Ly  Jangi

Ly Jangi

1593144001

Real-Time semantic segmentation in the browser using TensorFlow.js

Semantic segmentation is the problem of detecting and delineating each object of interest appearing in an image. Currently, there are several approaches that solve this problem and produce results as seen below.

Figure 1: Semantic segmentation example (Source)

This kind of segmentation is predicting every pixel in the image and is known as Dense Prediction as well. It’s important to notice that the instances of the same class are not being separated, the model only cares about the pixel’s category. As shown in Figure 1, the method can say that there are chairs in certain positions, but cannot distinguish them.

One of the main applications of this technique is in Autonomous Vehicles, where cars need to understand their environment. Semantic Segmentation is able to assign a meaning to the scenes and put the car in the context, indicating the lane position, if there is some obstruction, as fallen trees or pedestrians crossing the road, and recognizing other cars.

Video 1: Example of Semantic Segmentation for Autonomous Driving

Therefore, applying Semantic Segmentation algorithms in urban street scenes is one of the main Computer Vision challenges nowadays. A popular dataset to evaluate model performance is the Cityscapes. It contains 30 classes from 50 different cities varying the season and wheater conditions.

Figure 2 shows how different algorithms have reached the state of the art in this dataset over time.

Figure 2: Semantic Segmentation on Cityscapes dataset

In this project, it was used a mid-level model that can deliver a reasonable precision and run in real-time. The RefineNet [2] was firstly introduced at the end of 2016 from researches of The University of Adelaide and converted to a Light-Weight model in 2018 [3], allowing real-time inferences.

#tensorflowjs #machine-learning #artificial-intelligence #tensorflow

What is GEEK

Buddha Community

Real-Time semantic segmentation in the browser using TensorFlow.js

NBB: Ad-hoc CLJS Scripting on Node.js

Nbb

Not babashka. Node.js babashka!?

Ad-hoc CLJS scripting on Node.js.

Status

Experimental. Please report issues here.

Goals and features

Nbb's main goal is to make it easy to get started with ad hoc CLJS scripting on Node.js.

Additional goals and features are:

  • Fast startup without relying on a custom version of Node.js.
  • Small artifact (current size is around 1.2MB).
  • First class macros.
  • Support building small TUI apps using Reagent.
  • Complement babashka with libraries from the Node.js ecosystem.

Requirements

Nbb requires Node.js v12 or newer.

How does this tool work?

CLJS code is evaluated through SCI, the same interpreter that powers babashka. Because SCI works with advanced compilation, the bundle size, especially when combined with other dependencies, is smaller than what you get with self-hosted CLJS. That makes startup faster. The trade-off is that execution is less performant and that only a subset of CLJS is available (e.g. no deftype, yet).

Usage

Install nbb from NPM:

$ npm install nbb -g

Omit -g for a local install.

Try out an expression:

$ nbb -e '(+ 1 2 3)'
6

And then install some other NPM libraries to use in the script. E.g.:

$ npm install csv-parse shelljs zx

Create a script which uses the NPM libraries:

(ns script
  (:require ["csv-parse/lib/sync$default" :as csv-parse]
            ["fs" :as fs]
            ["path" :as path]
            ["shelljs$default" :as sh]
            ["term-size$default" :as term-size]
            ["zx$default" :as zx]
            ["zx$fs" :as zxfs]
            [nbb.core :refer [*file*]]))

(prn (path/resolve "."))

(prn (term-size))

(println (count (str (fs/readFileSync *file*))))

(prn (sh/ls "."))

(prn (csv-parse "foo,bar"))

(prn (zxfs/existsSync *file*))

(zx/$ #js ["ls"])

Call the script:

$ nbb script.cljs
"/private/tmp/test-script"
#js {:columns 216, :rows 47}
510
#js ["node_modules" "package-lock.json" "package.json" "script.cljs"]
#js [#js ["foo" "bar"]]
true
$ ls
node_modules
package-lock.json
package.json
script.cljs

Macros

Nbb has first class support for macros: you can define them right inside your .cljs file, like you are used to from JVM Clojure. Consider the plet macro to make working with promises more palatable:

(defmacro plet
  [bindings & body]
  (let [binding-pairs (reverse (partition 2 bindings))
        body (cons 'do body)]
    (reduce (fn [body [sym expr]]
              (let [expr (list '.resolve 'js/Promise expr)]
                (list '.then expr (list 'clojure.core/fn (vector sym)
                                        body))))
            body
            binding-pairs)))

Using this macro we can look async code more like sync code. Consider this puppeteer example:

(-> (.launch puppeteer)
      (.then (fn [browser]
               (-> (.newPage browser)
                   (.then (fn [page]
                            (-> (.goto page "https://clojure.org")
                                (.then #(.screenshot page #js{:path "screenshot.png"}))
                                (.catch #(js/console.log %))
                                (.then #(.close browser)))))))))

Using plet this becomes:

(plet [browser (.launch puppeteer)
       page (.newPage browser)
       _ (.goto page "https://clojure.org")
       _ (-> (.screenshot page #js{:path "screenshot.png"})
             (.catch #(js/console.log %)))]
      (.close browser))

See the puppeteer example for the full code.

Since v0.0.36, nbb includes promesa which is a library to deal with promises. The above plet macro is similar to promesa.core/let.

Startup time

$ time nbb -e '(+ 1 2 3)'
6
nbb -e '(+ 1 2 3)'   0.17s  user 0.02s system 109% cpu 0.168 total

The baseline startup time for a script is about 170ms seconds on my laptop. When invoked via npx this adds another 300ms or so, so for faster startup, either use a globally installed nbb or use $(npm bin)/nbb script.cljs to bypass npx.

Dependencies

NPM dependencies

Nbb does not depend on any NPM dependencies. All NPM libraries loaded by a script are resolved relative to that script. When using the Reagent module, React is resolved in the same way as any other NPM library.

Classpath

To load .cljs files from local paths or dependencies, you can use the --classpath argument. The current dir is added to the classpath automatically. So if there is a file foo/bar.cljs relative to your current dir, then you can load it via (:require [foo.bar :as fb]). Note that nbb uses the same naming conventions for namespaces and directories as other Clojure tools: foo-bar in the namespace name becomes foo_bar in the directory name.

To load dependencies from the Clojure ecosystem, you can use the Clojure CLI or babashka to download them and produce a classpath:

$ classpath="$(clojure -A:nbb -Spath -Sdeps '{:aliases {:nbb {:replace-deps {com.github.seancorfield/honeysql {:git/tag "v2.0.0-rc5" :git/sha "01c3a55"}}}}}')"

and then feed it to the --classpath argument:

$ nbb --classpath "$classpath" -e "(require '[honey.sql :as sql]) (sql/format {:select :foo :from :bar :where [:= :baz 2]})"
["SELECT foo FROM bar WHERE baz = ?" 2]

Currently nbb only reads from directories, not jar files, so you are encouraged to use git libs. Support for .jar files will be added later.

Current file

The name of the file that is currently being executed is available via nbb.core/*file* or on the metadata of vars:

(ns foo
  (:require [nbb.core :refer [*file*]]))

(prn *file*) ;; "/private/tmp/foo.cljs"

(defn f [])
(prn (:file (meta #'f))) ;; "/private/tmp/foo.cljs"

Reagent

Nbb includes reagent.core which will be lazily loaded when required. You can use this together with ink to create a TUI application:

$ npm install ink

ink-demo.cljs:

(ns ink-demo
  (:require ["ink" :refer [render Text]]
            [reagent.core :as r]))

(defonce state (r/atom 0))

(doseq [n (range 1 11)]
  (js/setTimeout #(swap! state inc) (* n 500)))

(defn hello []
  [:> Text {:color "green"} "Hello, world! " @state])

(render (r/as-element [hello]))

Promesa

Working with callbacks and promises can become tedious. Since nbb v0.0.36 the promesa.core namespace is included with the let and do! macros. An example:

(ns prom
  (:require [promesa.core :as p]))

(defn sleep [ms]
  (js/Promise.
   (fn [resolve _]
     (js/setTimeout resolve ms))))

(defn do-stuff
  []
  (p/do!
   (println "Doing stuff which takes a while")
   (sleep 1000)
   1))

(p/let [a (do-stuff)
        b (inc a)
        c (do-stuff)
        d (+ b c)]
  (prn d))
$ nbb prom.cljs
Doing stuff which takes a while
Doing stuff which takes a while
3

Also see API docs.

Js-interop

Since nbb v0.0.75 applied-science/js-interop is available:

(ns example
  (:require [applied-science.js-interop :as j]))

(def o (j/lit {:a 1 :b 2 :c {:d 1}}))

(prn (j/select-keys o [:a :b])) ;; #js {:a 1, :b 2}
(prn (j/get-in o [:c :d])) ;; 1

Most of this library is supported in nbb, except the following:

  • destructuring using :syms
  • property access using .-x notation. In nbb, you must use keywords.

See the example of what is currently supported.

Examples

See the examples directory for small examples.

Also check out these projects built with nbb:

API

See API documentation.

Migrating to shadow-cljs

See this gist on how to convert an nbb script or project to shadow-cljs.

Build

Prequisites:

  • babashka >= 0.4.0
  • Clojure CLI >= 1.10.3.933
  • Node.js 16.5.0 (lower version may work, but this is the one I used to build)

To build:

  • Clone and cd into this repo
  • bb release

Run bb tasks for more project-related tasks.

Download Details:
Author: borkdude
Download Link: Download The Source Code
Official Website: https://github.com/borkdude/nbb 
License: EPL-1.0

#node #javascript

Dominic  Feeney

Dominic Feeney

1621242214

Semantic Segmentation with TensorFlow Keras - Analytics India Magazine

(https://analyticsindiamag.com/google-arts-culture-uses-ai-to-preserve-endangered-languages/)

Semantic Segmentation laid down the fundamental path to advanced Computer Vision tasks such as object detectionshape recognitionautonomous drivingrobotics, and virtual reality. Semantic segmentation can be defined as the process of pixel-level image classification into two or more Object classes. It differs from image classification entirely, as the latter performs image-level classification. For instance, consider an image that consists mainly of a zebra, surrounded by grass fields, a tree and a flying bird. Image classification tells us that the image belongs to the ‘zebra’ class. It can not tell where the zebra is or what its size or pose is. But, semantic segmentation of that image may tell that there is a zebra, grass field, a bird and a tree in the given image (classifies parts of an image into separate classes). And it tells us which pixels in the image belong to which class.

In this article, we discuss semantic segmentation using TensorFlow Keras. Readers are expected to have a fundamental knowledge of deep learning, image classification and transfer learning. Nevertheless, the following articles might fulfil these prerequisites with a quick and clear understanding:

  1. Getting Started With Deep Learning Using TensorFlow Keras
  2. Getting Started With Computer Vision Using TensorFlow Keras
  3. Exploring Transfer Learning Using TensorFlow Keras

Let’s dive deeper into hands-on learning.

#developers corner #densenet #image classification #keras #object detection #object segmentation #pix2pix #segmentation #semantic segmentation #tensorflow #tensorflow 2.0 #unet

Ian  Robinson

Ian Robinson

1621644000

4 Real-Time Data Analytics Predictions for 2021

Data management, analytics, data science, and real-time systems will converge this year enabling new automated and self-learning solutions for real-time business operations.

The global pandemic of 2020 has upended social behaviors and business operations. Working from home is the new normal for many, and technology has accelerated and opened new lines of business. Retail and travel have been hit hard, and tech-savvy companies are reinventing e-commerce and in-store channels to survive and thrive. In biotech, pharma, and healthcare, analytics command centers have become the center of operations, much like network operation centers in transport and logistics during pre-COVID times.

While data management and analytics have been critical to strategy and growth over the last decade, COVID-19 has propelled these functions into the center of business operations. Data science and analytics have become a focal point for business leaders to make critical decisions like how to adapt business in this new order of supply and demand and forecast what lies ahead.

In the next year, I anticipate a convergence of data, analytics, integration, and DevOps to create an environment for rapid development of AI-infused applications to address business challenges and opportunities. We will see a proliferation of API-led microservices developer environments for real-time data integration, and the emergence of data hubs as a bridge between at-rest and in-motion data assets, and event-enabled analytics with deeper collaboration between data scientists, DevOps, and ModelOps developers. From this, an ML engineer persona will emerge.

#analytics #artificial intelligence technologies #big data #big data analysis tools #from our experts #machine learning #real-time decisions #real-time analytics #real-time data #real-time data analytics

Jessica Smith

Jessica Smith

1612606870

REAL TIME CHAT SOLUTIONS SERVICES FOR MOBILE APPS

Build a Real Time chat application that can integrated into your social handles. Add more life to your website or support portal with a real time chat solutions for mobile apps that shows online presence indicators, typing status, timestamp, multimedia sharing and much more. Users can also log into the live chat app using their social media logins sparing them from the need to remember usernames and passwords. For more information call us at +18444455767 or email us at hello@sisgain.com or Visit: https://sisgain.com/instant-real-time-chat-solutions-mobile-apps

#real time chat solutions for mobile apps #real time chat app development solutions #live chat software for mobile #live chat software solutions #real time chat app development #real time chat applications in java script

Ly  Jangi

Ly Jangi

1593144001

Real-Time semantic segmentation in the browser using TensorFlow.js

Semantic segmentation is the problem of detecting and delineating each object of interest appearing in an image. Currently, there are several approaches that solve this problem and produce results as seen below.

Figure 1: Semantic segmentation example (Source)

This kind of segmentation is predicting every pixel in the image and is known as Dense Prediction as well. It’s important to notice that the instances of the same class are not being separated, the model only cares about the pixel’s category. As shown in Figure 1, the method can say that there are chairs in certain positions, but cannot distinguish them.

One of the main applications of this technique is in Autonomous Vehicles, where cars need to understand their environment. Semantic Segmentation is able to assign a meaning to the scenes and put the car in the context, indicating the lane position, if there is some obstruction, as fallen trees or pedestrians crossing the road, and recognizing other cars.

Video 1: Example of Semantic Segmentation for Autonomous Driving

Therefore, applying Semantic Segmentation algorithms in urban street scenes is one of the main Computer Vision challenges nowadays. A popular dataset to evaluate model performance is the Cityscapes. It contains 30 classes from 50 different cities varying the season and wheater conditions.

Figure 2 shows how different algorithms have reached the state of the art in this dataset over time.

Figure 2: Semantic Segmentation on Cityscapes dataset

In this project, it was used a mid-level model that can deliver a reasonable precision and run in real-time. The RefineNet [2] was firstly introduced at the end of 2016 from researches of The University of Adelaide and converted to a Light-Weight model in 2018 [3], allowing real-time inferences.

#tensorflowjs #machine-learning #artificial-intelligence #tensorflow