TensorFlow.js - Bringing ML and Linear Algebra to Node.js

TensorFlow.js - Bringing ML and Linear Algebra to Node.js

TensorFlow.js - Bringing ML and Linear Algebra to Node.js. No Python required - this session will highlight unique opportunities by bringing ML and linear algebra to Node.js with TensorFlow.js. Nick will highlight how you can get started using pre-trained models, train your own models, and run TensorFlow.js in various Node.js environments (server, IoT).

TensorFlow.js - Bringing ML and Linear Algebra to Node.js

No Python required - this session will highlight unique opportunities by bringing ML and linear algebra to Node.js with TensorFlow.js. Nick will highlight how you can get started using pre-trained models, train your own models, and run TensorFlow.js in various Node.js environments (server, IoT).

Machine Learning In Node.js With TensorFlow.js

Machine Learning In Node.js With TensorFlow.js

Machine Learning In Node.js With TensorFlow.js - TensorFlow.js is a new version of the popular open-source library which brings deep learning to JavaScript. Developers can now define, train, and run machine learning models using the high-level library API.

Machine Learning In Node.js With TensorFlow.js - TensorFlow.js is a new version of the popular open-source library which brings deep learning to JavaScript. Developers can now define, train, and run machine learning models using the high-level library API.

Pre-trained models mean developers can now easily perform complex tasks like visual recognitiongenerating music or detecting human poses with just a few lines of JavaScript.

Having started as a front-end library for web browsers, recent updates added experimental support for Node.js. This allows TensorFlow.js to be used in backend JavaScript applications without having to use Python.

Reading about the library, I wanted to test it out with a simple task... 🧐

Use TensorFlow.js to perform visual recognition on images using JavaScript from Node.js
Unfortunately, most of the documentation and example code provided uses the library in a browser. Project utilities provided to simplify loading and using pre-trained models have not yet been extended with Node.js support. Getting this working did end up with me spending a lot of time reading the Typescript source files for the library. 👎

However, after a few days' hacking, I managed to get this completed! Hurrah! 🤩

Before we dive into the code, let's start with an overview of the different TensorFlow libraries.

TensorFlow

TensorFlow is an open-source software library for machine learning applications. TensorFlow can be used to implement neural networks and other deep learning algorithms.

Released by Google in November 2015, TensorFlow was originally a Python library. It used either CPU or GPU-based computation for training and evaluating machine learning models. The library was initially designed to run on high-performance servers with expensive GPUs.

Recent updates have extended the software to run in resource-constrained environments like mobile devices and web browsers.

TensorFlow Lite

Tensorflow Lite, a lightweight version of the library for mobile and embedded devices, was released in May 2017. This was accompanied by a new series of pre-trained deep learning models for vision recognition tasks, called MobileNet. MobileNet models were designed to work efficiently in resource-constrained environments like mobile devices.

TensorFlow.js

Following Tensorflow Lite, TensorFlow.js was announced in March 2018. This version of the library was designed to run in the browser, building on an earlier project called deeplearn.js. WebGL provides GPU access to the library. Developers use a JavaScript API to train, load and run models.

TensorFlow.js was recently extended to run on Node.js, using an extension library called tfjs-node.

The Node.js extension is an alpha release and still under active development.

Importing Existing Models Into TensorFlow.js

Existing TensorFlow and Keras models can be executed using the TensorFlow.js library. Models need converting to a new format using this tool before execution. Pre-trained and converted models for image classification, pose detection and k-nearest neighbours are available on Github.

Using TensorFlow.js in Node.js

Installing TensorFlow Libraries

TensorFlow.js can be installed from the NPM registry.

npm install @tensorflow/tfjs @tensorflow/tfjs-node
// or...
npm install @tensorflow/tfjs @tensorflow/tfjs-node-gpu

Both Node.js extensions use native dependencies which will be compiled on demand.

Loading TensorFlow Libraries

TensorFlow's JavaScript API is exposed from the core library. Extension modules to enable Node.js support do not expose additional APIs.

const tf = require('@tensorflow/tfjs')
// Load the binding (CPU computation)
require('@tensorflow/tfjs-node')
// Or load the binding (GPU computation)
require('@tensorflow/tfjs-node-gpu')

Loading TensorFlow Models

TensorFlow.js provides an NPM library (tfjs-models) to ease loading pre-trained & converted models for image classificationpose detection and k-nearest neighbours.

The MobileNet model used for image classification is a deep neural network trained to identify 1000 different classes.

In the project's README, the following example code is used to load the model.

import * as mobilenet from '@tensorflow-models/mobilenet';

// Load the model.
const model = await mobilenet.load();

One of the first challenges I encountered was that this does not work on Node.js.

Error: browserHTTPRequest is not supported outside the web browser.

Looking at the source code, the mobilenet library is a wrapper around the underlying tf.Model class. When the load() method is called, it automatically downloads the correct model files from an external HTTP address and instantiates the TensorFlow model.

The Node.js extension does not yet support HTTP requests to dynamically retrieve models. Instead, models must be manually loaded from the filesystem.

After reading the source code for the library, I managed to create a work-around...

Loading Models From a Filesystem

Rather than calling the module's load method, if the MobileNet class is created manually, the auto-generated path variable which contains the HTTP address of the model can be overwritten with a local filesystem path. Having done this, calling the load method on the class instance will trigger the filesystem loader class, rather than trying to use the browser-based HTTP loader.

const path = "mobilenet/model.json"
const mn = new mobilenet.MobileNet(1, 1);
mn.path = `file://${path}`
await mn.load()

Awesome, it works!

But how where do the models files come from?

MobileNet Models

Models for TensorFlow.js consist of two file types, a model configuration file stored in JSON and model weights in a binary format. Model weights are often sharded into multiple files for better caching by browsers.

Looking at the automatic loading code for MobileNet models, models configuration and weight shards are retrieved from a public storage bucket at this address.

https://storage.googleapis.com/tfjs-models/tfjs/mobilenet_v${version}_${alpha}_${size}/

The template parameters in the URL refer to the model versions listed here. Classification accuracy results for each version are also shown on that page.

According to the source code, only MobileNet v1 models can be loaded using the tensorflow-models/mobilenet library.

The HTTP retrieval code loads the model.json file from this location and then recursively fetches all referenced model weights shards. These files are in the format groupX-shard1of1.

Downloading Models Manually

Saving all model files to a filesystem can be achieved by retrieving the model configuration file, parsing out the referenced weight files and downloading each weight file manually.

I want to use the MobileNet V1 Module with 1.0 alpha value and image size of 224 pixels. This gives me the following URL for the model configuration file.

https://storage.googleapis.com/tfjs-models/tfjs/mobilenet_v1_1.0_224/model.json

Once this file has been downloaded locally, I can use the jq tool to parse all the weight file names.

$ cat model.json | jq -r ".weightsManifest[].paths[0]"
group1-shard1of1
group2-shard1of1
group3-shard1of1
...

Using the sed tool, I can prefix these names with the HTTP URL to generate URLs for each weight file.

$ cat model.json | jq -r ".weightsManifest[].paths[0]" | sed 's/^/https:\/\/storage.googleapis.com\/tfjs-models\/tfjs\/mobilenet_v1_1.0_224\//'
https://storage.googleapis.com/tfjs-models/tfjs/mobilenet_v1_1.0_224/group1-shard1of1
https://storage.googleapis.com/tfjs-models/tfjs/mobilenet_v1_1.0_224/group2-shard1of1
https://storage.googleapis.com/tfjs-models/tfjs/mobilenet_v1_1.0_224/group3-shard1of1
...

Using the parallel and curl commands, I can then download all of these files to my local directory.

cat model.json | jq -r ".weightsManifest[].paths[0]" | sed 's/^/https:\/\/storage.googleapis.com\/tfjs-models\/tfjs\/mobilenet_v1_1.0_224\//' |  parallel curl -O

Classifying Images

This example code is provided by TensorFlow.js to demonstrate returning classifications for an image.

const img = document.getElementById('img');

// Classify the image.
const predictions = await model.classify(img);

This does not work on Node.js due to the lack of a DOM.

The classify method accepts numerous DOM elements (canvas, video, image) and will automatically retrieve and convert image bytes from these elements into a tf.Tensor3D class which is used as the input to the model. Alternatively, the tf.Tensor3D input can be passed directly.

Rather than trying to use an external package to simulate a DOM element in Node.js, I found it easier to construct the tf.Tensor3D manually.

Generating Tensor3D from an Image

Reading the source code for the method used to turn DOM elements into Tensor3D classes, the following input parameters are used to generate the Tensor3D class.

const values = new Int32Array(image.height * image.width * numChannels);
// fill pixels with pixel channel bytes from image
const outShape = [image.height, image.width, numChannels];
const input = tf.tensor3d(values, outShape, 'int32');

pixels is a 2D array of type (Int32Array) which contains a sequential list of channel values for each pixel. numChannels is the number of channel values per pixel.

Creating Input Values For JPEGs

The jpeg-js library is a pure javascript JPEG encoder and decoder for Node.js. Using this library the RGB values for each pixel can be extracted.

const pixels = jpeg.decode(buffer, true);

This will return a Uint8Array with four channel values (RGBA) for each pixel (width * height). The MobileNet model only uses the three colour channels (RGB) for classification, ignoring the alpha channel. This code converts the four channel array into the correct three channel version.

const numChannels = 3;
const numPixels = image.width * image.height;
const values = new Int32Array(numPixels * numChannels);

for (let i = 0; i < numPixels; i++) {
  for (let channel = 0; channel < numChannels; ++channel) {
    values[i * numChannels + channel] = pixels[i * 4 + channel];
  }
}

MobileNet Models Input Requirements

The MobileNet model being used classifies images of width and height 224 pixels. Input tensors must contain float values, between -1 and 1, for each of the three channels pixel values.

Input values for images of different dimensions needs to be re-sized before classification. Additionally, pixels values from the JPEG decoder are in the range 0 - 255, rather than -1 to 1. These values also need converting prior to classification.

TensorFlow.js has library methods to make this process easier but, fortunately for us, the tfjs-models/mobilenet library automatically handles this issue! 👍

Developers can pass in Tensor3D inputs of type int32 and different dimensions to the classify method and it converts the input to the correct format prior to classification. Which means there's nothing to do... Super 🕺🕺🕺.

Obtaining Predictions

MobileNet models in Tensorflow are trained to recognise entities from the top 1000 classes in the ImageNet dataset. The models output the probabilities that each of those entities is in the image being classified.

The full list of trained classes for the model being used can be found in this file.

The tfjs-models/mobilenet library exposes a classify method on the MobileNet class to return the top X classes with highest probabilities from an image input.

const predictions = await mn_model.classify(input, 10);

predictions is an array of X classes and probabilities in the following format.

{
  className: 'panda',
  probability: 0.9993536472320557
}

Example

Having worked how to use the TensorFlow.js library and MobileNet models on Node.js, this script will classify an image given as a command-line argument.

source code

testing it out

npm install

wget http://bit.ly/2JYSal9 -O panda.jpg

node script.js mobilenet/model.json panda.jpg

If everything worked, the following output should be printed to the console.

classification results: [ {
    className: 'giant panda, panda, panda bear, coon bear',
    probability: 0.9993536472320557 
} ]

The image is correctly classified as containing a Panda with 99.93% probability! 🐼🐼🐼

Conclusion

TensorFlow.js brings the power of deep learning to JavaScript developers. Using pre-trained models with the TensorFlow.js library makes it simple to extend JavaScript applications with complex machine learning tasks with minimal effort and code.

Having been released as a browser-based library, TensorFlow.js has now been extended to work on Node.js, although not all of the tools and utilities support the new runtime. With a few days' hacking, I was able to use the library with the MobileNet models for visual recognition on images from a local file.

Getting this working in the Node.js runtime means I now move on to my next idea... making this run inside a serverless function! Come back soon to read about my next adventure with TensorFlow.js.

Originally published by James Thomas

Introduction to Machine Learning with TensorFlow.js

Introduction to Machine Learning with TensorFlow.js

Learn how to build and train Neural Networks using the most popular Machine Learning framework for javascript, TensorFlow.js.

Learn how to build and train Neural Networks using the most popular Machine Learning framework for javascript, TensorFlow.js.

This is a practical workshop where you'll learn "hands-on" by building several different applications from scratch using TensorFlow.js.

If you have ever been interested in Machine Learning, if you want to get a taste for what this exciting field has to offer, if you want to be able to talk to other Machine Learning/AI specialists in a language they understand, then this workshop is for you.

Thanks for reading

If you liked this post, share it with all of your programming buddies!

Follow us on Facebook | Twitter

Further reading about Machine Learning and TensorFlow.js

Machine Learning A-Z™: Hands-On Python & R In Data Science

Machine Learning In Node.js With TensorFlow.js

Machine Learning in JavaScript with TensorFlow.js

A Complete Machine Learning Project Walk-Through in Python

Top 10 Machine Learning Algorithms You Should Know to Become a Data Scientist

Machine Learning in JavaScript with TensorFlow.js

Machine Learning in JavaScript with TensorFlow.js

TensorFlow.js is a library for Machine Learning in JavaScript. Develop ML models in JavaScript, and use ML directly in the browser or in Node.js. Interested in using Machine Learning in JavaScript applications and websites? If you’re a Javascript developer who’s new to ML, TensorFlow.js is a great way to begin learning. Or, if you’re a ML developer who’s new to Javascript, read on to learn more about new opportunities for in-browser ML.

We’re excited to introduce TensorFlow.js, an open-source library you can use to define, train, and run machine learning models entirely in the browser, using Javascript and a high-level layers API. If you’re a Javascript developer who’s new to ML, TensorFlow.js is a great way to begin learning. Or, if you’re a ML developer who’s new to Javascript, read on to learn more about new opportunities for in-browser ML. In this post, we’ll give you a quick overview of TensorFlow.js, and getting started resources you can use to try it out.

In-Browser ML

Running machine learning programs entirely client-side in the browser unlocks new opportunities, like interactive ML! If you’re watching the livestream for the TensorFlow Developer Summit, during the TensorFlow.js talk you’ll find a demo where @dsmilkov and @nsthorat train a model to control a PAC-MAN game using computer vision and a webcam, entirely in the browser. You can try it out yourself, too, with the link below — and find the source in the examples folder.

If you’d like to try another game, give the Emoji Scavenger Hunt a whirl — this time, from a browser on your mobile phone.

ML running in the browser means that from a user’s perspective, there’s no need to install any libraries or drivers. Just open a webpage, and your program is ready to run. In addition, it’s ready to run with GPU acceleration. TensorFlow.js automatically supports WebGL, and will accelerate your code behind the scenes when a GPU is available. Users may also open your webpage from a mobile device, in which case your model can take advantage of sensor data, say from a gyroscope or accelerometer. Finally, all data stays on the client, making TensorFlow.js useful for low-latency inference, as well as for privacy preserving applications.

What can you do with TensorFlow.js?

If you’re developing with TensorFlow.js, here are three workflows you can consider.

  • You can import an existing, pre-trained model for inference. If you have an existing TensorFlow or Keras model you’ve previously trained offline, you can convert into TensorFlow.js format, and load it into the browser for inference.
  • You can re-train an imported model. As in the Pac-Man demo above, you can use transfer learning to augment an existing model trained offline using a small amount of data collected in the browser using a technique called Image Retraining. This is one way to train an accurate model quickly, using only a small amount of data.
  • Author models directly in browser. You can also use TensorFlow.js to define, train, and run models entirely in the browser using Javascript and a high-level layers API. If you’re familiar with Keras, the high-level layers API should feel familiar.
Let’s see some code

If you like, you can head directly to the samples or tutorials to get started. These show how-to export a model defined in Python for inference in the browser, as well as how to define and train models entirely in Javascript. As a quick preview, here’s a snippet of code that defines a neural network to classify flowers, much like on the getting started guide on TensorFlow.org. Here, we’ll define a model using a stack of layers.

import * as tf from ‘@tensorflow/tfjs’;
const model = tf.sequential();
model.add(tf.layers.dense({inputShape: [4], units: 100}));
model.add(tf.layers.dense({units: 4}));
model.compile({loss: ‘categoricalCrossentropy’, optimizer: ‘sgd’});

The layers API we’re using here supports all of the Keras layers found in the examples directory (including Dense, CNN, LSTM, and so on). We can then train our model using the same Keras-compatible API with a method call:

await model.fit(
  xData, yData, {
    batchSize: batchSize,
    epochs: epochs
});

The model is now ready to use to make predictions:

// Get measurements for a new flower to generate a prediction
// The first argument is the data, and the second is the shape.
const inputData = tf.tensor2d([[4.8, 3.0, 1.4, 0.1]], [1, 4]);

// Get the highest confidence prediction from our model
const result = model.predict(inputData);
const winner = irisClasses[result.argMax().dataSync()[0]];

// Display the winner
console.log(winner);

TensorFlow.js also includes a low-level API (previously deeplearn.js) and support for Eager execution. You can learn more about these by watching the talk at the TensorFlow Developer Summit.


An overview of TensorFlow.js APIs. TensorFlow.js is powered by WebGL and provides a high-level layers API for defining models, and a low-level API for linear algebra and automatic differentiation. TensorFlow.js supports importing TensorFlow SavedModels and Keras models.

How does TensorFlow.js relate to deeplearn.js?

Good question! TensorFlow.js, an ecosystem of JavaScript tools for machine learning, is the successor to deeplearn.js which is now called TensorFlow.js Core. TensorFlow.js also includes a Layers API, which is a higher level library for building machine learning models that uses Core, as well as tools for automatically porting TensorFlow SavedModels and Keras hdf5 models. For answers to more questions like this, check out the FAQ.