1665155228
Generate a RSA PEM key pair from pure JS
var keypair = require('keypair');
var pair = keypair();
console.log(pair);
outputs
$ node example.js
{ public: '-----BEGIN RSA PUBLIC KEY-----\r\nMIGJAoGBAM3CosR73CBNcJsLv5E90NsFt6qN1uziQ484gbOoule8leXHFbyIzPQRozgEpSpi\r\nwhr6d2/c0CfZHEJ3m5tV0klxfjfM7oqjRMURnH/rmBjcETQ7qzIISZQ/iptJ3p7Gi78X5ZMh\r\nLNtDkUFU9WaGdiEb+SnC39wjErmJSfmGb7i1AgMBAAE=\r\n-----END RSA PUBLIC KEY-----\n',
private: '-----BEGIN RSA PRIVATE KEY-----\r\nMIICXAIBAAKBgQDNwqLEe9wgTXCbC7+RPdDbBbeqjdbs4kOPOIGzqLpXvJXlxxW8iMz0EaM4\r\nBKUqYsIa+ndv3NAn2RxCd5ubVdJJcX43zO6Ko0TFEZx/65gY3BE0O6syCEmUP4qbSd6exou/\r\nF+WTISzbQ5FBVPVmhnYhG/kpwt/cIxK5iUn5hm+4tQIDAQABAoGBAI+8xiPoOrA+KMnG/T4j\r\nJsG6TsHQcDHvJi7o1IKC/hnIXha0atTX5AUkRRce95qSfvKFweXdJXSQ0JMGJyfuXgU6dI0T\r\ncseFRfewXAa/ssxAC+iUVR6KUMh1PE2wXLitfeI6JLvVtrBYswm2I7CtY0q8n5AGimHWVXJP\r\nLfGV7m0BAkEA+fqFt2LXbLtyg6wZyxMA/cnmt5Nt3U2dAu77MzFJvibANUNHE4HPLZxjGNXN\r\n+a6m0K6TD4kDdh5HfUYLWWRBYQJBANK3carmulBwqzcDBjsJ0YrIONBpCAsXxk8idXb8jL9a\r\nNIg15Wumm2enqqObahDHB5jnGOLmbasizvSVqypfM9UCQCQl8xIqy+YgURXzXCN+kwUgHinr\r\nutZms87Jyi+D8Br8NY0+Nlf+zHvXAomD2W5CsEK7C+8SLBr3k/TsnRWHJuECQHFE9RA2OP8W\r\noaLPuGCyFXaxzICThSRZYluVnWkZtxsBhW2W8z1b8PvWUE7kMy7TnkzeJS2LSnaNHoyxi7Ia\r\nPQUCQCwWU4U+v4lD7uYBw00Ga/xt+7+UqFPlPVdz1yyr4q24Zxaw0LgmuEvgU5dycq8N7Jxj\r\nTubX0MIRR+G9fmDBBl8=\r\n-----END RSA PRIVATE KEY-----\n' }
Performance greatly depends on the bit size of the generated private key. With 1024 bits you get a key in 0.5s-2s, with 2048 bits it takes 8s-20s, on the same machine. As this will block the event loop while generating the key, make sure that's ok or to spawn a child process or run it inside a webworker.
@maxogden found out how to use this module to create entries for the authorized_keys
file:
var keypair = require('keypair');
var forge = require('node-forge');
var pair = keypair();
var publicKey = forge.pki.publicKeyFromPem(pair.public);
var ssh = forge.ssh.publicKeyToOpenSSH(publicKey, 'user@domain.tld');
console.log(ssh);
Get an RSA PEM key pair.
opts
can be
bits
: the size for the private key in bits. Default: 2048.e
: the public exponent to use. Default: 65537.With npm do
$ npm install keypair
To digitalbazaar for their forge project, this library is merely a wrapper around some of forge's functions.
Author: juliangruber
Source Code: https://github.com/juliangruber/keypair
License: View license
#javascript #generate #key #node
1632537859
Not babashka. Node.js babashka!?
Ad-hoc CLJS scripting on Node.js.
Experimental. Please report issues here.
Nbb's main goal is to make it easy to get started with ad hoc CLJS scripting on Node.js.
Additional goals and features are:
Nbb requires Node.js v12 or newer.
CLJS code is evaluated through SCI, the same interpreter that powers babashka. Because SCI works with advanced compilation, the bundle size, especially when combined with other dependencies, is smaller than what you get with self-hosted CLJS. That makes startup faster. The trade-off is that execution is less performant and that only a subset of CLJS is available (e.g. no deftype, yet).
Install nbb
from NPM:
$ npm install nbb -g
Omit -g
for a local install.
Try out an expression:
$ nbb -e '(+ 1 2 3)'
6
And then install some other NPM libraries to use in the script. E.g.:
$ npm install csv-parse shelljs zx
Create a script which uses the NPM libraries:
(ns script
(:require ["csv-parse/lib/sync$default" :as csv-parse]
["fs" :as fs]
["path" :as path]
["shelljs$default" :as sh]
["term-size$default" :as term-size]
["zx$default" :as zx]
["zx$fs" :as zxfs]
[nbb.core :refer [*file*]]))
(prn (path/resolve "."))
(prn (term-size))
(println (count (str (fs/readFileSync *file*))))
(prn (sh/ls "."))
(prn (csv-parse "foo,bar"))
(prn (zxfs/existsSync *file*))
(zx/$ #js ["ls"])
Call the script:
$ nbb script.cljs
"/private/tmp/test-script"
#js {:columns 216, :rows 47}
510
#js ["node_modules" "package-lock.json" "package.json" "script.cljs"]
#js [#js ["foo" "bar"]]
true
$ ls
node_modules
package-lock.json
package.json
script.cljs
Nbb has first class support for macros: you can define them right inside your .cljs
file, like you are used to from JVM Clojure. Consider the plet
macro to make working with promises more palatable:
(defmacro plet
[bindings & body]
(let [binding-pairs (reverse (partition 2 bindings))
body (cons 'do body)]
(reduce (fn [body [sym expr]]
(let [expr (list '.resolve 'js/Promise expr)]
(list '.then expr (list 'clojure.core/fn (vector sym)
body))))
body
binding-pairs)))
Using this macro we can look async code more like sync code. Consider this puppeteer example:
(-> (.launch puppeteer)
(.then (fn [browser]
(-> (.newPage browser)
(.then (fn [page]
(-> (.goto page "https://clojure.org")
(.then #(.screenshot page #js{:path "screenshot.png"}))
(.catch #(js/console.log %))
(.then #(.close browser)))))))))
Using plet
this becomes:
(plet [browser (.launch puppeteer)
page (.newPage browser)
_ (.goto page "https://clojure.org")
_ (-> (.screenshot page #js{:path "screenshot.png"})
(.catch #(js/console.log %)))]
(.close browser))
See the puppeteer example for the full code.
Since v0.0.36, nbb includes promesa which is a library to deal with promises. The above plet
macro is similar to promesa.core/let
.
$ time nbb -e '(+ 1 2 3)'
6
nbb -e '(+ 1 2 3)' 0.17s user 0.02s system 109% cpu 0.168 total
The baseline startup time for a script is about 170ms seconds on my laptop. When invoked via npx
this adds another 300ms or so, so for faster startup, either use a globally installed nbb
or use $(npm bin)/nbb script.cljs
to bypass npx
.
Nbb does not depend on any NPM dependencies. All NPM libraries loaded by a script are resolved relative to that script. When using the Reagent module, React is resolved in the same way as any other NPM library.
To load .cljs
files from local paths or dependencies, you can use the --classpath
argument. The current dir is added to the classpath automatically. So if there is a file foo/bar.cljs
relative to your current dir, then you can load it via (:require [foo.bar :as fb])
. Note that nbb
uses the same naming conventions for namespaces and directories as other Clojure tools: foo-bar
in the namespace name becomes foo_bar
in the directory name.
To load dependencies from the Clojure ecosystem, you can use the Clojure CLI or babashka to download them and produce a classpath:
$ classpath="$(clojure -A:nbb -Spath -Sdeps '{:aliases {:nbb {:replace-deps {com.github.seancorfield/honeysql {:git/tag "v2.0.0-rc5" :git/sha "01c3a55"}}}}}')"
and then feed it to the --classpath
argument:
$ nbb --classpath "$classpath" -e "(require '[honey.sql :as sql]) (sql/format {:select :foo :from :bar :where [:= :baz 2]})"
["SELECT foo FROM bar WHERE baz = ?" 2]
Currently nbb
only reads from directories, not jar files, so you are encouraged to use git libs. Support for .jar
files will be added later.
The name of the file that is currently being executed is available via nbb.core/*file*
or on the metadata of vars:
(ns foo
(:require [nbb.core :refer [*file*]]))
(prn *file*) ;; "/private/tmp/foo.cljs"
(defn f [])
(prn (:file (meta #'f))) ;; "/private/tmp/foo.cljs"
Nbb includes reagent.core
which will be lazily loaded when required. You can use this together with ink to create a TUI application:
$ npm install ink
ink-demo.cljs
:
(ns ink-demo
(:require ["ink" :refer [render Text]]
[reagent.core :as r]))
(defonce state (r/atom 0))
(doseq [n (range 1 11)]
(js/setTimeout #(swap! state inc) (* n 500)))
(defn hello []
[:> Text {:color "green"} "Hello, world! " @state])
(render (r/as-element [hello]))
Working with callbacks and promises can become tedious. Since nbb v0.0.36 the promesa.core
namespace is included with the let
and do!
macros. An example:
(ns prom
(:require [promesa.core :as p]))
(defn sleep [ms]
(js/Promise.
(fn [resolve _]
(js/setTimeout resolve ms))))
(defn do-stuff
[]
(p/do!
(println "Doing stuff which takes a while")
(sleep 1000)
1))
(p/let [a (do-stuff)
b (inc a)
c (do-stuff)
d (+ b c)]
(prn d))
$ nbb prom.cljs
Doing stuff which takes a while
Doing stuff which takes a while
3
Also see API docs.
Since nbb v0.0.75 applied-science/js-interop is available:
(ns example
(:require [applied-science.js-interop :as j]))
(def o (j/lit {:a 1 :b 2 :c {:d 1}}))
(prn (j/select-keys o [:a :b])) ;; #js {:a 1, :b 2}
(prn (j/get-in o [:c :d])) ;; 1
Most of this library is supported in nbb, except the following:
:syms
.-x
notation. In nbb, you must use keywords.See the example of what is currently supported.
See the examples directory for small examples.
Also check out these projects built with nbb:
See API documentation.
See this gist on how to convert an nbb script or project to shadow-cljs.
Prequisites:
To build:
bb release
Run bb tasks
for more project-related tasks.
Download Details:
Author: borkdude
Download Link: Download The Source Code
Official Website: https://github.com/borkdude/nbb
License: EPL-1.0
#node #javascript
1665155228
Generate a RSA PEM key pair from pure JS
var keypair = require('keypair');
var pair = keypair();
console.log(pair);
outputs
$ node example.js
{ public: '-----BEGIN RSA PUBLIC KEY-----\r\nMIGJAoGBAM3CosR73CBNcJsLv5E90NsFt6qN1uziQ484gbOoule8leXHFbyIzPQRozgEpSpi\r\nwhr6d2/c0CfZHEJ3m5tV0klxfjfM7oqjRMURnH/rmBjcETQ7qzIISZQ/iptJ3p7Gi78X5ZMh\r\nLNtDkUFU9WaGdiEb+SnC39wjErmJSfmGb7i1AgMBAAE=\r\n-----END RSA PUBLIC KEY-----\n',
private: '-----BEGIN RSA PRIVATE KEY-----\r\nMIICXAIBAAKBgQDNwqLEe9wgTXCbC7+RPdDbBbeqjdbs4kOPOIGzqLpXvJXlxxW8iMz0EaM4\r\nBKUqYsIa+ndv3NAn2RxCd5ubVdJJcX43zO6Ko0TFEZx/65gY3BE0O6syCEmUP4qbSd6exou/\r\nF+WTISzbQ5FBVPVmhnYhG/kpwt/cIxK5iUn5hm+4tQIDAQABAoGBAI+8xiPoOrA+KMnG/T4j\r\nJsG6TsHQcDHvJi7o1IKC/hnIXha0atTX5AUkRRce95qSfvKFweXdJXSQ0JMGJyfuXgU6dI0T\r\ncseFRfewXAa/ssxAC+iUVR6KUMh1PE2wXLitfeI6JLvVtrBYswm2I7CtY0q8n5AGimHWVXJP\r\nLfGV7m0BAkEA+fqFt2LXbLtyg6wZyxMA/cnmt5Nt3U2dAu77MzFJvibANUNHE4HPLZxjGNXN\r\n+a6m0K6TD4kDdh5HfUYLWWRBYQJBANK3carmulBwqzcDBjsJ0YrIONBpCAsXxk8idXb8jL9a\r\nNIg15Wumm2enqqObahDHB5jnGOLmbasizvSVqypfM9UCQCQl8xIqy+YgURXzXCN+kwUgHinr\r\nutZms87Jyi+D8Br8NY0+Nlf+zHvXAomD2W5CsEK7C+8SLBr3k/TsnRWHJuECQHFE9RA2OP8W\r\noaLPuGCyFXaxzICThSRZYluVnWkZtxsBhW2W8z1b8PvWUE7kMy7TnkzeJS2LSnaNHoyxi7Ia\r\nPQUCQCwWU4U+v4lD7uYBw00Ga/xt+7+UqFPlPVdz1yyr4q24Zxaw0LgmuEvgU5dycq8N7Jxj\r\nTubX0MIRR+G9fmDBBl8=\r\n-----END RSA PRIVATE KEY-----\n' }
Performance greatly depends on the bit size of the generated private key. With 1024 bits you get a key in 0.5s-2s, with 2048 bits it takes 8s-20s, on the same machine. As this will block the event loop while generating the key, make sure that's ok or to spawn a child process or run it inside a webworker.
@maxogden found out how to use this module to create entries for the authorized_keys
file:
var keypair = require('keypair');
var forge = require('node-forge');
var pair = keypair();
var publicKey = forge.pki.publicKeyFromPem(pair.public);
var ssh = forge.ssh.publicKeyToOpenSSH(publicKey, 'user@domain.tld');
console.log(ssh);
Get an RSA PEM key pair.
opts
can be
bits
: the size for the private key in bits. Default: 2048.e
: the public exponent to use. Default: 65537.With npm do
$ npm install keypair
To digitalbazaar for their forge project, this library is merely a wrapper around some of forge's functions.
Author: juliangruber
Source Code: https://github.com/juliangruber/keypair
License: View license
1591340335
APA Referencing Generator
Many students use APA style as the key citation style in their assignment in university or college. Although, many people find it quite difficult to write the reference of the source. You ought to miss the names and dates of authors. Hence, APA referencing generator is important for reducing the burden of students. They can now feel quite easy to do the assignments on time.
The functioning of APA referencing generator
If you are struggling hard to write the APA referencing then you can take the help of APA referencing generator. It will create an excellent list. You are required to enter the information about the source. Just ensure that the text is credible and original. If you will copy references then it is a copyright violation.
You can use a referencing generator in just a click. It will generate the right references for all the sources. You are required to organize in alphabetical order. The generator will make sure that you will get good grades.
How to use APA referencing generator?
Select what is required to be cited such as journal, book, film, and others. You can choose the type of required citations list and enter all the required fields. The fields are dates, author name, title, editor name, and editions, name of publishers, chapter number, page numbers, and title of journals. You can click for reference to be generated and you will get the desired result.
Chicago Referencing Generator
Do you require the citation style? You can rely on Chicago Referencing Generator and will ensure that you will get the right citation in just a click. The generator is created to provide solutions to students to cite their research paper in Chicago style. It has proved to be the quickest and best citation generator on the market. The generator helps to sort the homework issues in few seconds. It also saves a lot of time and energy.
This tool helps researchers, professional writers, and students to manage and generate text citation essays. It will help to write Chicago style in a fast and easy way. It also provides details and directions for formatting and cites resources.
So, you must stop wasting the time and can go for Chicago Referencing Generator or APA referencing generator. These citation generators will help to solve the problem of citation issues. You can easily create citations by using endnotes and footnotes.
So, you can generate bibliographies, references, in-text citations, and title pages. These are fully automatic referencing style. You are just required to enter certain details about the citation and you will get the citation in the proper and required format.
So, if you are feeling any problem in doing assignment then you can take the help of assignment help.
If you require help for Assignment then livewebtutors is the right place for you. If you see our prices, you will observe that they are actually very affordable. Also, you can always expect a discount. Our team is capable and versatile enough to offer you exactly what you need, the best services for the prices you can afford.
read more:- Are you struggling to write a bibliography? Use Harvard referencing generator
#apa referencing generator #harvard referencing generator #chicago referencing generator #mla referencing generator #deakin referencing generator #oxford referencing generator
1658977500
Calyx provides a simple API for generating text with declarative recursive grammars.
gem install calyx
gem 'calyx'
The best way to get started quickly is to install the gem and run the examples locally.
Requires Roda and Rack to be available.
gem install roda
Demonstrates how to use Calyx to construct SVG graphics. Any Gradient generates a rectangle with a linear gradient of random colours.
Run as a web server and preview the output in a browser (http://localhost:9292
):
ruby examples/any_gradient.rb
Or generate SVG files via a command line pipe:
ruby examples/any_gradient > gradient1.xml
Requires the Twitter client gem and API access configured for a specific Twitter handle.
gem install twitter
Demonstrates how to use Calyx to make a minimal Twitter bot that periodically posts unique tweets. See @tiny_woodland on Twitter and the writeup here.
TWITTER_CONSUMER_KEY=XXX-XXX
TWITTER_CONSUMER_SECRET=XXX-XXX
TWITTER_ACCESS_TOKEN=XXX-XXX
TWITTER_CONSUMER_SECRET=XXX-XXX
ruby examples/tiny_woodland_bot.rb
Faker is a popular library for generating fake names and associated sample data like internet addresses, company names and locations.
This example demonstrates how to use Calyx to reproduce the same functionality using custom lists defined in a YAML configuration file.
ruby examples/faker.rb
Require the library and inherit from Calyx::Grammar
to construct a set of rules to generate a text.
require 'calyx'
class HelloWorld < Calyx::Grammar
start 'Hello world.'
end
To generate the text itself, initialize the object and call the generate
method.
hello = HelloWorld.new
hello.generate
# > "Hello world."
Obviously, this hardcoded sentence isn’t very interesting by itself. Possible variations can be added to the text by adding additional rules which provide a named set of text strings. The rule delimiter syntax ({}
) can be used to substitute the generated content of other rules.
class HelloWorld < Calyx::Grammar
start '{greeting} world.'
greeting 'Hello', 'Hi', 'Hey', 'Yo'
end
Each time #generate
runs, it evaluates the tree and randomly selects variations of rules to construct a resulting string.
hello = HelloWorld.new
hello.generate
# > "Hi world."
hello.generate
# > "Hello world."
hello.generate
# > "Yo world."
By convention, the start
rule specifies the default starting point for generating the final text. You can start from any other named rule by passing it explicitly to the generate method.
class HelloWorld < Calyx::Grammar
hello 'Hello world.'
end
hello = HelloWorld.new
hello.generate(:hello)
As an alternative to subclassing, you can also construct rules unique to an instance by passing a block when initializing the class:
hello = Calyx::Grammar.new do
start '{greeting} world.'
greeting 'Hello', 'Hi', 'Hey', 'Yo'
end
hello.generate
Basic rule substitution uses single curly brackets as delimiters for template expressions:
fruit = Calyx::Grammar.new do
start '{colour} {fruit}'
colour 'red', 'green', 'yellow'
fruit 'apple', 'pear', 'tomato'
end
6.times { fruit.generate }
# => "yellow pear"
# => "red apple"
# => "green tomato"
# => "red pear"
# => "yellow tomato"
# => "green apple"
Rules are recursive. They can be arbitrarily nested and connected to generate larger and more complex texts.
class HelloWorld < Calyx::Grammar
start '{greeting} {world_phrase}.'
greeting 'Hello', 'Hi', 'Hey', 'Yo'
world_phrase '{happy_adj} world', '{sad_adj} world', 'world'
happy_adj 'wonderful', 'amazing', 'bright', 'beautiful'
sad_adj 'cruel', 'miserable'
end
Nesting and hierarchy can be manipulated to balance consistency with novelty. The exact same word atoms can be combined in a variety of ways to produce strikingly different resulting texts.
module HelloWorld
class Sentiment < Calyx::Grammar
start '{happy_phrase}', '{sad_phrase}'
happy_phrase '{happy_greeting} {happy_adj} world.'
happy_greeting 'Hello', 'Hi', 'Hey', 'Yo'
happy_adj 'wonderful', 'amazing', 'bright', 'beautiful'
sad_phrase '{sad_greeting} {sad_adj} world.'
sad_greeting 'Goodbye', 'So long', 'Farewell'
sad_adj 'cruel', 'miserable'
end
class Mixed < Calyx::Grammar
start '{greeting} {adj} world.'
greeting 'Hello', 'Hi', 'Hey', 'Yo', 'Goodbye', 'So long', 'Farewell'
adj 'wonderful', 'amazing', 'bright', 'beautiful', 'cruel', 'miserable'
end
end
By default, the outcomes of generated rules are selected with Ruby’s built-in pseudorandom number generator (as seen in methods like Kernel.rand
and Array.sample
). To seed the random number generator, pass in an integer seed value as the first argument to the constructor:
grammar = Calyx::Grammar.new(seed: 12345) do
# rules...
end
Alternatively, you can pass a preconfigured instance of Ruby’s stdlib Random
class:
random = Random.new(12345)
grammar = Calyx::Grammar.new(rng: random) do
# rules...
end
When a random seed isn’t supplied, Time.new.to_i
is used as the default seed, which makes each run of the generator relatively unique.
Choices can be weighted so that some rules have a greater probability of expanding than others.
Weights are defined by passing a hash instead of a list of rules where the keys are strings or symbols representing the grammar rules and the values are weights.
Weights can be represented as floats, integers or ranges.
The following definitions produce an equivalent weighting of choices:
Calyx::Grammar.new do
start 'heads' => 1, 'tails' => 1
end
Calyx::Grammar.new do
start 'heads' => 0.5, 'tails' => 0.5
end
Calyx::Grammar.new do
start 'heads' => 1..5, 'tails' => 6..10
end
Calyx::Grammar.new do
start 'heads' => 50, 'tails' => 50
end
There’s a lot of interesting things you can do with this. For example, you can model the triangular distribution produced by rolling 2d6:
Calyx::Grammar.new do
start(
'2' => 1,
'3' => 2,
'4' => 3,
'5' => 4,
'6' => 5,
'7' => 6,
'8' => 5,
'9' => 4,
'10' => 3,
'11' => 2,
'12' => 1
)
end
Or reproduce Gary Gygax’s famous generation table from the original Dungeon Master’s Guide (page 171):
Calyx::Grammar.new do
start(
:empty => 0.6,
:monster => 0.1,
:monster_treasure => 0.15,
:special => 0.05,
:trick_trap => 0.05,
:treasure => 0.05
)
empty 'Empty'
monster 'Monster Only'
monster_treasure 'Monster and Treasure'
special 'Special'
trick_trap 'Trick/Trap.'
treasure 'Treasure'
end
Dot-notation is supported in template expressions, allowing you to call any available method on the String
object returned from a rule. Formatting methods can be chained arbitrarily and will execute in the same way as they would in native Ruby code.
greeting = Calyx::Grammar.new do
start '{hello.capitalize} there.', 'Why, {hello} there.'
hello 'hello', 'hi'
end
4.times { greeting.generate }
# => "Hello there."
# => "Hi there."
# => "Why, hello there."
# => "Why, hi there."
You can also extend the grammar with custom modifiers that provide useful formatting functions.
Filters accept an input string and return the transformed output:
greeting = Calyx::Grammar.new do
filter :shoutycaps do |input|
input.upcase
end
start '{hello.shoutycaps} there.', 'Why, {hello.shoutycaps} there.'
hello 'hello', 'hi'
end
4.times { greeting.generate }
# => "HELLO there."
# => "HI there."
# => "Why, HELLO there."
# => "Why, HI there."
The mapping shortcut allows you to specify a map of regex patterns pointing to their resulting substitution strings:
green_bottle = Calyx::Grammar.new do
mapping :pluralize, /(.+)/ => '\\1s'
start 'One green {bottle}.', 'Two green {bottle.pluralize}.'
bottle 'bottle'
end
2.times { green_bottle.generate }
# => "One green bottle."
# => "Two green bottles."
In order to use more intricate rewriting and formatting methods in a modifier chain, you can add methods to a module and embed it in a grammar using the modifier
classmethod.
Modifier methods accept a single argument representing the input string from the previous step in the expression chain and must return a string, representing the modified output.
module FullStop
def full_stop(input)
input << '.'
end
end
hello = Calyx::Grammar.new do
modifier FullStop
start '{hello.capitalize.full_stop}'
hello 'hello'
end
hello.generate
# => "Hello."
To share custom modifiers across multiple grammars, you can include the module in Calyx::Modifiers
. This will make the methods available to all subsequent instances:
module FullStop
def full_stop(input)
input << '.'
end
end
class Calyx::Modifiers
include FullStop
end
Alternatively, you can combine methods from existing Gems that monkeypatch String
:
require 'indefinite_article'
module FullStop
def full_stop
self << '.'
end
end
class String
include FullStop
end
noun_articles = Calyx::Grammar.new do
start '{fruit.with_indefinite_article.capitalize.full_stop}'
fruit 'apple', 'orange', 'banana', 'pear'
end
4.times { noun_articles.generate }
# => "An apple."
# => "An orange."
# => "A banana."
# => "A pear."
Rule expansions can be ‘memoized’ so that multiple references to the same rule return the same value. This is useful for picking a noun from a list and reusing it in multiple places within a text.
The @
sigil is used to mark memoized rules. This evaluates the rule and stores it in memory the first time it’s referenced. All subsequent references to the memoized rule use the same stored value.
# Without memoization
grammar = Calyx::Grammar.new do
start '{name} <{name.downcase}>'
name 'Daenerys', 'Tyrion', 'Jon'
end
3.times { grammar.generate }
# => Daenerys <jon>
# => Tyrion <daenerys>
# => Jon <tyrion>
# With memoization
grammar = Calyx::Grammar.new do
start '{@name} <{@name.downcase}>'
name 'Daenerys', 'Tyrion', 'Jon'
end
3.times { grammar.generate }
# => Tyrion <tyrion>
# => Daenerys <daenerys>
# => Jon <jon>
Note that the memoization symbol can only be used on the right hand side of a production rule.
Rule expansions can be marked as ‘unique’, meaning that multiple references to the same rule always return a different value. This is useful for situations where the same result appearing twice would appear awkward and messy.
Unique rules are marked by the $
sigil.
grammar = Calyx::Grammar.new do
start "{$medal}, {$medal}, {$medal}"
medal 'Gold', 'Silver', 'Bronze'
end
grammar.generate
# => Silver, Bronze, Gold
Template expansions can be dynamically constructed at runtime by passing a context map of rules to the #generate
method:
class AppGreeting < Calyx::Grammar
start 'Hi {username}!', 'Welcome back {username}...', 'Hola {username}'
end
context = {
username: UserModel.username
}
greeting = AppGreeting.new
greeting.generate(context)
In addition to defining grammars in pure Ruby, you can load them from external JSON and YAML files:
hello = Calyx::Grammar.load('hello.yml')
hello.generate
The format requires a flat map with keys representing the left-hand side named symbols and the values representing the right hand side substitution rules.
In JSON:
{
"start": "{greeting} world.",
"greeting": ["Hello", "Hi", "Hey", "Yo"]
}
In YAML:
---
start: "{greeting} world."
greeting:
- Hello
- Hi
- Hey
- Yo
Calling #evaluate
on the grammar instance will give you access to the raw generated tree structure before it gets flattened into a string.
The tree is encoded as an array of nested arrays, with the leading symbols labeling the choices and rules selected, and the trailing terminal leaves encoding string values.
This may not make a lot of sense unless you’re familiar with the concept of s-expressions. It’s a fairly speculative feature at this stage, but it leads to some interesting possibilities.
grammar = Calyx::Grammar.new do
start 'Riddle me ree.'
end
grammar.evaluate
# => [:start, [:choice, [:concat, [[:atom, "Riddle me ree."]]]]]
Rough plan for stabilising the API and features for a 1.0
release.
Version | Features planned |
---|---|
0.6 | |
0.7 | |
0.8 | |
0.9 |
|
0.10 | |
0.11 | |
0.12 | |
0.13 | |
0.14 | |
0.15 | |
0.16 | |
0.17 |
|
Author: Maetl
Source Code: https://github.com/maetl/calyx
License: MIT license
1616671994
If you look at the backend technology used by today’s most popular apps there is one thing you would find common among them and that is the use of NodeJS Framework. Yes, the NodeJS framework is that effective and successful.
If you wish to have a strong backend for efficient app performance then have NodeJS at the backend.
WebClues Infotech offers different levels of experienced and expert professionals for your app development needs. So hire a dedicated NodeJS developer from WebClues Infotech with your experience requirement and expertise.
So what are you waiting for? Get your app developed with strong performance parameters from WebClues Infotech
For inquiry click here: https://www.webcluesinfotech.com/hire-nodejs-developer/
Book Free Interview: https://bit.ly/3dDShFg
#hire dedicated node.js developers #hire node.js developers #hire top dedicated node.js developers #hire node.js developers in usa & india #hire node js development company #hire the best node.js developers & programmers