1632385808
I hope someone can give me a hint with the following problem. I am currently working on the frontend for a REST API. I would like to test if I can submit a POST request.
Using the npm test command, the test runs and shows a green tick for this test function. However, no POST request is sent and thus no entry is written to the database.
The function createObject(json) is called correctly during the test and the JSON string passed is also correct. Unfortunately the AXIOS POST method is not called.
When I click on "Post Object" via the browser the AXIOS method is called and an object is created in the database.
PostClient.js
import axios from 'axios';
const options = {
headers: {
// 'Content-Type': 'application/x-www-form-urlencoded'
'Content-Type': 'application/json',
'Accept': 'application/json',
} };
export class PostClient {
// This function is called by the test, but the Axios command is not.
static createObject(json) {
const response = axios.post('http://localhost:8080/object/create/', JSON.stringify(json), options)
.then(response => {
console.log(response.data);
return response;
}).catch(function (error) {
console.log(error);
});
return response;
}
}
App.test.js
describe('Test', function(){
let id;
it('addObject()', function () {
const response = PostClient.createObject(objectJSON);
this.id = response.id;
expect(response.status == 200);
});
});
App.js
class App extends React.Component {
render() {
return (
<>
<h2>createObject</h2>
<div className="createObject">
<button onClick={() => PostClient.createObject(objectJSON)}>Post Object</button>
</div>
...
</>
);
}
}
export default App;
#javascript #react #axios
1598839687
If you are undertaking a mobile app development for your start-up or enterprise, you are likely wondering whether to use React Native. As a popular development framework, React Native helps you to develop near-native mobile apps. However, you are probably also wondering how close you can get to a native app by using React Native. How native is React Native?
In the article, we discuss the similarities between native mobile development and development using React Native. We also touch upon where they differ and how to bridge the gaps. Read on.
Let’s briefly set the context first. We will briefly touch upon what React Native is and how it differs from earlier hybrid frameworks.
React Native is a popular JavaScript framework that Facebook has created. You can use this open-source framework to code natively rendering Android and iOS mobile apps. You can use it to develop web apps too.
Facebook has developed React Native based on React, its JavaScript library. The first release of React Native came in March 2015. At the time of writing this article, the latest stable release of React Native is 0.62.0, and it was released in March 2020.
Although relatively new, React Native has acquired a high degree of popularity. The “Stack Overflow Developer Survey 2019” report identifies it as the 8th most loved framework. Facebook, Walmart, and Bloomberg are some of the top companies that use React Native.
The popularity of React Native comes from its advantages. Some of its advantages are as follows:
Are you wondering whether React Native is just another of those hybrid frameworks like Ionic or Cordova? It’s not! React Native is fundamentally different from these earlier hybrid frameworks.
React Native is very close to native. Consider the following aspects as described on the React Native website:
Due to these factors, React Native offers many more advantages compared to those earlier hybrid frameworks. We now review them.
#android app #frontend #ios app #mobile app development #benefits of react native #is react native good for mobile app development #native vs #pros and cons of react native #react mobile development #react native development #react native experience #react native framework #react native ios vs android #react native pros and cons #react native vs android #react native vs native #react native vs native performance #react vs native #why react native #why use react native
1596754901
The shift towards microservices and modular applications makes testing more important and more challenging at the same time. You have to make sure that the microservices running in containers perform well and as intended, but you can no longer rely on conventional testing strategies to get the job done.
This is where new testing approaches are needed. Testing your microservices applications require the right approach, a suitable set of tools, and immense attention to details. This article will guide you through the process of testing your microservices and talk about the challenges you will have to overcome along the way. Let’s get started, shall we?
Traditionally, testing a monolith application meant configuring a test environment and setting up all of the application components in a way that matched the production environment. It took time to set up the testing environment, and there were a lot of complexities around the process.
Testing also requires the application to run in full. It is not possible to test monolith apps on a per-component basis, mainly because there is usually a base code that ties everything together, and the app is designed to run as a complete app to work properly.
Microservices running in containers offer one particular advantage: universal compatibility. You don’t have to match the testing environment with the deployment architecture exactly, and you can get away with testing individual components rather than the full app in some situations.
Of course, you will have to embrace the new cloud-native approach across the pipeline. Rather than creating critical dependencies between microservices, you need to treat each one as a semi-independent module.
The only monolith or centralized portion of the application is the database, but this too is an easy challenge to overcome. As long as you have a persistent database running on your test environment, you can perform tests at any time.
Keep in mind that there are additional things to focus on when testing microservices.
Test containers are the method of choice for many developers. Unlike monolith apps, which lets you use stubs and mocks for testing, microservices need to be tested in test containers. Many CI/CD pipelines actually integrate production microservices as part of the testing process.
As mentioned before, there are many ways to test microservices effectively, but the one approach that developers now use reliably is contract testing. Loosely coupled microservices can be tested in an effective and efficient way using contract testing, mainly because this testing approach focuses on contracts; in other words, it focuses on how components or microservices communicate with each other.
Syntax and semantics construct how components communicate with each other. By defining syntax and semantics in a standardized way and testing microservices based on their ability to generate the right message formats and meet behavioral expectations, you can rest assured knowing that the microservices will behave as intended when deployed.
It is easy to fall into the trap of making testing microservices complicated, but there are ways to avoid this problem. Testing microservices doesn’t have to be complicated at all when you have the right strategy in place.
There are several ways to test microservices too, including:
What’s important to note is the fact that these testing approaches allow for asynchronous testing. After all, asynchronous development is what makes developing microservices very appealing in the first place. By allowing for asynchronous testing, you can also make sure that components or microservices can be updated independently to one another.
#blog #microservices #testing #caylent #contract testing #end-to-end testing #hoverfly #integration testing #microservices #microservices architecture #pact #testing #unit testing #vagrant #vcr
1599639298
Testing is complicated. I’ve certainly never been good at it. For the longest time, I’ve only been focused on basic function input-output unit tests. Why? Because they were easy — you didn’t need to render HTML, you didn’t need to query DOM elements, you didn’t need to interact with said DOM elements. But of course, React component testing is a necessity for any mature codebase. And it finally came time for me to sit down and figure it out.
That’s when I discovered React Testing Library. And suddenly, everything seemingly became much simpler. All the complexities that I’ve encountered, but not understood, that made me put off React component testing disappeared. Hopefully, the same will happen for you.
#react-testing-library #unit-testing #react #jest #interaction-testing
1597168800
Let’s step up our testing game with two useful libraries that lend themselves excellently to a TDD approach.
Whenever I want to try out something React-related, I use the library create-react-app. It gives you a ready-to-work-with basic React application with no configuration needed. Recent versions also come bundled with React Testing Library, so if you use the latest create-react-app, you can start using React Testing Library straight away. If not — install @testing-library/react and @testing-library/jest-dom in your existing React application.
I am going to implement the following functionality: a simple recipe list with a search function. It will look something like this to a user in a mobile browser:
Image credits: Burger Photo by Robin Stickel on Unsplash, French Toast Photo by Joseph Gonzalez on Unsplash, Salmon Photo by Casey Lee on Unsplash
I want to use a TDD approach, so let’s start with a failing test. At this point, there is no component yet, so of course whatever test we write is going to fail. But let’s start small; I want a component named ‘Recipes’ that renders the expected heading text. Here is my test for that expectation:
import React from 'react';
import { render, screen } from '@testing-library/react';
test('renders the heading', () => {
render(<Recipes />);
expect(screen.getByRole('heading')).toHaveTextContent('Recipe Finder');
});
React testing library exports a render method, which will render a component and all of its child components. It also exports a screen object, holding a number of queries we can use to select different elements in our rendered component (and its child components too). The **getByRole **query lets me select the heading element and make an assertion on its text content.
Why select the heading element by its role and not for example a CSS class? The guiding principle of React Testing Library is “The more your tests resemble the way your software is used, the more confidence they can give you.” Therefore, we want to write our tests as close as possible to how the ultimate tester — the end user — will be using the application. Users don’t see CSS classes or data attributes; they interact with text, label text and semantic elements and roles. Using queries such as getByRole also encourages us to write accessible code, since these selectors are available to everyone, including users of screen readers.
Our first test fails as expected.** Recipes is not defined.** But this is the first step in TDD — a failing test. Now, let’s make it pass by writing the simplest possible component with the correct heading and then importing it in our test file. Now, let’s re-run the test. It passes!
import React from 'react';
const Recipes = () => {
return (
<div>
<h1>Recipe Finder</h1>
</div>
)
};
export default Recipes;
Using further queries, we can make similar expectations for the input element and the “Find” button. The button also has a role, but for the input field, I will use the getByPlaceholderText query, since that is probably the closest query to how the user would find it on the page.
Start with a failing test…
import React from 'react';
import { render, screen } from '@testing-library/react';
import Recipes from './Recipes';
test('renders the heading, input field and button', () => {
render(<Recipes />);
expect(screen.getByRole('heading')).toHaveTextContent('Recipe Finder');
expect(screen.getByPlaceholderText('Enter an ingredient to find recipes...'))
.toBeInTheDocument();
expect(screen.getByRole('button')).toHaveTextContent('Find');
});
… and implement the changes necessary to make it pass:
import React from 'react';
const Recipes = () => {
return (
<div>
<h1>Recipe Finder</h1>
<form>
<input
type="text"
name="ingredient"
placeholder="Enter an ingredient to find recipes..."
/>
<button type="submit">Find</button>
</form>
</div>
)
};
export default Recipes;
This way, we know what we expect from our code and more importantly — we will know if we break any functionality if the previously passing tests suddenly fail.
An important step in TDD is the refactor step, where we improve our code to for example make it easier to read, become more efficient and remove any duplication. The test should still pass after we refactor.
When the application first renders, I want to display a list of all my recipes, just like in the visual design above. This requires some kind of communication with an API. We are going to use Mock Service Worker to mock the HTTP-requests, so that we can control the response data. Install Mock Service Worker with npm like this:
npm install msw --save-dev
With Mock Service Worker, we are not mocking a specific module (unlike if we were to use Jest.mock), which means that it makes no difference if I use fetch or a third-party library such as axios to get the data. This makes it incredibly flexible. Let’s add the following imports to our test file:
import { rest } from 'msw';
import { setupServer } from 'msw/node';
Here is how I set up mocking a call to the recipe list endpoint:
import React from 'react';
import { render, screen } from '@testing-library/react';
import Recipes from './Recipes';
import { rest } from 'msw';
import { setupServer } from 'msw/node';
const allRecipes = [
{ id: 1, title: 'Burger' },
{ id: 2, title: 'French toast' },
{ id: 3, title: 'Salmon' }
];
const server = setupServer(
rest.get('/api/recipes', (req, res, ctx) => {
return res(ctx.json({ recipes: allRecipes }));
})
);
beforeAll(() => server.listen());
afterAll(() => server.close());
If you have worked with NodeJS and Express, the syntax looks very familiar. GET requests to ‘/api/recipes’ will respond with JSON containing the allRecipes array, just like a real API would. These two lines make sure the server starts listening (intercepting) before the tests run and closes its connection when the tests in this file have finished running:
beforeAll(() => server.listen());
afterAll(() => server.close());
#tdd #react-testing-library #react #test-driven-development #testing
1615544450
Since March 2020 reached 556 million monthly downloads have increased, It shows that React JS has been steadily growing. React.js also provides a desirable amount of pliancy and efficiency for developing innovative solutions with interactive user interfaces. It’s no surprise that an increasing number of businesses are adopting this technology. How do you select and recruit React.js developers who will propel your project forward? How much does a React developer make? We’ll bring you here all the details you need.
Facebook built and maintains React.js, an open-source JavaScript library for designing development tools. React.js is used to create single-page applications (SPAs) that can be used in conjunction with React Native to develop native cross-platform apps.
In the United States, the average React developer salary is $94,205 a year, or $30-$48 per hour, This is one of the highest among JavaScript developers. The starting salary for junior React.js developers is $60,510 per year, rising to $112,480 for senior roles.
In context of software developer wage rates, the United States continues to lead. In high-tech cities like San Francisco and New York, average React developer salaries will hit $98K and $114per year, overall.
However, the need for React.js and React Native developer is outpacing local labour markets. As a result, many businesses have difficulty locating and recruiting them locally.
It’s no surprise that for US and European companies looking for professional and budget engineers, offshore regions like India are becoming especially interesting. This area has a large number of app development companies, a good rate with quality, and a good pool of React.js front-end developers.
As per Linkedin, the country’s IT industry employs over a million React specialists. Furthermore, for the same or less money than hiring a React.js programmer locally, you may recruit someone with much expertise and a broader technical stack.
React is a very strong framework. React.js makes use of a powerful synchronization method known as Virtual DOM, which compares the current page architecture to the expected page architecture and updates the appropriate components as long as the user input.
React is scalable. it utilises a single language, For server-client side, and mobile platform.
React is steady.React.js is completely adaptable, which means it seldom, if ever, updates the user interface. This enables legacy projects to be updated to the most new edition of React.js without having to change the codebase or make a few small changes.
React is adaptable. It can be conveniently paired with various state administrators (e.g., Redux, Flux, Alt or Reflux) and can be used to implement a number of architectural patterns.
Is there a market for React.js programmers?
The need for React.js developers is rising at an unparalleled rate. React.js is currently used by over one million websites around the world. React is used by Fortune 400+ businesses and popular companies such as Facebook, Twitter, Glassdoor and Cloudflare.
As you’ve seen, locating and Hire React js Developer and Hire React Native developer is a difficult challenge. You will have less challenges selecting the correct fit for your projects if you identify growing offshore locations (e.g. India) and take into consideration the details above.
If you want to make this process easier, You can visit our website for more, or else to write a email, we’ll help you to finding top rated React.js and React Native developers easier and with strives to create this operation
#hire-react-js-developer #hire-react-native-developer #react #react-native #react-js #hire-react-js-programmer