Alexey Kartsev

Alexey Kartsev


How to create a simple REST API in Rust


Rust is a multi-paradigm programming language focused on performance and safety, especially safe concurrency. Rust is syntactically similar to C++, but provides memory safety without using garbage collection.

The Rust programming language helps you write faster, more reliable software. High-level ergonomics and low-level control are often at odds in programming language design; Rust challenges that conflict. Through balancing powerful technical capacity and a great developer experience, Rust gives you the option to control low-level details (such as memory usage) without all the hassle traditionally associated with such control.

Learn how to build a REST API in Rust — A Step-by-Step guide

For that, we are going to use the Rocket framework for the API and Diesel ORM framework for persisting features. This framework will cover all the things mentioned below. So, it will be much easier than implementing it from scratch.

  • Start a web server and open a PORT.
  • Listen to requests on this PORT.
  • If a request comes in, look at the Path in the HTTP header.
  • Route the request to the handler according to the Path.
  • Help you extract the information from the request.
  • Pack the generated data (created by you) and form a response.
  • Send the response back to the sender.

Installing Rust Nightly

Because Rocket makes abundant use of Rust’s syntax extensions and other advanced, unstable features, we have to install nightly.

rustup default nightly

If you prefer to install nightly only in your project directory, you can use the following:

rustup override set nightly


rocket = "0.4.4"
rocket_codegen = "0.4.4"
diesel = { version = "1.4.0", features = ["postgres"] }
dotenv = "0.9.0"
r2d2-diesel = "1.0"
r2d2 = "0.8"
serde = "1.0"
serde_derive = "1.0"
serde_json = "1.0"
custom_derive ="0.1.7"

version = "*"
default-features = false
features = ["json"]

I will explain these crates once we use them.

Setting Up Diesel

So, the next thing I am going to do is setup Diesel. Diesel provides its own CLI, so we have to install it first. (Assuming you are using PostgreSQL.)

cargo install diesel_cli — no-default-features — features postgre

Then, you need to tell Diesel what your DB credentials are. This command will generate a .env file.

echo DATABASE_URL=postgres://username:password@localhost:port/diesel_demo > .env

After that, run this command:

diesel setup

This will create our database (if it didn’t already exist), and create an empty migrations directory that we can use to manage our schema (more on that later).

There might be several errors when running the above code.

= note: LINK : fatal error LNK1181: cannot open input file ‘libpq.lib’

You can fix that easily by adding the PG lib folder path to the environment variables.

setx PQ_LIB_DIR “[path to pg lib folder]”

I’m surprised that those errors are not mentioned in the Diesel docs.

I highly recommend running these commands in CMD or Powershell. If you are using IDE’s terminal, you won’t get any errors like this and you will end up wasting two hours trying to figure out what the heck is going on.

To fix that, you can add PG’s bin folder path to the Path variables. Problem solved? Good!

Let’s create a user table and create a migration for that:

diesel migration generate users

After running that command, you will see that there are two files generated inside the migration folder.

Next, we’ll write the SQL for migrations:


    id         SERIAL PRIMARY KEY,
    username   VARCHAR NOT NULL,
    password   VARCHAR NOT NULL,
    first_name VARCHAR NOT NULL



To apply our migration you can use:

diesel migration run

It’s good to make sure that down.sql is correct. You can quickly confirm that your down.sql rolls back your migration correctly by redoing the migration:

diesel migration redo

You can see that there’s a user table in your DB. Right!

I forgot to mention, if you’ve noticed, there’s a file that is generated after you run the Diesel setup named It should look like this.

table! {
    users (id) {
        id -> Int4,
        username -> Varchar,
        password -> Varchar,
        first_name -> Varchar,

Cool, Here Comes the Rust Part

Since we are going to use the ORM, obviously we have to map the user table to something in Rust. In Java, we use Class to map tables. InJava**,** we usually call them Beans. In Rust, we use structs. Let’s create a struct.

use diesel;
use diesel::pg::PgConnection;
use diesel::prelude::*;
use super::schema::users;
use super::schema::users::dsl::users as all_users;
// this is to get users from the database
#[derive(Serialize, Queryable)] 
pub struct User {
    pub id: i32,
    pub username: String,
    pub password: String,
    pub first_name: String,

Now, you may wonder what these annotations are, like this above struct definition.

They are called derives. So, that line will derive serialize and queryable traits. #[derive(Serialize)] and #[derive(Deserialize)] are used to map data to response and request.

Now I’m going to create two more structs. You will get them later.

// decode request data
pub struct UserData {
    pub username: String,
// this is to insert users to database
#[derive(Serialize, Deserialize, Insertable)]
#[table_name = "users"]
pub struct NewUser {
    pub username: String,
    pub password: String,
    pub first_name: String,

The next thing we are going to do is implement User. So it will have some methods to do database operations.

In here, as you can see, we have passed the connection to the method and returned a Vector of Users. We are getting all the rows in the user table and map them to the User struct.

Of course, we are expecting errors. The message “error” will be printed out if panicked.

impl User {

    pub fn get_all_users(conn: &PgConnection) -> Vec<User> {

    pub fn insert_user(user: NewUser, conn: &PgConnection) -> bool {

    pub fn get_user_by_username(user: UserData, conn: &PgConnection) -> Vec<User> {

Now we have created a table and structs to map that table. The next thing we are going to do is create methods to use it. So, we are going to create a routes file. We usually call it a handler.

use super::db::Conn as DbConn;
use rocket_contrib::json::Json;
use super::models::{User, NewUser};
use serde_json::Value;
use crate::models::UserData;

#[post("/users", format = "application/json")]
pub fn get_all(conn: DbConn) -> Json<Value> {
    let users = User::get_all_users(&conn);
        "status": 200,
        "result": users,

#[post("/newUser", format = "application/json", data = "<new_user>")]
pub fn new_user(conn: DbConn, new_user: Json<NewUser>) -> Json<Value> {
        "status": User::insert_user(new_user.into_inner(), &conn),
        "result": User::get_all_users(&conn).first(),

#[post("/getUser", format = "application/json", data = "<user_data>")]
pub fn find_user(conn: DbConn, user_data: Json<UserData>) -> Json<Value> {
        "status": 200,
        "result": User::get_user_by_username(user_data.into_inner(), &conn),

Now, all we have to do is set up the connection pool. Here’s a brief explanation about the connection pool from the Rocket documentation.

“Rocket includes built-in, ORM-agnostic support for databases. In particular, Rocket provides a procedural macro that allows you to easily connect your Rocket application to databases through connection pools.

A database connection pool is a data structure that maintains active database connections for later use in the application.”

use diesel::pg::PgConnection;
use r2d2;
use r2d2_diesel::ConnectionManager;
use rocket::http::Status;
use rocket::request::{self, FromRequest};
use rocket::{Outcome, Request, State};
use std::ops::Deref;

pub type Pool = r2d2::Pool<ConnectionManager<PgConnection>>;

pub fn init_pool(db_url: String) -> Pool {
    let manager = ConnectionManager::<PgConnection>::new(db_url);
    r2d2::Pool::new(manager).expect("db pool failure")

pub struct Conn(pub r2d2::PooledConnection<ConnectionManager<PgConnection>>);

impl<'a, 'r> FromRequest<'a, 'r> for Conn {
    type Error = ();

    fn from_request(request: &'a Request<'r>) -> request::Outcome<Conn, ()> {
        let pool = request.guard::<State<Pool>>()?;
        match pool.get() {
            Ok(conn) => Outcome::Success(Conn(conn)),
            Err(_) => Outcome::Failure((Status::ServiceUnavailable, ())),

impl Deref for Conn {
    type Target = PgConnection;

    fn deref(&self) -> &Self::Target {

Finally, we need to start our server in the main file.

#![feature(plugin, const_fn, decl_macro, proc_macro_hygiene)]
#![allow(proc_macro_derive_resolution_fallback, unused_attributes)]

extern crate diesel;
extern crate dotenv;
extern crate r2d2;
extern crate r2d2_diesel;
extern crate rocket;
extern crate rocket_contrib;
extern crate serde_derive;
extern crate serde_json;

use dotenv::dotenv;
use std::env;
use routes::*;
use std::process::Command;

mod db;
mod models;
mod routes;
mod schema;

fn rocket() -> rocket::Rocket {

    let database_url = env::var("DATABASE_URL").expect("set DATABASE_URL");

    let pool = db::init_pool(database_url);
            routes![get_all, new_user, find_user],

fn main() {
    let _output = if cfg!(target_os = "windows") {
            .args(&["/C", "cd ui && npm start"])
            .expect("Failed to start UI Application")
    } else {
            .arg("cd ui && npm start")
            .expect("Failed to start UI Application")

Inside my project, I have added the Angular front end too. I’ll be using our Rust back end to serve it too.

To run the application → cargo run.

Let’s test our server with Insomnia.

I hope this helps. Cheers!

#rust #rest #api #web-development

What is GEEK

Buddha Community

How to create a simple REST API in Rust
Wilford  Pagac

Wilford Pagac


What is REST API? An Overview | Liquid Web

What is REST?

The REST acronym is defined as a “REpresentational State Transfer” and is designed to take advantage of existing HTTP protocols when used for Web APIs. It is very flexible in that it is not tied to resources or methods and has the ability to handle different calls and data formats. Because REST API is not constrained to an XML format like SOAP, it can return multiple other formats depending on what is needed. If a service adheres to this style, it is considered a “RESTful” application. REST allows components to access and manage functions within another application.

REST was initially defined in a dissertation by Roy Fielding’s twenty years ago. He proposed these standards as an alternative to SOAP (The Simple Object Access Protocol is a simple standard for accessing objects and exchanging structured messages within a distributed computing environment). REST (or RESTful) defines the general rules used to regulate the interactions between web apps utilizing the HTTP protocol for CRUD (create, retrieve, update, delete) operations.

What is an API?

An API (or Application Programming Interface) provides a method of interaction between two systems.

What is a RESTful API?

A RESTful API (or application program interface) uses HTTP requests to GET, PUT, POST, and DELETE data following the REST standards. This allows two pieces of software to communicate with each other. In essence, REST API is a set of remote calls using standard methods to return data in a specific format.

The systems that interact in this manner can be very different. Each app may use a unique programming language, operating system, database, etc. So, how do we create a system that can easily communicate and understand other apps?? This is where the Rest API is used as an interaction system.

When using a RESTful API, we should determine in advance what resources we want to expose to the outside world. Typically, the RESTful API service is implemented, keeping the following ideas in mind:

  • Format: There should be no restrictions on the data exchange format
  • Implementation: REST is based entirely on HTTP
  • Service Definition: Because REST is very flexible, API can be modified to ensure the application understands the request/response format.
  • The RESTful API focuses on resources and how efficiently you perform operations with it using HTTP.

The features of the REST API design style state:

  • Each entity must have a unique identifier.
  • Standard methods should be used to read and modify data.
  • It should provide support for different types of resources.
  • The interactions should be stateless.

For REST to fit this model, we must adhere to the following rules:

  • Client-Server Architecture: The interface is separate from the server-side data repository. This affords flexibility and the development of components independently of each other.
  • Detachment: The client connections are not stored on the server between requests.
  • Cacheability: It must be explicitly stated whether the client can store responses.
  • Multi-level: The API should work whether it interacts directly with a server or through an additional layer, like a load balancer.

#tutorials #api #application #application programming interface #crud #http #json #programming #protocols #representational state transfer #rest #rest api #rest api graphql #rest api json #rest api xml #restful #soap #xml #yaml

An API-First Approach For Designing Restful APIs | Hacker Noon

I’ve been working with Restful APIs for some time now and one thing that I love to do is to talk about APIs.

So, today I will show you how to build an API using the API-First approach and Design First with OpenAPI Specification.

First thing first, if you don’t know what’s an API-First approach means, it would be nice you stop reading this and check the blog post that I wrote to the Farfetchs blog where I explain everything that you need to know to start an API using API-First.

Preparing the ground

Before you get your hands dirty, let’s prepare the ground and understand the use case that will be developed.


If you desire to reproduce the examples that will be shown here, you will need some of those items below.

  • NodeJS
  • OpenAPI Specification
  • Text Editor (I’ll use VSCode)
  • Command Line

Use Case

To keep easy to understand, let’s use the Todo List App, it is a very common concept beyond the software development community.

#api #rest-api #openai #api-first-development #api-design #apis #restful-apis #restful-api

Chaz  Homenick

Chaz Homenick


A Simple Guide to Planning API Roadmaps

APIs - the current “big thing” - offer the opportunity for modern organizations to unlock new and lucrative business models. The article below covers some tips on how to spin the API flywheel and leverage its possibilities.

In the API economy, a successful service can gain popularity and be utilized in ways unpredicted and often inconceivable by its original owners. The very flexible nature of the technology opens many doors, including business collaborations, reuse in third-party products or even conquering hardware barriers by reaching a spectrum of devices.

What to consider

Taking the builder’s perspective

Important note: Most of the time API consumers are not the end-users but rather the app developers. Any new venture ought to be supported with excellent learning resources and descriptive documentation. These things combined will ensure a top-notch developer experience and encourage adoption of your product, increasing its visibility in the market.

More than the revenue

While in the simplest scenario, the most popular API business model is revenue via service charges, there are several other goals:

  • **Growth **- APIs are finely-grained and, usually, short-term projects that bring lots of value. Decoupling sectors of your business and encapsulating them in the form of concise, dedicated APIs enable teams to work in parallel, encouraging company growth.
  • **Reach **- By building APIs for wide use, the organization can extend its group of recipients and open new opportunities to cooperate with other players in the market and discover new collaborations.
  • **Compliance **- Products and services implemented as an API ecosystem can freely exchange data between one another, whether they are internal or external.
  • **Insight **- The rate of use of APIs will surely give an idea of what consumers value the most. Also, implementing APIs alone helps to clarify what pieces of your business are crucial. This helps to revise implementation details and encourages reflection of your current technological solutions.

#api #api-development #api-integration #restful-api #api-based-business-model #api-first-development #automation #rest-api

Adonis  Kerluke

Adonis Kerluke


RESTful API Design Driven Approach

In this tutorial I will show you the fundamentals of designing a RESTful API specification by applying REST principles and best practices, then you’ll be ready to try my online tutorial: How to design a REST API with API Designer?

If you already know what is meant by API in the context of RESTful web services, you can skip to the next section. If not, read on.

Level-Set on API

The abbreviation API stands for Application Programming Interface this in itself, does not help us understand what it is, however in the context of web services, it can refer to one of two things:

  1. The RESTful API specification is written using a modeling language such as Open API specification or RAML (RESTful API Modeling Language) that defines a contract for how software components can interact with a service.
  2. The implementation of a web service or microservice whose contract is designed by REST principles that describe how other services must interact with it.

In this post, I will use the first understanding of this term. Even though both are correct, the most technically relevant for this post is the first: an API is a contract for how software applications talk to each other.

Level-Set on REST

The acronym REST stands for REpresentational State Transfer. It is an architectural style used to represent the transmission of data from one application component to another. In the context of web services, we are talking about the representation of resources (i.e. data) transferred over HTTP by calling a URI that represents the data and via an HTTP method that represents the action to perform against the given data.

What Is RESTful API design?

RESTful API design is the activity of describing the behavior of a web service in terms of its data structures and the actions you allow other application components to perform on its data by the principles of REST. Those principles are covered later in this blog.

Why Design a RESTful API?

Imagine that you are an Architect (the kind the design building) and you set out to build an office block without a blueprint. You turn up on the first day with a truck full of bricks and some cement. What are the chances that you’ll be successful and build a structure that conforms to code and more importantly, doesn’t fall? It’s about zero. Without a blueprint the chance of failure is high.

The same approach applies to web service development. You need a blueprint, or more appropriately, an API specification. This is necessary to evaluate the API design and solicit feedback before even starting to build the implementation.

In addition to providing a specification for the web service’s development, an API contract serves to document its expected behavior, data types, and security requirements.

You should now be satisfied that API design is necessary for a RESTful web service, and should start to wonder how is the best approach to actually designing an API specification.

API Design Tooling

The tooling chosen by an API designer has substantial influence over the designer’s productivity. Highly productive tools such as the Anypoint API Designer from MuleSoft is perfect for designing APIs with OAS (swagger) or RAML.

#integration #api #rest #rest api #restful #api design #raml #rest api design