/signin", (req, res, db, bcrypt, jwt) => {
  const { email, password } = req.body;
  if (!email || !password) {
    return res.status(400).json("incorrect form submission");
  }
  //Getting the user info from the database
  db.select("email", "hash")
    .from("login")
    .where("email", "=", email)
    .then((data) => {
      //comparing the password rech the one in the database using bcrypt
      const isValid = bcrypt.compareSync(password, data[0].hash);
      if (isValid) {
        return db
          .select("*")
          .from("users")
          .where("email", "=", email)
          .then((user) => {
            const accessToken = jwt.sign(
              { email },
              process.env.REACT_APP_TOKEN,
              { expiresIn: "3000s" }
            );
            res.json({ accessToken });
          })
          .catch((err) => res.status(400).json(`${err}wrong credentials`));
      } else {
        res.status(400).json(`${err}wrong credentials`);
      }
    })
    .catch((err) => res.status(400).json(`${err}wrong credentials`));
});

4

Trong hình trên, thông tin của khách hàng đã được gửi đến máy chủ bằng Postman. Sau khi kiểm tra chéo và xác nhận thông tin của khách hàng, máy chủ sẽ phản hồi bằng mã thông báo JWT cho các yêu cầu tiếp theo.

Tạo lộ trình xác thực của chúng tôi

Để xác thực, chúng tôi sẽ tạo một phần mềm trung gian thực hiện xác thực bất cứ khi nào yêu cầu được thực hiện thông qua tuyến đường được bảo vệ của chúng tôi. Lộ trình này sẽ yêu cầu mã thông báo người dùng trong tiêu đề yêu cầu là 'x-auth-token' để ủy quyền. Mã thông báo sẽ được lấy từ tiêu đề và được xác minh bởi phần mềm trung gian của chúng tôi. Bạn có thể tìm hiểu thêm về Ủy quyền HTTP qua tiêu đề yêu cầu tại đây . Để tạo phần mềm trung gian, hãy sử dụng mã bên dưới;

require("dotenv").config();
var jwt = require("jsonwebtoken");

module.exports = {
  jwtauth(req, res, next) {
    const token = req.header("x-auth-token");
    if (!token) {
      res.status(401).json("token not found");
    }
    try {
      const user = jwt.verify(token, process.env.REACT_APP_TOKEN);
      req.user = user.email;
      console.log("middleware is working");
      next();
    } catch (error) {
      res.status(401).json("invalid token");
    }
  },
};

Bây giờ chúng tôi có thể thêm một tuyến đường được bảo vệ vào máy chủ của chúng tôi; một yêu cầu tới tuyến đường này trước tiên sẽ đi qua phần mềm trung gian của chúng tôi trước khi quyền truy cập được cấp hoặc từ chối.

const jwtauth = require("./middleware/jwtauth");

app.post("/protected", jwtauth, (req, res) => {
  res.status(200).send("Here's the info you requested ");
});

Nếu một yêu cầu được thực hiện mà không cung cấp mã thông báo bằng 'x-access-token' trong tiêu đề, một thông báo lỗi sẽ được trả về cho biết "không tìm thấy mã thông báo".

5

Trong hình trên, một yêu cầu được gửi đến máy chủ qua Postman mà không có mã thông báo trong tiêu đề và máy chủ phản hồi bằng một thông báo lỗi cho biết không tìm thấy mã thông báo. Nếu mã thông báo được cung cấp trong tiêu đề và mã thông báo đó chính xác, nó cho phép khách hàng truy cập vào tuyến đường được bảo vệ, nhưng nếu mã thông báo sai, nó sẽ phản hồi bằng một thông báo lỗi cho biết “mã thông báo không hợp lệ”.

6

Trong hình trên, một yêu cầu được gửi đến máy chủ qua Postman với mã thông báo không chính xác trong tiêu đề và máy chủ phản hồi bằng một thông báo lỗi cho biết mã thông báo không hợp lệ.

Tích hợp Xác thực JWT vào giao diện người dùng

Để thực hiện việc này, bạn cần cài đặt Axios trong giao diện người dùng của chúng tôi được tạo bằng React.js bằng cách thực hiện;

1npm i axios

Trong trang đăng ký / đăng ký trong React.js của chúng tôi, chúng tôi muốn phía máy khách lưu trữ JWT mà nó nhận được từ phía máy chủ sau khi thông tin của họ được lưu trữ trên cơ sở dữ liệu. Mã thông báo này sẽ được sử dụng cho các yêu cầu API tiếp theo, vì vậy chúng tôi thêm chức năng này vào mã của mình;

onSubmitSignUp = () => {
  console.log(this.state);
  axios
    .post("http://localhost:3001/register", {
      email: this.state.email,
      password: this.state.password,
      name: this.state.name,
      enteries: this.state.enteries,
    })

    .then((response) => {
      if (response.data.accessToken) {
        localStorage.setItem("user", JSON.stringify(response.data));
      } else {
        console.log("no response");
      }
    });
};

Khi điều này được thực hiện, mã thông báo được lưu trữ trong bộ nhớ cục bộ của chúng tôi ở phía máy khách. Chúng tôi sẽ làm điều tương tự với trang đăng nhập của mình để mã thông báo sẽ được tạo cho các lệnh gọi API tiếp theo khi người dùng hiện có đăng nhập.

onSubmitSignIn = () => {
  console.log(this.state);
  axios
    .post("http://localhost:3001/signin", {
      email: this.state.email,
      password: this.state.password,
    })

    .then((response) => {
      if (response.data.accessToken) {
        localStorage.setItem("user", JSON.stringify(response.data));
      } else {
        console.log("no response");
      }
    });
};

Đối với lộ trình xác thực của chúng tôi, chúng tôi phải truy xuất mã thông báo đã được lưu trữ từ bộ nhớ của chúng tôi, sau đó sẽ được gửi đến phía máy chủ để xác thực và thực hiện thêm hành động.

export default function authHeader() {
  const user = JSON.parse(localStorage.getItem("user"));
  if (useraccessToken) {
    return { "x-auth-token": user.accessToken };
  }
}
axios.post("http://localhost:3001/protected", { header: authHeader() });

Với tất cả những điều này đã hoàn thành, chúng tôi đã thiết lập thành công một hệ thống xác thực hoạt động hoạt động với node.js (back-end) của chúng tôi, tạo mã thông báo của chúng tôi và gửi nó đến react.js (front-end) của chúng tôi, sau đó lưu trữ mã thông báo của chúng tôi và sử dụng nó cho các yêu cầu tiếp theo đối với tuyến đường được bảo vệ của chúng tôi.

Sự kết luận

Cho đến nay, chúng tôi đã xem xét xác thực JWT, cấu trúc JWT, xác thực JWT là gì, cách thức hoạt động và cách thêm nó vào các tuyến node.js phía máy chủ và ứng dụng React.js của chúng tôi. Bạn có thể tìm hiểu thêm về JWT cũng như các thư viện và công cụ giúp bạn sử dụng xác thực JWT dễ dàng và an toàn hơn tại đây . Tôi hy vọng hướng dẫn này hữu ích, chúc bạn có những yêu cầu xác thực vui vẻ với Mã thông báo web JSON.

Liên kết: https://blog.openreplay.com/authentication-with-jwt-for-your-website

#jwt #authentication