Kasey  Turcotte

Kasey Turcotte

1629654240

How To Use Pandas DataFrames' GroupBy Method For Beginner

Course Repository & Practice Problems

All of the code for this course's practice problems can be found in this GitHub repository.

There are two options that you can use to complete the practice problems:

  • Open them in your browser with a platform called Binder using this link (recommended)
  • Download the repository to your local computer and open them in a Jupyter Notebook using Anaconda (a bit more tedious)

#pandas #Python 

What is GEEK

Buddha Community

How To Use Pandas DataFrames' GroupBy Method For Beginner

Practice Problems: How To Use Pandas DataFrames' GroupBy Method

It’s now time for some practice problems! See below for details on how to proceed.

Course Repository & Practice Problems

All of the code for this course’s practice problems can be found in this GitHub repository.

There are two options that you can use to complete the practice problems:

  • Open them in your browser with a platform called Binder using this link (recommended)
  • Download the repository to your local computer and open them in a Jupyter Notebook using Anaconda (a bit more tedious)

Note that binder can take up to a minute to load the repository, so please be patient.

Within that repository, there is a folder called starter-files and a folder called finished-files. You should open the appropriate practice problems within the starter-files folder and only consult the corresponding file in the finished-files folder if you get stuck.

The repository is public, which means that you can suggest changes using a pull request later in this course if you’d like.

#pandas #groupby methods #pandas dataframe #example #practice problems: how to use pandas dataframes' groupby method #practice problems

Chloe  Butler

Chloe Butler

1667425440

Pdf2gerb: Perl Script Converts PDF Files to Gerber format

pdf2gerb

Perl script converts PDF files to Gerber format

Pdf2Gerb generates Gerber 274X photoplotting and Excellon drill files from PDFs of a PCB. Up to three PDFs are used: the top copper layer, the bottom copper layer (for 2-sided PCBs), and an optional silk screen layer. The PDFs can be created directly from any PDF drawing software, or a PDF print driver can be used to capture the Print output if the drawing software does not directly support output to PDF.

The general workflow is as follows:

  1. Design the PCB using your favorite CAD or drawing software.
  2. Print the top and bottom copper and top silk screen layers to a PDF file.
  3. Run Pdf2Gerb on the PDFs to create Gerber and Excellon files.
  4. Use a Gerber viewer to double-check the output against the original PCB design.
  5. Make adjustments as needed.
  6. Submit the files to a PCB manufacturer.

Please note that Pdf2Gerb does NOT perform DRC (Design Rule Checks), as these will vary according to individual PCB manufacturer conventions and capabilities. Also note that Pdf2Gerb is not perfect, so the output files must always be checked before submitting them. As of version 1.6, Pdf2Gerb supports most PCB elements, such as round and square pads, round holes, traces, SMD pads, ground planes, no-fill areas, and panelization. However, because it interprets the graphical output of a Print function, there are limitations in what it can recognize (or there may be bugs).

See docs/Pdf2Gerb.pdf for install/setup, config, usage, and other info.


pdf2gerb_cfg.pm

#Pdf2Gerb config settings:
#Put this file in same folder/directory as pdf2gerb.pl itself (global settings),
#or copy to another folder/directory with PDFs if you want PCB-specific settings.
#There is only one user of this file, so we don't need a custom package or namespace.
#NOTE: all constants defined in here will be added to main namespace.
#package pdf2gerb_cfg;

use strict; #trap undef vars (easier debug)
use warnings; #other useful info (easier debug)


##############################################################################################
#configurable settings:
#change values here instead of in main pfg2gerb.pl file

use constant WANT_COLORS => ($^O !~ m/Win/); #ANSI colors no worky on Windows? this must be set < first DebugPrint() call

#just a little warning; set realistic expectations:
#DebugPrint("${\(CYAN)}Pdf2Gerb.pl ${\(VERSION)}, $^O O/S\n${\(YELLOW)}${\(BOLD)}${\(ITALIC)}This is EXPERIMENTAL software.  \nGerber files MAY CONTAIN ERRORS.  Please CHECK them before fabrication!${\(RESET)}", 0); #if WANT_DEBUG

use constant METRIC => FALSE; #set to TRUE for metric units (only affect final numbers in output files, not internal arithmetic)
use constant APERTURE_LIMIT => 0; #34; #max #apertures to use; generate warnings if too many apertures are used (0 to not check)
use constant DRILL_FMT => '2.4'; #'2.3'; #'2.4' is the default for PCB fab; change to '2.3' for CNC

use constant WANT_DEBUG => 0; #10; #level of debug wanted; higher == more, lower == less, 0 == none
use constant GERBER_DEBUG => 0; #level of debug to include in Gerber file; DON'T USE FOR FABRICATION
use constant WANT_STREAMS => FALSE; #TRUE; #save decompressed streams to files (for debug)
use constant WANT_ALLINPUT => FALSE; #TRUE; #save entire input stream (for debug ONLY)

#DebugPrint(sprintf("${\(CYAN)}DEBUG: stdout %d, gerber %d, want streams? %d, all input? %d, O/S: $^O, Perl: $]${\(RESET)}\n", WANT_DEBUG, GERBER_DEBUG, WANT_STREAMS, WANT_ALLINPUT), 1);
#DebugPrint(sprintf("max int = %d, min int = %d\n", MAXINT, MININT), 1); 

#define standard trace and pad sizes to reduce scaling or PDF rendering errors:
#This avoids weird aperture settings and replaces them with more standardized values.
#(I'm not sure how photoplotters handle strange sizes).
#Fewer choices here gives more accurate mapping in the final Gerber files.
#units are in inches
use constant TOOL_SIZES => #add more as desired
(
#round or square pads (> 0) and drills (< 0):
    .010, -.001,  #tiny pads for SMD; dummy drill size (too small for practical use, but needed so StandardTool will use this entry)
    .031, -.014,  #used for vias
    .041, -.020,  #smallest non-filled plated hole
    .051, -.025,
    .056, -.029,  #useful for IC pins
    .070, -.033,
    .075, -.040,  #heavier leads
#    .090, -.043,  #NOTE: 600 dpi is not high enough resolution to reliably distinguish between .043" and .046", so choose 1 of the 2 here
    .100, -.046,
    .115, -.052,
    .130, -.061,
    .140, -.067,
    .150, -.079,
    .175, -.088,
    .190, -.093,
    .200, -.100,
    .220, -.110,
    .160, -.125,  #useful for mounting holes
#some additional pad sizes without holes (repeat a previous hole size if you just want the pad size):
    .090, -.040,  #want a .090 pad option, but use dummy hole size
    .065, -.040, #.065 x .065 rect pad
    .035, -.040, #.035 x .065 rect pad
#traces:
    .001,  #too thin for real traces; use only for board outlines
    .006,  #minimum real trace width; mainly used for text
    .008,  #mainly used for mid-sized text, not traces
    .010,  #minimum recommended trace width for low-current signals
    .012,
    .015,  #moderate low-voltage current
    .020,  #heavier trace for power, ground (even if a lighter one is adequate)
    .025,
    .030,  #heavy-current traces; be careful with these ones!
    .040,
    .050,
    .060,
    .080,
    .100,
    .120,
);
#Areas larger than the values below will be filled with parallel lines:
#This cuts down on the number of aperture sizes used.
#Set to 0 to always use an aperture or drill, regardless of size.
use constant { MAX_APERTURE => max((TOOL_SIZES)) + .004, MAX_DRILL => -min((TOOL_SIZES)) + .004 }; #max aperture and drill sizes (plus a little tolerance)
#DebugPrint(sprintf("using %d standard tool sizes: %s, max aper %.3f, max drill %.3f\n", scalar((TOOL_SIZES)), join(", ", (TOOL_SIZES)), MAX_APERTURE, MAX_DRILL), 1);

#NOTE: Compare the PDF to the original CAD file to check the accuracy of the PDF rendering and parsing!
#for example, the CAD software I used generated the following circles for holes:
#CAD hole size:   parsed PDF diameter:      error:
#  .014                .016                +.002
#  .020                .02267              +.00267
#  .025                .026                +.001
#  .029                .03167              +.00267
#  .033                .036                +.003
#  .040                .04267              +.00267
#This was usually ~ .002" - .003" too big compared to the hole as displayed in the CAD software.
#To compensate for PDF rendering errors (either during CAD Print function or PDF parsing logic), adjust the values below as needed.
#units are pixels; for example, a value of 2.4 at 600 dpi = .0004 inch, 2 at 600 dpi = .0033"
use constant
{
    HOLE_ADJUST => -0.004 * 600, #-2.6, #holes seemed to be slightly oversized (by .002" - .004"), so shrink them a little
    RNDPAD_ADJUST => -0.003 * 600, #-2, #-2.4, #round pads seemed to be slightly oversized, so shrink them a little
    SQRPAD_ADJUST => +0.001 * 600, #+.5, #square pads are sometimes too small by .00067, so bump them up a little
    RECTPAD_ADJUST => 0, #(pixels) rectangular pads seem to be okay? (not tested much)
    TRACE_ADJUST => 0, #(pixels) traces seemed to be okay?
    REDUCE_TOLERANCE => .001, #(inches) allow this much variation when reducing circles and rects
};

#Also, my CAD's Print function or the PDF print driver I used was a little off for circles, so define some additional adjustment values here:
#Values are added to X/Y coordinates; units are pixels; for example, a value of 1 at 600 dpi would be ~= .002 inch
use constant
{
    CIRCLE_ADJUST_MINX => 0,
    CIRCLE_ADJUST_MINY => -0.001 * 600, #-1, #circles were a little too high, so nudge them a little lower
    CIRCLE_ADJUST_MAXX => +0.001 * 600, #+1, #circles were a little too far to the left, so nudge them a little to the right
    CIRCLE_ADJUST_MAXY => 0,
    SUBST_CIRCLE_CLIPRECT => FALSE, #generate circle and substitute for clip rects (to compensate for the way some CAD software draws circles)
    WANT_CLIPRECT => TRUE, #FALSE, #AI doesn't need clip rect at all? should be on normally?
    RECT_COMPLETION => FALSE, #TRUE, #fill in 4th side of rect when 3 sides found
};

#allow .012 clearance around pads for solder mask:
#This value effectively adjusts pad sizes in the TOOL_SIZES list above (only for solder mask layers).
use constant SOLDER_MARGIN => +.012; #units are inches

#line join/cap styles:
use constant
{
    CAP_NONE => 0, #butt (none); line is exact length
    CAP_ROUND => 1, #round cap/join; line overhangs by a semi-circle at either end
    CAP_SQUARE => 2, #square cap/join; line overhangs by a half square on either end
    CAP_OVERRIDE => FALSE, #cap style overrides drawing logic
};
    
#number of elements in each shape type:
use constant
{
    RECT_SHAPELEN => 6, #x0, y0, x1, y1, count, "rect" (start, end corners)
    LINE_SHAPELEN => 6, #x0, y0, x1, y1, count, "line" (line seg)
    CURVE_SHAPELEN => 10, #xstart, ystart, x0, y0, x1, y1, xend, yend, count, "curve" (bezier 2 points)
    CIRCLE_SHAPELEN => 5, #x, y, 5, count, "circle" (center + radius)
};
#const my %SHAPELEN =
#Readonly my %SHAPELEN =>
our %SHAPELEN =
(
    rect => RECT_SHAPELEN,
    line => LINE_SHAPELEN,
    curve => CURVE_SHAPELEN,
    circle => CIRCLE_SHAPELEN,
);

#panelization:
#This will repeat the entire body the number of times indicated along the X or Y axes (files grow accordingly).
#Display elements that overhang PCB boundary can be squashed or left as-is (typically text or other silk screen markings).
#Set "overhangs" TRUE to allow overhangs, FALSE to truncate them.
#xpad and ypad allow margins to be added around outer edge of panelized PCB.
use constant PANELIZE => {'x' => 1, 'y' => 1, 'xpad' => 0, 'ypad' => 0, 'overhangs' => TRUE}; #number of times to repeat in X and Y directions

# Set this to 1 if you need TurboCAD support.
#$turboCAD = FALSE; #is this still needed as an option?

#CIRCAD pad generation uses an appropriate aperture, then moves it (stroke) "a little" - we use this to find pads and distinguish them from PCB holes. 
use constant PAD_STROKE => 0.3; #0.0005 * 600; #units are pixels
#convert very short traces to pads or holes:
use constant TRACE_MINLEN => .001; #units are inches
#use constant ALWAYS_XY => TRUE; #FALSE; #force XY even if X or Y doesn't change; NOTE: needs to be TRUE for all pads to show in FlatCAM and ViewPlot
use constant REMOVE_POLARITY => FALSE; #TRUE; #set to remove subtractive (negative) polarity; NOTE: must be FALSE for ground planes

#PDF uses "points", each point = 1/72 inch
#combined with a PDF scale factor of .12, this gives 600 dpi resolution (1/72 * .12 = 600 dpi)
use constant INCHES_PER_POINT => 1/72; #0.0138888889; #multiply point-size by this to get inches

# The precision used when computing a bezier curve. Higher numbers are more precise but slower (and generate larger files).
#$bezierPrecision = 100;
use constant BEZIER_PRECISION => 36; #100; #use const; reduced for faster rendering (mainly used for silk screen and thermal pads)

# Ground planes and silk screen or larger copper rectangles or circles are filled line-by-line using this resolution.
use constant FILL_WIDTH => .01; #fill at most 0.01 inch at a time

# The max number of characters to read into memory
use constant MAX_BYTES => 10 * M; #bumped up to 10 MB, use const

use constant DUP_DRILL1 => TRUE; #FALSE; #kludge: ViewPlot doesn't load drill files that are too small so duplicate first tool

my $runtime = time(); #Time::HiRes::gettimeofday(); #measure my execution time

print STDERR "Loaded config settings from '${\(__FILE__)}'.\n";
1; #last value must be truthful to indicate successful load


#############################################################################################
#junk/experiment:

#use Package::Constants;
#use Exporter qw(import); #https://perldoc.perl.org/Exporter.html

#my $caller = "pdf2gerb::";

#sub cfg
#{
#    my $proto = shift;
#    my $class = ref($proto) || $proto;
#    my $settings =
#    {
#        $WANT_DEBUG => 990, #10; #level of debug wanted; higher == more, lower == less, 0 == none
#    };
#    bless($settings, $class);
#    return $settings;
#}

#use constant HELLO => "hi there2"; #"main::HELLO" => "hi there";
#use constant GOODBYE => 14; #"main::GOODBYE" => 12;

#print STDERR "read cfg file\n";

#our @EXPORT_OK = Package::Constants->list(__PACKAGE__); #https://www.perlmonks.org/?node_id=1072691; NOTE: "_OK" skips short/common names

#print STDERR scalar(@EXPORT_OK) . " consts exported:\n";
#foreach(@EXPORT_OK) { print STDERR "$_\n"; }
#my $val = main::thing("xyz");
#print STDERR "caller gave me $val\n";
#foreach my $arg (@ARGV) { print STDERR "arg $arg\n"; }

Download Details:

Author: swannman
Source Code: https://github.com/swannman/pdf2gerb

License: GPL-3.0 license

#perl 

Kasey  Turcotte

Kasey Turcotte

1623927960

Pandas DataFrame vs. Spark DataFrame: When Parallel Computing Matters

With Performance Comparison Analysis and Guided Example of Animated 3D Wireframe Plot

Python is famous for its vast selection of libraries and resources from the open-source community. As a Data Analyst/Engineer/Scientist, one might be familiar with popular packages such as NumpyPandasScikit-learnKeras, and TensorFlow. Together these modules help us extract value out of data and propels the field of analytics. As data continue to become larger and more complex, one other element to consider is a framework dedicated to processing Big Data, such as Apache Spark. In this article, I will demonstrate the capabilities of distributed/cluster computing and present a comparison between the Pandas DataFrame and Spark DataFrame. My hope is to provide more conviction on choosing the right implementation.

Pandas DataFrame

Pandas has become very popular for its ease of use. It utilizes DataFrames to present data in tabular format like a spreadsheet with rows and columns. Importantly, it has very intuitive methods to perform common analytical tasks and a relatively flat learning curve. It loads all of the data into memory on a single machine (one node) for rapid execution. While the Pandas DataFrame has proven to be tremendously powerful in manipulating data, it does have its limits. With data growing at an exponentially rate, complex data processing becomes expensive to handle and causes performance degradation. These operations require parallelization and distributed computing, which the Pandas DataFrame does not support.

Introducing Cluster/Distribution Computing and Spark DataFrame

Apache Spark is an open-source cluster computing framework. With cluster computing, data processing is distributed and performed in parallel by multiple nodes. This is recognized as the MapReduce framework because the division of labor can usually be characterized by sets of the mapshuffle, and reduce operations found in functional programming. Spark’s implementation of cluster computing is unique because processes 1) are executed in-memory and 2) build up a query plan which does not execute until necessary (known as lazy execution). Although Spark’s cluster computing framework has a broad range of utility, we only look at the Spark DataFrame for the purpose of this article. Similar to those found in Pandas, the Spark DataFrame has intuitive APIs, making it easy to implement.

#pandas dataframe vs. spark dataframe: when parallel computing matters #pandas #pandas dataframe #pandas dataframe vs. spark dataframe #spark #when parallel computing matters

Practice Problems: How To Join DataFrames in Pandas

Hey - Nick here! This page is a free excerpt from my $199 course Python for Finance, which is 50% off for the next 50 students.

If you want the full course, click here to sign up.

It’s now time for some practice problems! See below for details on how to proceed.

Course Repository & Practice Problems

All of the code for this course’s practice problems can be found in this GitHub repository.

There are two options that you can use to complete the practice problems:

  • Open them in your browser with a platform called Binder using this link (recommended)
  • Download the repository to your local computer and open them in a Jupyter Notebook using Anaconda (a bit more tedious)

Note that binder can take up to a minute to load the repository, so please be patient.

Within that repository, there is a folder called starter-files and a folder called finished-files. You should open the appropriate practice problems within the starter-files folder and only consult the corresponding file in the finished-files folder if you get stuck.

The repository is public, which means that you can suggest changes using a pull request later in this course if you’d like.

#dataframes #pandas #practice problems: how to join dataframes in pandas #how to join dataframes in pandas #practice #/pandas/issues.

August  Larson

August Larson

1660147320

Top 14 Ways to Filter Pandas Dataframes Easily

Whenever we work with data of any sort, we need a clear picture of the kind of data that we are dealing with. For most of the data out there, which may contain thousands or even millions of entries with a wide variety of information, it’s really impossible to make sense of that data without any tool to present the data in a short and readable format.

Most of the time we need to go through the data, manipulate it, and visualize it for getting insights. Well, there is a great library which goes by the name pandas which provides us with that capability. The most frequent Data manipulation operation is Data Filtering. It is very similar to the WHERE clause in SQL or you must have used a filter in MS Excel for selecting specific rows based on some conditions.

pandas is a powerful, flexible and open source data analysis/manipulation tool which is essentially a python package that provides speed, flexibility and expressive data structures crafted to work with “relational” or “labelled” data in an intuitive and easy manner. It is one of the most popular libraries to perform real-world data analysis in Python.

pandas is built on top of the NumPy library which aims to integrate well with the scientific computing environment and numerous other 3rd party libraries. It has two primary data structures namely Series (1D) and Dataframes(2D), which in most real-world use cases is the type of data that is being dealt with in many sectors of finance, scientific computing, engineering and statistics.

Let’s Start Filtering Data With the Help of Pandas Dataframe

Installing pandas

!pip install pandas

Importing the Pandas library, reading our sample data file and assigning it to “df” DataFrame

import pandas as pd
df = pd.read_csv(r"C:\Users\rajam\Desktop\sample_data.csv")

Let’s check out our dataframe:

print(df.head())

Sample_data

Sample_data

Now that we have our DataFrame, we will be applying various methods to filter it.

Method – 1: Filtering DataFrame by column value

We have a column named “Total_Sales” in our DataFrame and we want to filter out all the sales value which is greater than 300.

#Filter a DataFrame for a single column value with a given condition
 
greater_than = df[df['Total_Sales'] > 300]
print(greater_than.head())

Sample_data with sales > 300

Sales with Greater than 300

Method – 2: Filtering DataFrame based on multiple conditions

Here we are filtering all the values whose “Total_Sales” value is greater than 300 and also where the “Units” is greater than 20. We will have to use the python operator “&” which performs a bitwise AND operation in order to display the corresponding result.

#Filter a DataFrame with multiple conditions
 
filter_sales_units = df[(df['Total_Sales'] > 300) & (df["Units"] > 20)]
print(Filter_sales_units.head())

Image 3

Filter on Sales and Units

Method – 3: Filtering DataFrame based on Date value

If we want to filter our data frame based on a certain date value, for example here we are trying to get all the results based on a particular date, in our case the results after the date ’03/10/21′.

#Filter a DataFrame based on specific date
 
date_filter = df[df['Date'] > '03/10/21']
print(date_filter.head())

Image 1

Filter on Date

Method – 4: Filtering DataFrame based on Date value with multiple conditions

Here we are getting all the results for our Date operation evaluating multiple dates.

#Filter a DataFrame with multiple conditions our Date value
 
date_filter2 = df[(df['Date'] >= '3/25/2021') & (df['Date'] <'8/17/2021')]
print(date_filter2.head())

Image 2

Filter on a date with multiple conditions

Method – 5: Filtering DataFrame based on a specific string

Here we are selecting a column called ‘Region’ and getting all the rows that are from the region ‘East’, thus filtering based on a specific string value.

#Filter a DataFrame to a specific string
 
east = df[df['Region'] == 'East']
print(east.head())

Image 6

Filter based on a specific string

Method – 6: Filtering DataFrame based on a specific index value in a string

Here we are selecting a column called ‘Region’ and getting all the rows which has the letter ‘E’ as the first character i.e at index 0 in the specified column results.

#Filter a DataFrame to show rows starting with a specfic letter
 
starting_with_e = df[df['Region'].str[0]== 'E']
print(starting_with_e.head())

Image 7

Filter based on a specific letter

Method – 7: Filtering DataFrame based on a list of values

Here we are filtering rows in the column ‘Region’ which contains the values ‘West’ as well as ‘East’ and display the combined result. Two methods can be used to perform this filtering namely using a pipe | operator with the corresponding desired set of values with the below syntax OR we can use the .isin() function to filter for the values in a given column, which in our case is the ‘Region’, and provide the list of the desired set of values inside it as a list.

#Filter a DataFrame rows based on list of values
 
#Method 1:
east_west = df[(df['Region'] == 'West') | (df['Region'] == 'East')]
print(east_west)
 
#Method 2:
east_west_1 = df[df['Region'].isin(['West', 'East'])]
print(east_west_1.head())

Image 9

Output of Method -2

Method – 8: Filtering DataFrame rows based on specific values using RegEx

Here we want all the values in the column ‘Region’, which ends with ‘th’ in their string value and display them. In other words, we want our results to show the values of ‘North‘ and ‘South‘ and ignore ‘East’ and ‘West’. The method .str.contains() with the specified values along with the $ RegEx pattern can be used to get the desired results.

For more information please check the Regex Documentation

#Filtering the DataFrame rows using regular expressions(REGEX)
 
regex_df = df[df['Region'].str.contains('th$')]
print(regex_df.head())

Image 10

Filter based on REGEX

Method – 9: Filtering DataFrame to check for null

Here, we’ll check for null and not null values in all the columns with the help of isnull() function.

#Filtering to check for null and not null values in all columns
 
df_null = df[df.isnull().any(axis=1)]
print(df_null.head())

Image 12

Filter based on NULL or NOT null values

Method – 10: Filtering DataFrame to check for null values in a specific column.

#Filtering to check for null values if any in the 'Units' column
 
units_df = df[df['Units'].isnull()]
print(units_df.head())

Image 13

Finding null values on specific columns

Method – 11: Filtering DataFrame to check for not null values in specific columns

#Filtering to check for not null values in the 'Units' column
 
df_not_null = df[df['Units'].notnull()]
print(df_not_null.head())

Image 14

Finding not-null values on specific columns

Method – 12: Filtering DataFrame using query() with a condition

#Using query function in pandas
 
df_query = df.query('Total_Sales > 300')
print(df_query.head())

Image 17

Filtering values with Query Function

Method – 13: Filtering DataFrame using query() with multiple conditions

#Using query function with multiple conditions in pandas
 
df_query_1 = df.query('Total_Sales > 300 and Units <18')
print(df_query_1.head())

Image 18

Filtering multiple columns with Query Function

Method – 14: Filtering our DataFrame using the loc and iloc functions.

#Creating a sample DataFrame for illustrations
 
import numpy as np
data = pd.DataFrame({"col1" : np.arange(1, 20 ,2)}, index=[19, 18 ,8, 6, 0, 1, 2, 3, 4, 5])
print(data)

Image 19

sample_data

Explanation: iloc considers rows based on the position of the given index, so that it takes only integers as values.

For more information please check out Pandas Documentation

#Filter with iloc
 
data.iloc[0 : 5]

Image 20

Filter using iloc

Explanation: loc considers rows based on index labels

#Filter with loc
 
data.loc[0 : 5]

Image 21

Filter using loc

You might be thinking about why the loc function returns 6 rows instead of 5 rows. This is because loc does not produce output based on index position. It considers labels of index only which can be an alphabet as well and includes both starting and endpoint.

Conclusion

So, these were some of the most common filtering methods used in pandas. There are many other filtering methods that could be used, but these are some of the most common.

Link: https://www.askpython.com/python-modules/pandas/filter-pandas-dataframe

#pandas #python #datafame