Hermann  Frami

Hermann Frami

1651319520

Serverless APIGateway Service Proxy

Serverless APIGateway Service Proxy

This Serverless Framework plugin supports the AWS service proxy integration feature of API Gateway. You can directly connect API Gateway to AWS services without Lambda.

Install

Run serverless plugin install in your Serverless project.

serverless plugin install -n serverless-apigateway-service-proxy

Supported AWS services

Here is a services list which this plugin supports for now. But will expand to other services in the feature. Please pull request if you are intersted in it.

  • Kinesis Streams
  • SQS
  • S3
  • SNS
  • DynamoDB
  • EventBridge

How to use

Define settings of the AWS services you want to integrate under custom > apiGatewayServiceProxies and run serverless deploy.

Kinesis

Sample syntax for Kinesis proxy in serverless.yml.

custom:
  apiGatewayServiceProxies:
    - kinesis: # partitionkey is set apigateway requestid by default
        path: /kinesis
        method: post
        streamName: { Ref: 'YourStream' }
        cors: true
    - kinesis:
        path: /kinesis
        method: post
        partitionKey: 'hardcordedkey' # use static partitionkey
        streamName: { Ref: 'YourStream' }
        cors: true
    - kinesis:
        path: /kinesis/{myKey} # use path parameter
        method: post
        partitionKey:
          pathParam: myKey
        streamName: { Ref: 'YourStream' }
        cors: true
    - kinesis:
        path: /kinesis
        method: post
        partitionKey:
          bodyParam: data.myKey # use body parameter
        streamName: { Ref: 'YourStream' }
        cors: true
    - kinesis:
        path: /kinesis
        method: post
        partitionKey:
          queryStringParam: myKey # use query string param
        streamName: { Ref: 'YourStream' }
        cors: true
    - kinesis: # PutRecords
        path: /kinesis
        method: post
        action: PutRecords
        streamName: { Ref: 'YourStream' }
        cors: true

resources:
  Resources:
    YourStream:
      Type: AWS::Kinesis::Stream
      Properties:
        ShardCount: 1

Sample request after deploying.

curl https://xxxxxxx.execute-api.us-east-1.amazonaws.com/dev/kinesis -d '{"message": "some data"}'  -H 'Content-Type:application/json'

SQS

Sample syntax for SQS proxy in serverless.yml.

custom:
  apiGatewayServiceProxies:
    - sqs:
        path: /sqs
        method: post
        queueName: { 'Fn::GetAtt': ['SQSQueue', 'QueueName'] }
        cors: true

resources:
  Resources:
    SQSQueue:
      Type: 'AWS::SQS::Queue'

Sample request after deploying.

curl https://xxxxxx.execute-api.us-east-1.amazonaws.com/dev/sqs -d '{"message": "testtest"}' -H 'Content-Type:application/json'

Customizing request parameters

If you'd like to pass additional data to the integration request, you can do so by including your custom API Gateway request parameters in serverless.yml like so:

custom:
  apiGatewayServiceProxies:
    - sqs:
        path: /queue
        method: post
        queueName: !GetAtt MyQueue.QueueName
        cors: true

        requestParameters:
          'integration.request.querystring.MessageAttribute.1.Name': "'cognitoIdentityId'"
          'integration.request.querystring.MessageAttribute.1.Value.StringValue': 'context.identity.cognitoIdentityId'
          'integration.request.querystring.MessageAttribute.1.Value.DataType': "'String'"
          'integration.request.querystring.MessageAttribute.2.Name': "'cognitoAuthenticationProvider'"
          'integration.request.querystring.MessageAttribute.2.Value.StringValue': 'context.identity.cognitoAuthenticationProvider'
          'integration.request.querystring.MessageAttribute.2.Value.DataType': "'String'"

The alternative way to pass MessageAttribute parameters is via a request body mapping template.

Customizing request body mapping templates

See the SQS section under Customizing request body mapping templates

Customizing responses

Simplified response template customization

You can get a simple customization of the responses by providing a template for the possible responses. The template is assumed to be application/json.

custom:
  apiGatewayServiceProxies:
    - sqs:
        path: /queue
        method: post
        queueName: !GetAtt MyQueue.QueueName
        cors: true
        response:
          template:
            # `success` is used when the integration response is 200
            success: |-
              { "message: "accepted" }
            # `clientError` is used when the integration response is 400
            clientError: |-
              { "message": "there is an error in your request" }
            # `serverError` is used when the integration response is 500
            serverError: |-
              { "message": "there was an error handling your request" }

Full response customization

If you want more control over the integration response, you can provide an array of objects for the response value:

custom:
  apiGatewayServiceProxies:
    - sqs:
        path: /queue
        method: post
        queueName: !GetAtt MyQueue.QueueName
        cors: true
        response:
          - statusCode: 200
            selectionPattern: '2\\d{2}'
            responseParameters: {}
            responseTemplates:
              application/json: |-
                { "message": "accepted" }

The object keys correspond to the API Gateway integration response object.

S3

Sample syntax for S3 proxy in serverless.yml.

custom:
  apiGatewayServiceProxies:
    - s3:
        path: /s3
        method: post
        action: PutObject
        bucket:
          Ref: S3Bucket
        key: static-key.json # use static key
        cors: true

    - s3:
        path: /s3/{myKey} # use path param
        method: get
        action: GetObject
        bucket:
          Ref: S3Bucket
        key:
          pathParam: myKey
        cors: true

    - s3:
        path: /s3
        method: delete
        action: DeleteObject
        bucket:
          Ref: S3Bucket
        key:
          queryStringParam: key # use query string param
        cors: true

resources:
  Resources:
    S3Bucket:
      Type: 'AWS::S3::Bucket'

Sample request after deploying.

curl https://xxxxxx.execute-api.us-east-1.amazonaws.com/dev/s3 -d '{"message": "testtest"}' -H 'Content-Type:application/json'

Customizing request parameters

Similar to the SQS support, you can customize the default request parameters serverless.yml like so:

custom:
  apiGatewayServiceProxies:
    - s3:
        path: /s3
        method: post
        action: PutObject
        bucket:
          Ref: S3Bucket
        cors: true

        requestParameters:
          # if requestParameters has a 'integration.request.path.object' property you should remove the key setting
          'integration.request.path.object': 'context.requestId'
          'integration.request.header.cache-control': "'public, max-age=31536000, immutable'"

Customizing request templates

If you'd like use custom API Gateway request templates, you can do so like so:

custom:
  apiGatewayServiceProxies:
    - s3:
        path: /s3
        method: get
        action: GetObject
        bucket:
          Ref: S3Bucket
        request:
          template:
            application/json: |
              #set ($specialStuff = $context.request.header.x-special)
              #set ($context.requestOverride.path.object = $specialStuff.replaceAll('_', '-'))
              {}

Note that if the client does not provide a Content-Type header in the request, ApiGateway defaults to application/json.

Customize the Path Override in API Gateway

Added the new customization parameter that lets the user set a custom Path Override in API Gateway other than the {bucket}/{object} This parameter is optional and if not set, will fall back to {bucket}/{object} The Path Override will add {bucket}/ automatically in front

Please keep in mind, that key or path.object still needs to be set at the moment (maybe this will be made optional later on with this)

Usage (With 2 Path Parameters (folder and file and a fixed file extension)):

custom:
  apiGatewayServiceProxies:
    - s3:
        path: /s3/{folder}/{file}
        method: get
        action: GetObject
        pathOverride: '{folder}/{file}.xml'
        bucket:
          Ref: S3Bucket
        cors: true

        requestParameters:
          # if requestParameters has a 'integration.request.path.object' property you should remove the key setting
          'integration.request.path.folder': 'method.request.path.folder'
          'integration.request.path.file': 'method.request.path.file'
          'integration.request.path.object': 'context.requestId'
          'integration.request.header.cache-control': "'public, max-age=31536000, immutable'"

This will result in API Gateway setting the Path Override attribute to {bucket}/{folder}/{file}.xml So for example if you navigate to the API Gatway endpoint /language/en it will fetch the file in S3 from {bucket}/language/en.xml

Can use greedy, for deeper Folders

The forementioned example can also be shortened by a greedy approach. Thanks to @taylorreece for mentioning this.

custom:
  apiGatewayServiceProxies:
    - s3:
        path: /s3/{myPath+}
        method: get
        action: GetObject
        pathOverride: '{myPath}.xml'
        bucket:
          Ref: S3Bucket
        cors: true

        requestParameters:
          # if requestParameters has a 'integration.request.path.object' property you should remove the key setting
          'integration.request.path.myPath': 'method.request.path.myPath'
          'integration.request.path.object': 'context.requestId'
          'integration.request.header.cache-control': "'public, max-age=31536000, immutable'"

This will translate for example /s3/a/b/c to a/b/c.xml

Customizing responses

You can get a simple customization of the responses by providing a template for the possible responses. The template is assumed to be application/json.

custom:
  apiGatewayServiceProxies:
    - s3:
        path: /s3
        method: post
        action: PutObject
        bucket:
          Ref: S3Bucket
        key: static-key.json
        response:
          template:
            # `success` is used when the integration response is 200
            success: |-
              { "message: "accepted" }
            # `clientError` is used when the integration response is 400
            clientError: |-
              { "message": "there is an error in your request" }
            # `serverError` is used when the integration response is 500
            serverError: |-
              { "message": "there was an error handling your request" }

SNS

Sample syntax for SNS proxy in serverless.yml.

custom:
  apiGatewayServiceProxies:
    - sns:
        path: /sns
        method: post
        topicName: { 'Fn::GetAtt': ['SNSTopic', 'TopicName'] }
        cors: true

resources:
  Resources:
    SNSTopic:
      Type: AWS::SNS::Topic

Sample request after deploying.

curl https://xxxxxx.execute-api.us-east-1.amazonaws.com/dev/sns -d '{"message": "testtest"}' -H 'Content-Type:application/json'

Customizing responses

Simplified response template customization

You can get a simple customization of the responses by providing a template for the possible responses. The template is assumed to be application/json.

custom:
  apiGatewayServiceProxies:
    - sns:
        path: /sns
        method: post
        topicName: { 'Fn::GetAtt': ['SNSTopic', 'TopicName'] }
        cors: true
        response:
          template:
            # `success` is used when the integration response is 200
            success: |-
              { "message: "accepted" }
            # `clientError` is used when the integration response is 400
            clientError: |-
              { "message": "there is an error in your request" }
            # `serverError` is used when the integration response is 500
            serverError: |-
              { "message": "there was an error handling your request" }

Full response customization

If you want more control over the integration response, you can provide an array of objects for the response value:

custom:
  apiGatewayServiceProxies:
    - sns:
        path: /sns
        method: post
        topicName: { 'Fn::GetAtt': ['SNSTopic', 'TopicName'] }
        cors: true
        response:
          - statusCode: 200
            selectionPattern: '2\d{2}'
            responseParameters: {}
            responseTemplates:
              application/json: |-
                { "message": "accepted" }

The object keys correspond to the API Gateway integration response object.

Content Handling and Pass Through Behaviour customization

If you want to work with binary fata, you can not specify contentHandling and PassThrough inside the request object.

custom:
  apiGatewayServiceProxies:
    - sns:
        path: /sns
        method: post
        topicName: { 'Fn::GetAtt': ['SNSTopic', 'TopicName'] }
        request:
          contentHandling: CONVERT_TO_TEXT
          passThrough: WHEN_NO_TEMPLATES

The allowed values correspond with the API Gateway Method integration for ContentHandling and PassthroughBehavior

DynamoDB

Sample syntax for DynamoDB proxy in serverless.yml. Currently, the supported DynamoDB Operations are PutItem, GetItem and DeleteItem.

custom:
  apiGatewayServiceProxies:
    - dynamodb:
        path: /dynamodb/{id}/{sort}
        method: put
        tableName: { Ref: 'YourTable' }
        hashKey: # set pathParam or queryStringParam as a partitionkey.
          pathParam: id
          attributeType: S
        rangeKey: # required if also using sort key. set pathParam or queryStringParam.
          pathParam: sort
          attributeType: S
        action: PutItem # specify action to the table what you want
        condition: attribute_not_exists(Id) # optional Condition Expressions parameter for the table
        cors: true
    - dynamodb:
        path: /dynamodb
        method: get
        tableName: { Ref: 'YourTable' }
        hashKey:
          queryStringParam: id # use query string parameter
          attributeType: S
        rangeKey:
          queryStringParam: sort
          attributeType: S
        action: GetItem
        cors: true
    - dynamodb:
        path: /dynamodb/{id}
        method: delete
        tableName: { Ref: 'YourTable' }
        hashKey:
          pathParam: id
          attributeType: S
        action: DeleteItem
        cors: true

resources:
  Resources:
    YourTable:
      Type: AWS::DynamoDB::Table
      Properties:
        TableName: YourTable
        AttributeDefinitions:
          - AttributeName: id
            AttributeType: S
          - AttributeName: sort
            AttributeType: S
        KeySchema:
          - AttributeName: id
            KeyType: HASH
          - AttributeName: sort
            KeyType: RANGE
        ProvisionedThroughput:
          ReadCapacityUnits: 1
          WriteCapacityUnits: 1

Sample request after deploying.

curl -XPUT https://xxxxxxx.execute-api.us-east-1.amazonaws.com/dev/dynamodb/<hashKey>/<sortkey> \
 -d '{"name":{"S":"john"},"address":{"S":"xxxxx"}}' \
 -H 'Content-Type:application/json'

EventBridge

Sample syntax for EventBridge proxy in serverless.yml.

custom:
  apiGatewayServiceProxies:
    - eventbridge:  # source and detailType are hardcoded; detail defaults to POST body
        path: /eventbridge
        method: post
        source: 'hardcoded_source'
        detailType: 'hardcoded_detailType'
        eventBusName: { Ref: 'YourBusName' }
        cors: true
    - eventbridge:  # source and detailType as path parameters
        path: /eventbridge/{detailTypeKey}/{sourceKey}
        method: post
        detailType:
          pathParam: detailTypeKey
        source:
          pathParam: sourceKey
        eventBusName: { Ref: 'YourBusName' }
        cors: true
    - eventbridge:  # source, detail, and detailType as body parameters
        path: /eventbridge/{detailTypeKey}/{sourceKey}
        method: post
        detailType:
          bodyParam: data.detailType
        source:
          bodyParam: data.source
        detail:
          bodyParam: data.detail
        eventBusName: { Ref: 'YourBusName' }
        cors: true

resources:
  Resources:
    YourBus:
      Type: AWS::Events::EventBus
      Properties:
        Name: YourEventBus

Sample request after deploying.

curl https://xxxxxxx.execute-api.us-east-1.amazonaws.com/dev/eventbridge -d '{"message": "some data"}'  -H 'Content-Type:application/json'

Common API Gateway features

Enabling CORS

To set CORS configurations for your HTTP endpoints, simply modify your event configurations as follows:

custom:
  apiGatewayServiceProxies:
    - kinesis:
        path: /kinesis
        method: post
        streamName: { Ref: 'YourStream' }
        cors: true

Setting cors to true assumes a default configuration which is equivalent to:

custom:
  apiGatewayServiceProxies:
    - kinesis:
        path: /kinesis
        method: post
        streamName: { Ref: 'YourStream' }
        cors:
          origin: '*'
          headers:
            - Content-Type
            - X-Amz-Date
            - Authorization
            - X-Api-Key
            - X-Amz-Security-Token
            - X-Amz-User-Agent
          allowCredentials: false

Configuring the cors property sets Access-Control-Allow-Origin, Access-Control-Allow-Headers, Access-Control-Allow-Methods,Access-Control-Allow-Credentials headers in the CORS preflight response. To enable the Access-Control-Max-Age preflight response header, set the maxAge property in the cors object:

custom:
  apiGatewayServiceProxies:
    - kinesis:
        path: /kinesis
        method: post
        streamName: { Ref: 'YourStream' }
        cors:
          origin: '*'
          maxAge: 86400

If you are using CloudFront or another CDN for your API Gateway, you may want to setup a Cache-Control header to allow for OPTIONS request to be cached to avoid the additional hop.

To enable the Cache-Control header on preflight response, set the cacheControl property in the cors object:

custom:
  apiGatewayServiceProxies:
    - kinesis:
        path: /kinesis
        method: post
        streamName: { Ref: 'YourStream' }
        cors:
          origin: '*'
          headers:
            - Content-Type
            - X-Amz-Date
            - Authorization
            - X-Api-Key
            - X-Amz-Security-Token
            - X-Amz-User-Agent
          allowCredentials: false
          cacheControl: 'max-age=600, s-maxage=600, proxy-revalidate' # Caches on browser and proxy for 10 minutes and doesnt allow proxy to serve out of date content

Adding Authorization

You can pass in any supported authorization type:

custom:
  apiGatewayServiceProxies:
    - sqs:
        path: /sqs
        method: post
        queueName: { 'Fn::GetAtt': ['SQSQueue', 'QueueName'] }
        cors: true

        # optional - defaults to 'NONE'
        authorizationType: 'AWS_IAM' # can be one of ['NONE', 'AWS_IAM', 'CUSTOM', 'COGNITO_USER_POOLS']

        # when using 'CUSTOM' authorization type, one should specify authorizerId
        # authorizerId: { Ref: 'AuthorizerLogicalId' }
        # when using 'COGNITO_USER_POOLS' authorization type, one can specify a list of authorization scopes
        # authorizationScopes: ['scope1','scope2']

resources:
  Resources:
    SQSQueue:
      Type: 'AWS::SQS::Queue'

Source: AWS::ApiGateway::Method docs

Enabling API Token Authentication

You can indicate whether the method requires clients to submit a valid API key using private flag:

custom:
  apiGatewayServiceProxies:
    - sqs:
        path: /sqs
        method: post
        queueName: { 'Fn::GetAtt': ['SQSQueue', 'QueueName'] }
        cors: true
        private: true

resources:
  Resources:
    SQSQueue:
      Type: 'AWS::SQS::Queue'

which is the same syntax used in Serverless framework.

Source: Serverless: Setting API keys for your Rest API

Source: AWS::ApiGateway::Method docs

Using a Custom IAM Role

By default, the plugin will generate a role with the required permissions for each service type that is configured.

You can configure your own role by setting the roleArn attribute:

custom:
  apiGatewayServiceProxies:
    - sqs:
        path: /sqs
        method: post
        queueName: { 'Fn::GetAtt': ['SQSQueue', 'QueueName'] }
        cors: true
        roleArn: # Optional. A default role is created when not configured
          Fn::GetAtt: [CustomS3Role, Arn]

resources:
  Resources:
    SQSQueue:
      Type: 'AWS::SQS::Queue'
    CustomS3Role:
      # Custom Role definition
      Type: 'AWS::IAM::Role'

Customizing API Gateway parameters

The plugin allows one to specify which parameters the API Gateway method accepts.

A common use case is to pass custom data to the integration request:

custom:
  apiGatewayServiceProxies:
    - sqs:
        path: /sqs
        method: post
        queueName: { 'Fn::GetAtt': ['SqsQueue', 'QueueName'] }
        cors: true
        acceptParameters:
          'method.request.header.Custom-Header': true
        requestParameters:
          'integration.request.querystring.MessageAttribute.1.Name': "'custom-Header'"
          'integration.request.querystring.MessageAttribute.1.Value.StringValue': 'method.request.header.Custom-Header'
          'integration.request.querystring.MessageAttribute.1.Value.DataType': "'String'"
resources:
  Resources:
    SqsQueue:
      Type: 'AWS::SQS::Queue'

Any published SQS message will have the Custom-Header value added as a message attribute.

Customizing request body mapping templates

Kinesis

If you'd like to add content types or customize the default templates, you can do so by including your custom API Gateway request mapping template in serverless.yml like so:

# Required for using Fn::Sub
plugins:
  - serverless-cloudformation-sub-variables

custom:
  apiGatewayServiceProxies:
    - kinesis:
        path: /kinesis
        method: post
        streamName: { Ref: 'MyStream' }
        request:
          template:
            text/plain:
              Fn::Sub:
                - |
                  #set($msgBody = $util.parseJson($input.body))
                  #set($msgId = $msgBody.MessageId)
                  {
                      "Data": "$util.base64Encode($input.body)",
                      "PartitionKey": "$msgId",
                      "StreamName": "#{MyStreamArn}"
                  }
                - MyStreamArn:
                    Fn::GetAtt: [MyStream, Arn]

It is important that the mapping template will return a valid application/json string

Source: How to connect SNS to Kinesis for cross-account delivery via API Gateway

SQS

Customizing SQS request templates requires us to force all requests to use an application/x-www-form-urlencoded style body. The plugin sets the Content-Type header to application/x-www-form-urlencoded for you, but API Gateway will still look for the template under the application/json request template type, so that is where you need to configure you request body in serverless.yml:

custom:
  apiGatewayServiceProxies:
    - sqs:
        path: /{version}/event/receiver
        method: post
        queueName: { 'Fn::GetAtt': ['SqsQueue', 'QueueName'] }
        request:
          template:
            application/json: |-
              #set ($body = $util.parseJson($input.body))
              Action=SendMessage##
              &MessageGroupId=$util.urlEncode($body.event_type)##
              &MessageDeduplicationId=$util.urlEncode($body.event_id)##
              &MessageAttribute.1.Name=$util.urlEncode("X-Custom-Signature")##
              &MessageAttribute.1.Value.DataType=String##
              &MessageAttribute.1.Value.StringValue=$util.urlEncode($input.params("X-Custom-Signature"))##
              &MessageBody=$util.urlEncode($input.body)

Note that the ## at the end of each line is an empty comment. In VTL this has the effect of stripping the newline from the end of the line (as it is commented out), which makes API Gateway read all the lines in the template as one line.

Be careful when mixing additional requestParameters into your SQS endpoint as you may overwrite the integration.request.header.Content-Type and stop the request template from being parsed correctly. You may also unintentionally create conflicts between parameters passed using requestParameters and those in your request template. Typically you should only use the request template if you need to manipulate the incoming request body in some way.

Your custom template must also set the Action and MessageBody parameters, as these will not be added for you by the plugin.

When using a custom request body, headers sent by a client will no longer be passed through to the SQS queue (PassthroughBehavior is automatically set to NEVER). You will need to pass through headers sent by the client explicitly in the request body. Also, any custom querystring parameters in the requestParameters array will be ignored. These also need to be added via the custom request body.

SNS

Similar to the Kinesis support, you can customize the default request mapping templates in serverless.yml like so:

# Required for using Fn::Sub
plugins:
  - serverless-cloudformation-sub-variables

custom:
  apiGatewayServiceProxies:
    - kinesis:
        path: /sns
        method: post
        topicName: { 'Fn::GetAtt': ['SNSTopic', 'TopicName'] }
        request:
          template:
            application/json:
              Fn::Sub:
                - "Action=Publish&Message=$util.urlEncode('This is a fixed message')&TopicArn=$util.urlEncode('#{MyTopicArn}')"
                - MyTopicArn: { Ref: MyTopic }

It is important that the mapping template will return a valid application/x-www-form-urlencoded string

Source: Connect AWS API Gateway directly to SNS using a service integration

Custom response body mapping templates

You can customize the response body by providing mapping templates for success, server errors (5xx) and client errors (4xx).

Templates must be in JSON format. If a template isn't provided, the integration response will be returned as-is to the client.

Kinesis Example

custom:
  apiGatewayServiceProxies:
    - kinesis:
        path: /kinesis
        method: post
        streamName: { Ref: 'MyStream' }
        response:
          template:
            success: |
              {
                "success": true
              }
            serverError: |
              {
                "success": false,
                "errorMessage": "Server Error"
              }
            clientError: |
              {
                "success": false,
                "errorMessage": "Client Error"
              }

Author: Serverless-operations
Source Code: https://github.com/serverless-operations/serverless-apigateway-service-proxy 
License: 

#serverless #api #aws 

What is GEEK

Buddha Community

Serverless APIGateway Service Proxy
Hermann  Frami

Hermann Frami

1655426640

Serverless Plugin for Microservice Code Management and Deployment

Serverless M

Serverless M (or Serverless Modular) is a plugin for the serverless framework. This plugins helps you in managing multiple serverless projects with a single serverless.yml file. This plugin gives you a super charged CLI options that you can use to create new features, build them in a single file and deploy them all in parallel

splash.gif

Currently this plugin is tested for the below stack only

  • AWS
  • NodeJS λ
  • Rest API (You can use other events as well)

Prerequisites

Make sure you have the serverless CLI installed

# Install serverless globally
$ npm install serverless -g

Getting Started

To start the serverless modular project locally you can either start with es5 or es6 templates or add it as a plugin

ES6 Template install

# Step 1. Download the template
$ sls create --template-url https://github.com/aa2kb/serverless-modular/tree/master/template/modular-es6 --path myModularService

# Step 2. Change directory
$ cd myModularService

# Step 3. Create a package.json file
$ npm init

# Step 3. Install dependencies
$ npm i serverless-modular serverless-webpack webpack --save-dev

ES5 Template install

# Step 1. Download the template
$ sls create --template-url https://github.com/aa2kb/serverless-modular/tree/master/template/modular-es5 --path myModularService

# Step 2. Change directory
$ cd myModularService

# Step 3. Create a package.json file
$ npm init

# Step 3. Install dependencies
$ npm i serverless-modular --save-dev

If you dont want to use the templates above you can just add in your existing project

Adding it as plugin

plugins:
  - serverless-modular

Now you are all done to start building your serverless modular functions

API Reference

The serverless CLI can be accessed by

# Serverless Modular CLI
$ serverless modular

# shorthand
$ sls m

Serverless Modular CLI is based on 4 main commands

  • sls m init
  • sls m feature
  • sls m function
  • sls m build
  • sls m deploy

init command

sls m init

The serverless init command helps in creating a basic .gitignore that is useful for serverless modular.

The basic .gitignore for serverless modular looks like this

#node_modules
node_modules

#sm main functions
sm.functions.yml

#serverless file generated by build
src/**/serverless.yml

#main serverless directories generated for sls deploy
.serverless

#feature serverless directories generated sls deploy
src/**/.serverless

#serverless logs file generated for main sls deploy
.sm.log

#serverless logs file generated for feature sls deploy
src/**/.sm.log

#Webpack config copied in each feature
src/**/webpack.config.js

feature command

The feature command helps in building new features for your project

options (feature Command)

This command comes with three options

--name: Specify the name you want for your feature

--remove: set value to true if you want to remove the feature

--basePath: Specify the basepath you want for your feature, this base path should be unique for all features. helps in running offline with offline plugin and for API Gateway

optionsshortcutrequiredvaluesdefault value
--name-nstringN/A
--remove-rtrue, falsefalse
--basePath-pstringsame as name

Examples (feature Command)

Creating a basic feature

# Creating a jedi feature
$ sls m feature -n jedi

Creating a feature with different base path

# A feature with different base path
$ sls m feature -n jedi -p tatooine

Deleting a feature

# Anakin is going to delete the jedi feature
$ sls m feature -n jedi -r true

function command

The function command helps in adding new function to a feature

options (function Command)

This command comes with four options

--name: Specify the name you want for your function

--feature: Specify the name of the existing feature

--path: Specify the path for HTTP endpoint helps in running offline with offline plugin and for API Gateway

--method: Specify the path for HTTP method helps in running offline with offline plugin and for API Gateway

optionsshortcutrequiredvaluesdefault value
--name-nstringN/A
--feature-fstringN/A
--path-pstringsame as name
--method-mstring'GET'

Examples (function Command)

Creating a basic function

# Creating a cloak function for jedi feature
$ sls m function -n cloak -f jedi

Creating a basic function with different path and method

# Creating a cloak function for jedi feature with custom path and HTTP method
$ sls m function -n cloak -f jedi -p powers -m POST

build command

The build command helps in building the project for local or global scope

options (build Command)

This command comes with four options

--scope: Specify the scope of the build, use this with "--feature" tag

--feature: Specify the name of the existing feature you want to build

optionsshortcutrequiredvaluesdefault value
--scope-sstringlocal
--feature-fstringN/A

Saving build Config in serverless.yml

You can also save config in serverless.yml file

custom:
  smConfig:
    build:
      scope: local

Examples (build Command)

all feature build (local scope)

# Building all local features
$ sls m build

Single feature build (local scope)

# Building a single feature
$ sls m build -f jedi -s local

All features build global scope

# Building all features with global scope
$ sls m build -s global

deploy command

The deploy command helps in deploying serverless projects to AWS (it uses sls deploy command)

options (deploy Command)

This command comes with four options

--sm-parallel: Specify if you want to deploy parallel (will only run in parallel when doing multiple deployments)

--sm-scope: Specify if you want to deploy local features or global

--sm-features: Specify the local features you want to deploy (comma separated if multiple)

optionsshortcutrequiredvaluesdefault value
--sm-paralleltrue, falsetrue
--sm-scopelocal, globallocal
--sm-featuresstringN/A
--sm-ignore-buildstringfalse

Saving deploy Config in serverless.yml

You can also save config in serverless.yml file

custom:
  smConfig:
    deploy:
      scope: local
      parallel: true
      ignoreBuild: true

Examples (deploy Command)

Deploy all features locally

# deploy all local features
$ sls m deploy

Deploy all features globally

# deploy all global features
$ sls m deploy --sm-scope global

Deploy single feature

# deploy all global features
$ sls m deploy --sm-features jedi

Deploy Multiple features

# deploy all global features
$ sls m deploy --sm-features jedi,sith,dark_side

Deploy Multiple features in sequence

# deploy all global features
$ sls m deploy  --sm-features jedi,sith,dark_side --sm-parallel false

Author: aa2kb
Source Code: https://github.com/aa2kb/serverless-modular 
License: MIT license

#serverless #aws #node #lambda 

Serverless Applications - Pros and Cons to Help Businesses Decide - Prismetric

In the past few years, especially after Amazon Web Services (AWS) introduced its Lambda platform, serverless architecture became the business realm’s buzzword. The increasing popularity of serverless applications saw market leaders like Netflix, Airbnb, Nike, etc., adopting the serverless architecture to handle their backend functions better. Moreover, serverless architecture’s market size is expected to reach a whopping $9.17 billion by the year 2023.

Global_Serverless_Architecture_Market_2019-2023

Why use serverless computing?
As a business it is best to approach a professional mobile app development company to build apps that are deployed on various servers; nevertheless, businesses should understand that the benefits of the serverless applications lie in the possibility it promises ideal business implementations and not in the hype created by cloud vendors. With the serverless architecture, the developers can easily code arbitrary codes on-demand without worrying about the underlying hardware.

But as is the case with all game-changing trends, many businesses opt for serverless applications just for the sake of being up-to-date with their peers without thinking about the actual need of their business.

The serverless applications work well with stateless use cases, the cases which execute cleanly and give the next operation in a sequence. On the other hand, the serverless architecture is not fit for predictable applications where there is a lot of reading and writing in the backend system.

Another benefit of working with the serverless software architecture is that the third-party service provider will charge based on the total number of requests. As the number of requests increases, the charge is bound to increase, but then it will cost significantly less than a dedicated IT infrastructure.

Defining serverless software architecture
In serverless software architecture, the application logic is implemented in an environment where operating systems, servers, or virtual machines are not visible. Although where the application logic is executed is running on any operating system which uses physical servers. But the difference here is that managing the infrastructure is the soul of the service provider and the mobile app developer focuses only on writing the codes.

There are two different approaches when it comes to serverless applications. They are

Backend as a service (BaaS)
Function as a service (FaaS)

  1. Backend as a service (BaaS)
    The basic required functionality of the growing number of third party services is to provide server-side logic and maintain their internal state. This requirement has led to applications that do not have server-side logic or any application-specific logic. Thus they depend on third-party services for everything.

Moreover, other examples of third-party services are Autho, AWS Cognito (authentication as a service), Amazon Kinesis, Keen IO (analytics as a service), and many more.

  1. Function as a Service (FaaS)
    FaaS is the modern alternative to traditional architecture when the application still requires server-side logic. With Function as a Service, the developer can focus on implementing stateless functions triggered by events and can communicate efficiently with the external world.

FaaS serverless architecture is majorly used with microservices architecture as it renders everything to the organization. AWS Lambda, Google Cloud functions, etc., are some of the examples of FaaS implementation.

Pros of Serverless applications
There are specific ways in which serverless applications can redefine the way business is done in the modern age and has some distinct advantages over the traditional could platforms. Here are a few –

🔹 Highly Scalable
The flexible nature of the serverless architecture makes it ideal for scaling the applications. The serverless application’s benefit is that it allows the vendor to run each of the functions in separate containers, allowing optimizing them automatically and effectively. Moreover, unlike in the traditional cloud, one doesn’t need to purchase a certain number of resources in serverless applications and can be as flexible as possible.

🔹 Cost-Effective
As the organizations don’t need to spend hundreds and thousands of dollars on hardware, they don’t need to pay anything to the engineers to maintain the hardware. The serverless application’s pricing model is execution based as the organization is charged according to the executions they have made.

The company that uses the serverless applications is allotted a specific amount of time, and the pricing of the execution depends on the memory required. Different types of costs like presence detection, access authorization, image processing, etc., associated with a physical or virtual server is completely eliminated with the serverless applications.

🔹 Focuses on user experience
As the companies don’t always think about maintaining the servers, it allows them to focus on more productive things like developing and improving customer service features. A recent survey says that about 56% of the users are either using or planning to use the serverless applications in the coming six months.

Moreover, as the companies would save money with serverless apps as they don’t have to maintain any hardware system, it can be then utilized to enhance the level of customer service and features of the apps.

🔹 Ease of migration
It is easy to get started with serverless applications by porting individual features and operate them as on-demand events. For example, in a CMS, a video plugin requires transcoding video for different formats and bitrates. If the organization wished to do this with a WordPress server, it might not be a good fit as it would require resources dedicated to serving pages rather than encoding the video.

Moreover, the benefits of serverless applications can be used optimally to handle metadata encoding and creation. Similarly, serverless apps can be used in other plugins that are often prone to critical vulnerabilities.

Cons of serverless applications
Despite having some clear benefits, serverless applications are not specific for every single use case. We have listed the top things that an organization should keep in mind while opting for serverless applications.

🔹 Complete dependence on third-party vendor
In the realm of serverless applications, the third-party vendor is the king, and the organizations have no options but to play according to their rules. For example, if an application is set in Lambda, it is not easy to port it into Azure. The same is the case for coding languages. In present times, only Python developers and Node.js developers have the luxury to choose between existing serverless options.

Therefore, if you are planning to consider serverless applications for your next project, make sure that your vendor has everything needed to complete the project.

🔹 Challenges in debugging with traditional tools
It isn’t easy to perform debugging, especially for large enterprise applications that include various individual functions. Serverless applications use traditional tools and thus provide no option to attach a debugger in the public cloud. The organization can either do the debugging process locally or use logging for the same purpose. In addition to this, the DevOps tools in the serverless application do not support the idea of quickly deploying small bits of codes into running applications.

#serverless-application #serverless #serverless-computing #serverless-architeture #serverless-application-prosand-cons

Make Your Business Popular On the Internet with search engine optimization services India

As a small business owner, you should never think that SEO services are not for you. The search engine optimization services India from this digital marketing agency offer SEO services for small businesses and enterprises to make sure that they get in competition with bigger websites. They deliver on-page, off-page, local SEO and ecommerce SEO services.

#search engine optimization services india #seo services india #affordable seo services india #seo services provider #website seo services #outsource seo services india

Christa  Stehr

Christa Stehr

1602681082

Overcoming Common Serverless Challenges with Mainframe CICS Programs

By this point most enterprises, including those running on legacy infrastructures, are familiar with the benefits of serverless computing:

  • Greater scalability
  • Faster development
  • More efficient deployment
  • Lower cost

The benefits of agility and cost reduction are especially relevant in the current macroeconomic environment when customer behavior is changing, end-user needs are difficult to predict, and development teams are under pressure to do more with less.

So serverless is a no-brainer, right?

Not exactly. Serverless might be relatively painless for a new generation of cloud-native software companies that grew up in a world of APIs and microservices, but it creates headaches for the many organizations that still rely heavily on legacy infrastructure.

In particular, enterprises running mainframe CICS programs are likely to encounter frustrating stumbling blocks on the path to launching Functions as a Service (FaaS). This population includes global enterprises that depend on CICS applications to effectively manage high-volume transactional processing requirements – particularly in the banking, financial services, and insurance industries.

These organizations stand to achieve time and cost savings through a modern approach to managing legacy infrastructure, as opposed to launching serverless applications on a brittle foundation. Here are three of the biggest obstacles they face and how to overcome them.

Challenge #1

Middleware that introduces complexity, technical debt, and latency. Many organizations looking to integrate CICS applications into a microservices or serverless architecture rely on middleware (e.g., an ESB or SOA) to access data from the underlying applications. This strategy introduces significant runtime performance challenges and creates what one bank’s chief architect referred to as a “lasagna architecture,” making DevOps impossible.

#serverless architecture #serverless functions #serverless benefits #mainframes #serverless api #serverless integration

Top-Notch 3d Design Services | 3d Printing Prototype Service

3D Design Service Provider

With the advancement in technology, many products have found a dire need to showcase their product virtually and to make the virtual experience as clear as actual a technology called 3D is used. The 3D technology allows a business to showcase their products in 3 dimensions virtually.

Want to develop an app that showcases anything in 3D?

WebClues Infotech with its expertise in mobile app development can seamlessly connect a technology that has the capability to change an industry with its integration in the mobile app. After successfully serving more than 950 projects WebClues Infotech is prepared with its highly skilled development team to serve you.

Want to know more about our 3D design app development?

Visit us at
https://www.webcluesinfotech.com/3d-design-services/

Visit: https://www.webcluesinfotech.com/3d-design-services/

Share your requirements https://www.webcluesinfotech.com/contact-us/

View Portfolio https://www.webcluesinfotech.com/portfolio/

#3d design service provide #3d design services #3d modeling design services #professional 3d design services #industrial & 3d product design services #3d web design & development company