Exploring MySQL Binlog Server - Ripple

Exploring MySQL Binlog Server - Ripple

How MySQL Ripple binlog server can help you improve the performance of your master server by introducing a proxy server between the master and slave servers.MySQL does not limit the number of slaves that you can connect to the master server in a replication topology.

MySQL does not limit the number of slaves that you can connect to the master server in a replication topology. However, as the number of slaves increases, they will have a toll on the master resources because the binary logs will need to be served to different slaves working at different speeds. If the data churn on the master is high, the serving of binary logs alone could saturate the network interface of the master.

A classic solution for this problem is to deploy a binlog server – an intermediate proxy server that sits between the master and its slaves. The binlog server is set up as a slave to the master, and in turn, acts as a master to the original set of slaves. It receives binary log events from the master, does not apply these events, but serves them to all the other slaves. This way, the load on the master is tremendously reduced, and at the same time, the binlog server serves the binlogs more efficiently to slaves since it does not have to do any other database server processing.

MySQL Binlog Server Deployment Diagram - ScaleGrid Blog

Ripple is an open source binlog server developed by Pavel Ivanov. A blog post from Percona, titled MySQL Ripple: The First Impression of a MySQL Binlog Server, gives a very good introduction to deploying and using Ripple. I had an opportunity to explore Ripple in some more detail and wanted to share my observations through this post.

1. Support for GTID based replication

Ripple supports only GTID mode, and not file and position-based replication. If your master is running in non-GTID mode, you will get this error from Ripple:

Failed to read packet: Got error reading packet from server: The replication sender thread cannot start in AUTO_POSITION mode: this server has GTID_MODE = OFF instead of ON.

You can specify Server_id and UUID for the ripple server using the cmd line options: -ripple_server_id and -ripple_server_uuid

Both are optional parameters, and if not specified, Ripple will use the default server_id=112211 and uuid will be auto generated.

2. Connecting to the master using replication user and password

While connecting to the master, you can specify the replication user and password using the command line options:

 -ripple_master_user and -ripple_master_password

3. Connection endpoint for the Ripple server

You can use the command line options -ripple_server_ports and -ripple_server_address to specify the connection end points for the Ripple server. Ensure to specify the network accessible hostname or IP address of your Ripple server as the -rippple_server_address. Otherwise, by default, Ripple will bind to localhost and hence you will not be able to connect to it remotely.

4. Setting up slaves to the Ripple server

You can use the CHANGE MASTER TO command to connect your slaves to replicate from the Ripple server.

To ensure that Ripple can authenticate the password that you use to connect to it, you need to start Ripple by specifying the option -ripple_server_password_hash

For example, if you start the ripple server with the command:

rippled -ripple_datadir=./binlog_server -ripple_master_address= <master ip> -ripple_master_port=3306 -ripple_master_user=repl -ripple_master_password='password' -ripple_server_ports=15000 -ripple_server_address='' -ripple_server_password_hash='EF8C75CB6E99A0732D2DE207DAEF65D555BDFB8E'

you can use the following CHANGE MASTER TO command to connect from the slave:

CHANGE MASTER TO master_host='', master_port=15000, master_password=’XpKWeZRNH5#satCI’, master_user=’rep’

Note that the password hash specified for the Ripple server corresponds to the text password used in the CHANGE MASTER TO command. Currently, Ripple does not authenticate based on the usernames and accepts any non-empty username as long as the password matches.

Exploring MySQL Binlog Server - Ripple


5. Ripple server management

It’s possible to monitor and manage the Ripple server using the MySQL protocol from any standard MySQL client. There are a limited set of commands that are supported which you can see directly in the source code on the mysql-ripple GitHub page.

Some of the useful commands are:

  • SELECT @@global.gtid_executed; – To see the GTID SET of the Ripple server based on its downloaded binary logs.
  • STOP SLAVE; – To disconnect the Ripple server from the master.
  • START SLAVE; – To connect the Ripple server to the master.

cloud database developer high availability mysql performance binary logs gtid replication mysql binlog mysql protocol mysql ripple mysql server parallel threads proxy server replication topology ripple server

Bootstrap 5 Complete Course with Examples

Bootstrap 5 Tutorial - Bootstrap 5 Crash Course for Beginners

Nest.JS Tutorial for Beginners

Hello Vue 3: A First Look at Vue 3 and the Composition API

Building a simple Applications with Vue 3

Deno Crash Course: Explore Deno and Create a full REST API with Deno

How to Build a Real-time Chat App with Deno and WebSockets

Convert HTML to Markdown Online

HTML entity encoder decoder Online

Best MySQL DigitalOcean Performance – ScaleGrid vs. DigitalOcean Managed Databases

Compare ScaleGrid MySQL vs. DigitalOcean Managed Databases - See which offers the best MySQL throughput, latency, and pricing on DigitalOcean across workloads.

ScaleGrid DigitalOcean Support for MySQL, PostgreSQL and Redis™

ScaleGrid announces support for their fully managed hosting plans on DigitalOcean for MySQL, PostgreSQL and Redis™. See how developers can improve performance. MySQL and PostgreSQL are the top two open source relational databases in the world, and Redis is the top key-value database

Multi-cloud Spending: 8 Tips To Lower Cost

Mismanagement of multi-cloud expense costs an arm and leg to business and its management has become a major pain point. Here we break down some crucial tips to take some of the management challenges off your plate and help you optimize your cloud spend.

Oracle Introduces the MySQL Database Service on Its Cloud Infrastructure

In a recent blog post, Oracle introduced the MySQL Database Service in the Oracle Cloud Infrastructure (OCI). The service is now available as a fully-managed service running on Oracle Generation 2 Cloud Infrastructure.

MySQL on Azure Performance Benchmark – ScaleGrid vs. Azure Database

In this performance benchmark for MySQL on Azure, we put ScaleGrid up against Azure Database. See which provider gives you the most value for your money! Microsoft Azure is one of the most popular cloud providers in the world, and a natural fit for database hosting on applications leveraging Microsoft across their infrastructure. MySQL is the number one open source database that’s commonly hosted through Azure instances. While Microsoft offers their own Azure Database product, there are other alternatives available that may be able to help you improve your MySQL performance.