Jerod  Durgan

Jerod Durgan


How To Scale Azure Kubernetes Service Cluster Using Azure Portal

You can manually scale your AKS cluster by setting a static number of nodes for the cluster. The scaling of your cluster can be done either via the Azure portal or via the command line.

To scale your cluster from Azure Portal, follow these steps:

Step 1

Open the Azure portal and go to your cluster. Once there, go to Node pools and click on the number below Node count, as shown in the screenshot below:

How to scale Azure Kubernetes Service Cluster by using Azure Portal

#kubernetes #azure

What is GEEK

Buddha Community

How To Scale Azure Kubernetes Service Cluster Using Azure Portal
Christa  Stehr

Christa Stehr


50+ Useful Kubernetes Tools for 2020 - Part 2


Last year, we provided a list of Kubernetes tools that proved so popular we have decided to curate another list of some useful additions for working with the platform—among which are many tools that we personally use here at Caylent. Check out the original tools list here in case you missed it.

According to a recent survey done by Stackrox, the dominance Kubernetes enjoys in the market continues to be reinforced, with 86% of respondents using it for container orchestration.

(State of Kubernetes and Container Security, 2020)

And as you can see below, more and more companies are jumping into containerization for their apps. If you’re among them, here are some tools to aid you going forward as Kubernetes continues its rapid growth.

(State of Kubernetes and Container Security, 2020)

#blog #tools #amazon elastic kubernetes service #application security #aws kms #botkube #caylent #cli #container monitoring #container orchestration tools #container security #containers #continuous delivery #continuous deployment #continuous integration #contour #developers #development #developments #draft #eksctl #firewall #gcp #github #harbor #helm #helm charts #helm-2to3 #helm-aws-secret-plugin #helm-docs #helm-operator-get-started #helm-secrets #iam #json #k-rail #k3s #k3sup #k8s #keycloak #kiali #kiam #klum #knative #krew #ksniff #kube #kube-prod-runtime #kube-ps1 #kube-scan #kube-state-metrics #kube2iam #kubeapps #kubebuilder #kubeconfig #kubectl #kubectl-aws-secrets #kubefwd #kubernetes #kubernetes command line tool #kubernetes configuration #kubernetes deployment #kubernetes in development #kubernetes in production #kubernetes ingress #kubernetes interfaces #kubernetes monitoring #kubernetes networking #kubernetes observability #kubernetes plugins #kubernetes secrets #kubernetes security #kubernetes security best practices #kubernetes security vendors #kubernetes service discovery #kubernetic #kubesec #kubeterminal #kubeval #kudo #kuma #microsoft azure key vault #mozilla sops #octant #octarine #open source #palo alto kubernetes security #permission-manager #pgp #rafay #rakess #rancher #rook #secrets operations #serverless function #service mesh #shell-operator #snyk #snyk container #sonobuoy #strongdm #tcpdump #tenkai #testing #tigera #tilt #vert.x #wireshark #yaml

Private Azure Kubernetes Service Clusters with Azure Private Links?

What if I tell you that you can make your AKS cluster private. No, not just setting the ingress controller LoadBalancer IP to a private IP and prevent internet ingress to the pods and applications, but prevent external access to the KubeAPI Sever completely. In other words, the kubectl commands cannot run over the internet and this creates an additional layer of security to your enterprise clusters!

#terraform #azure #kubernetes-security #kubernetes #azure-kubernetes-service

Layne  Fadel

Layne Fadel


Traefik Ingress on Azure Kubernetes Service

Having an application deployed on a Kubernetes cluster consisting of multiple microservices, you may want to expose some of them to be accessible through the internet. While it’s obviously for your web app service, maybe you have some additional APIs that you want to expose.

In the world of Kubernetes, any connection to one of your microservices is done using the Service resource. Using the type LoadBalancer of the Kubernetes Service resource leverages the underlying cloud provider to create a cloud provider-specific load balancer for exposing the microservice through an external IP. The problem with that approach is that each microservice would be exposed under a separate IP address.

It would be much more convenient to have them exposed under one and the same host while having different paths to reach the dedicated microservice, right?

This article shows how to do that with a Kubernetes Cluster on Azure and Traefik and is a follow-up to my article about achieving the same using the Azure Application Gateway. A lot of content will be based on that article.


Microservices can be exposed inside and outside of Kubernetes using the Kubernetes Service resource. So far, so good. But as already said, if we want to expose them outside the cluster, using the Service resource with the type LoadBalancer, we end up having different IPs for each microservice. This does not want we want, instead, we want to have them exposed under one and the host using different paths.

This is where the Kubernetes Ingress resource comes in handy. Think of an Ingress like a layer on top of Kubernetes Services. It is the single point of entrance for traffic hitting our microservices, which routes traffic to different Kubernetes Services based on specified rules.

The concept of Kubernetes Ingress resource is like an Abstraction. In order to make use of a Kubernetes Ingress, you have to install a specific Ingress Controller. There are plenty of different Implementations of the Kubernetes Ingress Abstraction out there. Nginx and Traefik Ingress are two of them which are very popular in the Kubernetes and Open Source Community, just to name some.

And then of course we have Cloud Providers, where you can use resources like Load Balancers and Gateways as a Kubernetes Ingress. Anyways, in this article, we will focus on the Traefik_ Ingress_.

#microservices #azure-kubernetes-service #ingress #kubernetes #azure kubernetes service

Maud  Rosenbaum

Maud Rosenbaum


Kubernetes in the Cloud: Strategies for Effective Multi Cloud Implementations

Kubernetes is a highly popular container orchestration platform. Multi cloud is a strategy that leverages cloud resources from multiple vendors. Multi cloud strategies have become popular because they help prevent vendor lock-in and enable you to leverage a wide variety of cloud resources. However, multi cloud ecosystems are notoriously difficult to configure and maintain.

This article explains how you can leverage Kubernetes to reduce multi cloud complexities and improve stability, scalability, and velocity.

Kubernetes: Your Multi Cloud Strategy

Maintaining standardized application deployments becomes more challenging as your number of applications and the technologies they are based on increase. As environments, operating systems, and dependencies differ, management and operations require more effort and extensive documentation.

In the past, teams tried to get around these difficulties by creating isolated projects in the data center. Each project, including its configurations and requirements were managed independently. This required accurately predicting performance and the number of users before deployment and taking down applications to update operating systems or applications. There were many chances for error.

Kubernetes can provide an alternative to the old method, enabling teams to deploy applications independent of the environment in containers. This eliminates the need to create resource partitions and enables teams to operate infrastructure as a unified whole.

In particular, Kubernetes makes it easier to deploy a multi cloud strategy since it enables you to abstract away service differences. With Kubernetes deployments you can work from a consistent platform and optimize services and applications according to your business needs.

The Compelling Attributes of Multi Cloud Kubernetes

Multi cloud Kubernetes can provide multiple benefits beyond a single cloud deployment. Below are some of the most notable advantages.


In addition to the built-in scalability, fault tolerance, and auto-healing features of Kubernetes, multi cloud deployments can provide service redundancy. For example, you can mirror applications or split microservices across vendors. This reduces the risk of a vendor-related outage and enables you to create failovers.

#kubernetes #multicloud-strategy #kubernetes-cluster #kubernetes-top-story #kubernetes-cluster-install #kubernetes-explained #kubernetes-infrastructure #cloud

Alisha  Larkin

Alisha Larkin


Exploring App Service Diagnostics in Azure Portal

If you are working with Azure, you must be familiar with Azure App Services and the App Services Diagnostics Tools. App Service Diagnostics tool is powerful and helps us find out application issues, logs, memory leak, crash dumps, etc. The new preview experiences of Azure App service Diagnostics are very intuitive, focused, and allows us to identify the issues quickly.

Exploring App Service Diagnostics in Azure Portal

The new experience categorized the diagnostics types and allows us to discover issues quickly that our application might be facing.

In-App Service Diagnostics, you will find all the top-level application diagnose categories such as:

  • Availability and Performance
  • Configuration and Management
  • SSL and Domain
  • Best Practices
  • Navigator
  • Diagnostics Tools

Now you can navigate to details of each and individual category and find of details. The following images show the details for Availability and Performance.

#azure #app services #azure portal #azure portal