How to Write a JavaScript Promise

How to Write a JavaScript Promise

A JavaScript promise is an object that represents the completion or failure of an asynchronous task and its resulting value.

A JavaScript promise is an object that represents the completion or failure of an asynchronous task and its resulting value.

I’m kidding of course. So, what does that definition even mean?

First of all, everything in JavaScript is an object. You can create an object a few different ways. The most common way is with object literal syntax:

const myCar = {
   color: 'blue',
   type: 'sedan',
   doors: '4',
};

You could also create a class and instantiate it with the new keyword.

class Car {
   constructor(color, type, doors) {
      this.color = color;
      this.type = type;
      this.doors = doors
   }
}

const myCar = new Car('blue', 'sedan', '4');
console.log(myCar);

A promise is simply an object that we create like the later example. We instantiate it with the new keyword. Instead of the three parameters we passed in to make our car (color, type, and doors), we pass in a function that takes two arguments: resolve and reject.

Ultimately, promises tell us something about the completion of the asynchronous function we returned it from–if it worked or didn’t. We say the function was successful by saying the promise resolved, and unsuccessful by saying the promise rejected.

const myPromise = new Promise(function(resolve, reject) {});

console.log(myPromise);

const myPromise = new Promise(function(resolve, reject) {
   resolve(10);
});

See, not too scary–just an object we created. And, if we expand it a bit:

In addition, we can pass anything we’d like to into resolve and reject. For example, we could pass an object instead of a string:

return new Promise((resolve, reject) => {
   if(somethingSuccesfulHappened) {
      const successObject = {
         msg: 'Success',
         data,//...some data we got back
      }
      resolve(successObject); 
   } else {
      const errorObject = {
         msg: 'An error occured',
         error, //...some error we got back
      }
      reject(errorObject);
   }
});

Or, as we saw earlier, we don’t have to pass anything:

return new Promise((resolve, reject) => {
   if(somethingSuccesfulHappend) {
      resolve()
   } else {
      reject();
   }
});

What about the “asynchronous” part of the definition?

JavaScript is single threaded. This means it can only run one thing at a time. If you can imagine a road, you can think of JavaScript as a single lane highway. Certain code (asynchronous code) can slide over to the shoulder to allow other code to pass it. When that asynchronous code is done, it returns to the roadway.

As a side note, we can return a promise from any function. It doesn’t have to be asynchronous. That being said, promises are normally returned in cases where the function they return from is asynchronous. For example, an API that has methods for saving data to a server would be a great candidate to return a promise!
The takeaway:

Promises give us a way to wait for our asynchronous code to complete, capture some values from it, and pass those values on to other parts of our program.

How do we use a promise?

Using a promise is also called consuming a promise. In our example above, our function returns a promise object. This allows us to use method chaining with our function.

Here is an example of method chaining I bet you’ve seen:

const a = 'Some awesome string';
const b = a.toUpperCase().replace('ST', '').toLowerCase();

console.log(b); // some awesome ring

Now, recall our (pretend) promise:

const somethingWasSuccesful = true;

function someAsynFunction() {
   return new Promise((resolve, reject){
      if (somethingWasSuccesful) {
         resolve();     
      } else {
         reject()
      }
   });
}

And, consuming our promise by using method chaining:

someAsyncFunction
   .then(runAFunctionIfItResolved(withTheResolvedValue))
   .catch(orARunAfunctionIfItRejected(withTheRejectedValue));

A (more) real example.

Imagine you have a function that gets users from a database. I’ve written an example function on Codepen that simulates an API you might use. It provides two options for accessing the results. One, you can provide a callback function where you can access the user or any error. Or two, the function returns a promise as a way to access the user or error.

Traditionally, we would access the results of asynchronous code through the use of callbacks.

rr someDatabaseThing(maybeAnID, function(err, result)) {
   //...Once we get back the thing from the database...
   if(err) {
      doSomethingWithTheError(error)
   }   else {
      doSomethingWithResults(results);
   }
}

The use of callbacks is ok until they become overly nested. In other words, you have to run more asynchronous code with each new result. This pattern of callbacks within callbacks can lead to something known as “callback hell.”

Promises offer us a more elegant and readable way to see the flow of our program.

doSomething()
   .then(doSomethingElse) // and if you wouldn't mind
   .catch(anyErrorsPlease);

Writing our own promise: Goldilocks, the Three Bears, and a Supercomputer

Imagine you found a bowl of soup. You’d like to know the temperature of that soup before you eat it. You’re out of thermometers, but luckily, you have access to a supercomputer that tells you the temperature of the bowl of soup. Unfortunately, this supercomputer can take up to 10 seconds to get the results.

Here are a couple of things to notice.

  1. We initiate a global variable called result.
  2. We simulate the duration of the network delay with Math.random() and setTimeout().
  3. We simulate a temperature with Math.random().
  4. We keep the delay and temperature values confined within a range by adding some extra “math”. The range for temp is 1 to 300; the range for delay is 1000ms to 10000ms (1s to 10 seconds).
  5. We log the delay and temperature so we have an idea of how long this function will take and the results we expect to see when it’s done.

Run the function and log the results.

getTemperature(); 
console.log(results); // undefined

The temperature is undefined. What happened?

The function will take a certain amount of time to run. The variable is not set until the delay is over. So while we run the function, setTimeout is asynchronous. The part of the code in setTimeout moves out of the main thread into a waiting area.

Since the part of our function that sets the variable result moves into a holding area until it is done, our parser is free to move onto the next line. In our case, it’s our console.log(). At this point, result is still undefined since our setTimeout is not over.

So what else could we try? We could run getTemperature() and then wait 11 seconds (since our max delay is ten seconds) and then console.log the results.

getTemperature();
   setTimeout(() => {
      console.log(result); 
   }, 11000);

// Too Hot | Delay: 3323 | Temperature: 209 deg

This works, but the problem with this technique is, although in our example we know the maximum network delay, in a real-life example it might occasionally take longer than ten seconds. And, even if we could guarantee a maximum delay of ten seconds, if the result is ready sooner, we are wasting time.

Promises to the Rescue

We are going to refactor our getTemperature() function to return a promise. And instead of setting the result, we will reject the promise unless the result is “Just Right,” in which case we will resolve the promise. In either case, we will pass in some values to both resolve and reject.

https://cdn-images-1.medium.com/max/800/1*4RJERRgVUtHlIYRFm2piVQ.png

We can now use the results of our promise we are returning (also know as consuming the promise).

getTemperature()
   .then(result => console.log(result))
   .catch(error => console.log(error));

// Reject: Too Cold | Delay: 7880 | Temperature: 43 deg

.then will get called when our promise resolves and will return whatever information we pass into resolve.

.catch will get called when our promise rejects and will return whatever information we pass into reject.

Most likely, you’ll consume promises more than you will create them. In either case, they help make our code more elegant, readable, and efficient.

Summary

  1. We initiate a global variable called result.
  2. We simulate the duration of the network delay with Math.random() and setTimeout().
  3. We simulate a temperature with Math.random().
  4. We keep the delay and temperature values confined within a range by adding some extra “math”. The range for temp is 1 to 300; the range for delay is 1000ms to 10000ms (1s to 10 seconds).
  5. We log the delay and temperature so we have an idea of how long this function will take and the results we expect to see when it’s done.

Learn More

The Complete JavaScript Course 2018: Build Real Projects!

Become a JavaScript developer - Learn (React, Node,Angular)

JavaScript: Understanding the Weird Parts

Vue JS 2 - The Complete Guide (incl. Vue Router & Vuex)

The Full JavaScript & ES6 Tutorial - (including ES7 & React)

JavaScript - Step By Step Guide For Beginners

The Web Developer Bootcamp

MERN Stack Front To Back: Full Stack React, Redux & Node.js

JavaScript Tutorial: if-else Statement in JavaScript

JavaScript Tutorial: if-else Statement in JavaScript

This JavaScript tutorial is a step by step guide on JavaScript If Else Statements. Learn how to use If Else in javascript and also JavaScript If Else Statements. if-else Statement in JavaScript. JavaScript's conditional statements: if; if-else; nested-if; if-else-if. These statements allow you to control the flow of your program's execution based upon conditions known only during run time.

Decision Making in programming is similar to decision making in real life. In programming also we face some situations where we want a certain block of code to be executed when some condition is fulfilled.
A programming language uses control statements to control the flow of execution of the program based on certain conditions. These are used to cause the flow of execution to advance and branch based on changes to the state of a program.

JavaScript’s conditional statements:

  • if
  • if-else
  • nested-if
  • if-else-if

These statements allow you to control the flow of your program’s execution based upon conditions known only during run time.

  • if: if statement is the most simple decision making statement. It is used to decide whether a certain statement or block of statements will be executed or not i.e if a certain condition is true then a block of statement is executed otherwise not.
    Syntax:
if(condition) 
{
   // Statements to execute if
   // condition is true
}

Here, condition after evaluation will be either true or false. if statement accepts boolean values – if the value is true then it will execute the block of statements under it.
If we do not provide the curly braces ‘{‘ and ‘}’ after if( condition ) then by default if statement will consider the immediate one statement to be inside its block. For example,

if(condition)
   statement1;
   statement2;

// Here if the condition is true, if block 
// will consider only statement1 to be inside 
// its block.

Flow chart:

Example:

<script type = "text/javaScript"> 

// JavaScript program to illustrate If statement 

var i = 10; 

if (i > 15) 
document.write("10 is less than 15"); 

// This statement will be executed 
// as if considers one statement by default 
document.write("I am Not in if"); 

< /script> 

Output:

I am Not in if
  • if-else: The if statement alone tells us that if a condition is true it will execute a block of statements and if the condition is false it won’t. But what if we want to do something else if the condition is false. Here comes the else statement. We can use the else statement with if statement to execute a block of code when the condition is false.
    Syntax:
if (condition)
{
    // Executes this block if
    // condition is true
}
else
{
    // Executes this block if
    // condition is false
}


Example:

<script type = "text/javaScript"> 

// JavaScript program to illustrate If-else statement 

var i = 10; 

if (i < 15) 
document.write("10 is less than 15"); 
else
document.write("I am Not in if"); 

< /script> 

Output:

i is smaller than 15
  • nested-if A nested if is an if statement that is the target of another if or else. Nested if statements means an if statement inside an if statement. Yes, JavaScript allows us to nest if statements within if statements. i.e, we can place an if statement inside another if statement.
    Syntax:
if (condition1) 
{
   // Executes when condition1 is true
   if (condition2) 
   {
      // Executes when condition2 is true
   }
}

Example:

<script type = "text/javaScript"> 

// JavaScript program to illustrate nested-if statement 

var i = 10; 

if (i == 10) { 

// First if statement 
if (i < 15) 
	document.write("i is smaller than 15"); 

// Nested - if statement 
// Will only be executed if statement above 
// it is true 
if (i < 12) 
	document.write("i is smaller than 12 too"); 
else
	document.write("i is greater than 15"); 
} 
< /script> 

Output:

i is smaller than 15
i is smaller than 12 too
  • if-else-if ladder Here, a user can decide among multiple options.The if statements are executed from the top down. As soon as one of the conditions controlling the if is true, the statement associated with that if is executed, and the rest of the ladder is bypassed. If none of the conditions is true, then the final else statement will be executed.
if (condition)
    statement;
else if (condition)
    statement;
.
.
else
    statement;


Example:

<script type = "text/javaScript"> 
// JavaScript program to illustrate nested-if statement 

var i = 20; 

if (i == 10) 
document.wrte("i is 10"); 
else if (i == 15) 
document.wrte("i is 15"); 
else if (i == 20) 
document.wrte("i is 20"); 
else
document.wrte("i is not present"); 
< /script> 

Output:

i is 20

How to Retrieve full Profile of LinkedIn User using Javascript

How to Retrieve full Profile of LinkedIn User using Javascript

I am trying to retrieve the full profile (especially job history and educational qualifications) of a linkedin user via the Javascript (Fetch LinkedIn Data Using JavaScript)

Here we are fetching LinkedIn data like Username, Email and other fields using JavaScript SDK.

Here we have 2 workarounds.

  1. Configuration of linkedIn developer api
  2. Javascript Code to fetch records

Configuration of linkedIn developer api

In order to fetch records, first we need to create developer api in linkedin which will act as token/identity while fetching data from other linkedin accounts.

So to create api, navigate to https://linkedin.com/developer/apps and click on 'Create Application'.

After navigating, fill in details like name, description and other required fields and then submit.

As we submit, it will create Client ID and Client Secret shown below, which we will be using in our code while communicating to fetch records from other LinkedIn account.

Note: We need to provide localhost Url here under Oauth 2.0. I am using my localhost, but you can probably use other production URLs under Oauth 2.0 where your app is configured. It will make your api  consider the Url as trusted which fetching records.

Javascript Code to fetch records

For getting user details like first name, last name,User image can be written as,

<script type="text/javascript" src="https://platform.linkedin.com/in.js">  
    api_key: XXXXXXX //Client ID  
    onLoad: OnLinkedInFrameworkLoad //Method that will be called on page load  
    authorize: true  
</script>  
<script type="text/javascript">  
    function OnLinkedInFrameworkLoad() {  
        IN.Event.on(IN, "auth", OnLinkedInAuth);  
    }  
  
    function OnLinkedInAuth() {  
        IN.API.Profile("me").result(ShowProfileData);  
    }  
  
    function ShowProfileData(profiles) {  
        var member = profiles.values[0];  
        var id = member.id;  
        var firstName = member.firstName;  
        var lastName = member.lastName;  
        var photo = member.pictureUrl;  
        var headline = member.headline;  
        //use information captured above  
        var stringToBind = "<p>First Name: " + firstName + " <p/><p> Last Name: " + lastName + "<p/><p>User ID: " + id + " and Head Line Provided: " + headline + "<p/>"  
        document.getElementById('profiles').innerHTML = stringToBind;  
    }  
</script>    

Kindly note we need to include 'https://platform.linkedin.com/in.js' as src under script type as it will act on this Javascript SDK provided by Linkedin.

In the same way we can also fetch records of any organization with the companyid as keyword.

<head>  
    <script type="text/javascript" src="https://platform.linkedin.com/in.js">  
        api_key: XXXXXXX ////Client ID  
        onLoad: onLinkedInLoad  
        authorize: true  
    </script>  
</head>  
  
<body>  
    <div id="displayUpdates"></div>  
    <script type="text/javascript">  
        function onLinkedInLoad() {  
            IN.Event.on(IN, "auth", onLinkedInAuth);  
            console.log("On auth");  
        }  
  
        function onLinkedInAuth() {  
            var cpnyID = XXXXX; //the Company ID for which we want updates  
            IN.API.Raw("/companies/" + cpnyID + "/updates?event-type=status-update&start=0&count=10&format=json").result(displayCompanyUpdates);  
            console.log("After auth");  
        }  
  
        function displayCompanyUpdates(result) {  
            var div = document.getElementById("displayUpdates");  
            var el = "<ul>";  
            var resValues = result.values;  
            for (var i in resValues) {  
                var share = resValues[i].updateContent.companyStatusUpdate.share;  
                var isContent = share.content;  
                var isTitled = isContent,  
                    isLinked = isContent,  
                    isDescription = isContent,  
                    isThumbnail = isContent,  
                    isComment = isContent;  
                if (isTitled) {  
                    var title = isContent.title;  
                } else {  
                    var title = "News headline";  
                }  
                var comment = share.comment;  
                if (isLinked) {  
                    var link = isContent.shortenedUrl;  
                } else {  
                    var link = "#";  
                }  
                if (isDescription) {  
                    var description = isContent.description;  
                } else {  
                    var description = "No description";  
                }  
                /* 
                if (isThumbnailz) { 
                var thumbnailUrl = isContent.thumbnailUrl; 
                } else { 
                var thumbnailUrl = "http://placehold.it/60x60"; 
                } 
                */  
                if (share) {  
                    var content = "<a target='_blank' href=" + link + ">" + comment + "</a><br>";  
                    //el += "<li><img src='" + thumbnailUrl + "' alt=''>" + content + "</li>";  
                    el += "<li><div>" + content + "</div></li>";  
                }  
                console.log(share);  
            }  
            el += "</ul>";  
            document.getElementById("displayUpdates").innerHTML = el;  
        }  
    </script>  
</body>  

We can get multiple metadata while fetching records for any any organization. We can get company updates as shown below.

Conclusion

We can also fetch any company specific data like company job updates/post, total likes, comments, and number of views along with a lot of metadata we can fetch which I have shown below.

Thank you for reading !

7 Best Javascript Iframe Libraries

7 Best Javascript Iframe Libraries

Iframes let you build user experiences into embeddable ‘cross-domain components’, which let users interact with other sites without being redirected. I have compiled 7 best Javascript iframe libraries.

Iframes let you build user experiences into embeddable ‘cross-domain components’, which let users interact with other sites without being redirected. I have compiled 7 best Javascript iframe libraries.

1. Zoid

A cross-domain component toolkit, supporting:

  • Render an iframe or popup on a different domain, and pass down props, including objects and functions
  • Call callbacks natively from the child window without worrying about post-messaging or cross-domain restrictions
  • Create and expose components to share functionality from your site to others!
  • Render your component directly as a React, Vue or Angular component!
    It's 'data-down, actions up' style components, but 100% cross-domain using iframes and popups!

Download


2. Postmate

Postmate is a promise-based API built on postMessage. It allows a parent page to speak with a child iFrame across origins with minimal effort.

Download


3. Iframe Resizer

Keep same and cross domain iFrames sized to their content with support for window/content resizing, in page links, nesting and multiple iFrames

Demo

Download


4. Iframely

Embed proxy. Supports over 1800 domains via custom parsers, oEmbed, Twitter Cards and Open Graph

Demo

Download


5. React Frame component

This component allows you to encapsulate your entire React application or per component in an iFrame.

Demo

Download


6. Seamless.js

A seamless iframe makes it so that visitors are unable to distinguish between content within the iframe and content beside the iframe. Seamless.js is a JavaScript library (with no dependencies) that makes working with iframes easy by doing all the seamless stuff for you automatically.

Demo

Download


7. Porthole

A proxy to safely communicate to cross-domain iframes in javascript

Demo

Download


Thank for read!