1594960860
Solutions for challenging technical problems shouldn’t result in a whole set of new ones. Sometimes, we make things harder on ourselves by choosing the new hotness to tackle technical problems (such as scaling infrastructure). We may be solving our problem in an interesting and fun way, but we bring on more complexity (and more problems) as a result of that technology choice.
I put out a few tweets a while back showing my true curmudgeon colors (AKA, a grumpy operator reminiscing about the good old days). And while initially the tweets were voiced in frustration over a technical issue I was grappling with, the sentiment remains true: we need a resurgence of boring tech (and I’m not the first to say it).
At the risk of truly proving myself to be that grumpy operator, there’s a case to be made for going back to the old — but tested, tried, and true — software of yesteryear. In this post, I make my case, drawing from one of my favorite examples: distributed versus relational databases.
Etcd 2.0 (its first stable release) came on in the scene in January 2015 and started growing in popularity, with Cloud Foundry and Kubernetes driving significant adoption. Distributed databases like etcd are great for high availability, which they offer through replication. With multiple copies of the same piece of data on multiple machines, you can rest assured that data will always be available at a moment’s notice.
But, the problem with distributed systems is there are many more moving parts (not to mention problems due to their susceptibility to network partitions and slow members). As such, the complexity goes up. Being an operator trying to reason about the system becomes all the more difficult. There are instances in which a distributed database won’t perform nearly as well as its predecessor (more on that later!), as in many of them you need some form of consensus. Every node in your cluster needs to agree on what the value might be for a particular key. So now, not only do you have additional overhead but also the chance for conflict, for which you need conflict resolution.
The thing about distributed databases — or really any technology — is it has to fit your data needs. The data you put in it and how you’re going to access it has to fit a certain mold. Forcing anything upon this technology is foolish.
As with many technical problems, they grow exponentially at scale. For instance, if you’re abusing a distributed key-value store or database for something it wasn’t designed for, it’s going to be very problematic. At scale, you simply dump more gasoline on the fire — your problems get amplified and outages increase.
At certain levels, doubling the size of your infrastructure isn’t a big deal — i.e., going from 100 to 200 servers. If you’re at 10,000 servers and double, that’s another story. The stresses on the system are more significant and can hit you in an instant.
#cloud native #data #contributed #cloud
1594162500
A multi-cloud approach is nothing but leveraging two or more cloud platforms for meeting the various business requirements of an enterprise. The multi-cloud IT environment incorporates different clouds from multiple vendors and negates the dependence on a single public cloud service provider. Thus enterprises can choose specific services from multiple public clouds and reap the benefits of each.
Given its affordability and agility, most enterprises opt for a multi-cloud approach in cloud computing now. A 2018 survey on the public cloud services market points out that 81% of the respondents use services from two or more providers. Subsequently, the cloud computing services market has reported incredible growth in recent times. The worldwide public cloud services market is all set to reach $500 billion in the next four years, according to IDC.
By choosing multi-cloud solutions strategically, enterprises can optimize the benefits of cloud computing and aim for some key competitive advantages. They can avoid the lengthy and cumbersome processes involved in buying, installing and testing high-priced systems. The IaaS and PaaS solutions have become a windfall for the enterprise’s budget as it does not incur huge up-front capital expenditure.
However, cost optimization is still a challenge while facilitating a multi-cloud environment and a large number of enterprises end up overpaying with or without realizing it. The below-mentioned tips would help you ensure the money is spent wisely on cloud computing services.
Most organizations tend to get wrong with simple things which turn out to be the root cause for needless spending and resource wastage. The first step to cost optimization in your cloud strategy is to identify underutilized resources that you have been paying for.
Enterprises often continue to pay for resources that have been purchased earlier but are no longer useful. Identifying such unused and unattached resources and deactivating it on a regular basis brings you one step closer to cost optimization. If needed, you can deploy automated cloud management tools that are largely helpful in providing the analytics needed to optimize the cloud spending and cut costs on an ongoing basis.
Another key cost optimization strategy is to identify the idle computing instances and consolidate them into fewer instances. An idle computing instance may require a CPU utilization level of 1-5%, but you may be billed by the service provider for 100% for the same instance.
Every enterprise will have such non-production instances that constitute unnecessary storage space and lead to overpaying. Re-evaluating your resource allocations regularly and removing unnecessary storage may help you save money significantly. Resource allocation is not only a matter of CPU and memory but also it is linked to the storage, network, and various other factors.
The key to efficient cost reduction in cloud computing technology lies in proactive monitoring. A comprehensive view of the cloud usage helps enterprises to monitor and minimize unnecessary spending. You can make use of various mechanisms for monitoring computing demand.
For instance, you can use a heatmap to understand the highs and lows in computing visually. This heat map indicates the start and stop times which in turn lead to reduced costs. You can also deploy automated tools that help organizations to schedule instances to start and stop. By following a heatmap, you can understand whether it is safe to shut down servers on holidays or weekends.
#cloud computing services #all #hybrid cloud #cloud #multi-cloud strategy #cloud spend #multi-cloud spending #multi cloud adoption #why multi cloud #multi cloud trends #multi cloud companies #multi cloud research #multi cloud market
1594166040
The moving of applications, databases and other business elements from the local server to the cloud server called cloud migration. This article will deal with migration techniques, requirement and the benefits of cloud migration.
In simple terms, moving from local to the public cloud server is called cloud migration. Gartner says 17.5% revenue growth as promised in cloud migration and also has a forecast for 2022 as shown in the following image.
#cloud computing services #cloud migration #all #cloud #cloud migration strategy #enterprise cloud migration strategy #business benefits of cloud migration #key benefits of cloud migration #benefits of cloud migration #types of cloud migration
1599847200
In a recent blog post, Oracle introduced the MySQL Database Service in the Oracle Cloud Infrastructure (OCI). The service is now available as a fully-managed service running on Oracle Generation 2 Cloud Infrastructure.
The MySQL team at Oracle was responsible for the development of the MySQL Database Service and will also manage and support it. Since the MySQL Database Service is available as a managed service, customers do not need to provision, patch, update, backup or restore a MySQL instance - this is done automatically. Furthermore, they can quickly scale a MySQL instance, monitor resources, implement security best practices to meet regulatory requirements, access the MySQL databases via standard MySQL protocols, and automate any administrative task through the OCI web console, REST API, CLI, or DevOps tools.
According to the blog post, customers can benefit from leveraging MySQL Database Service as it is built on top of Oracle Cloud Infrastructure as an ultra-secure native service – and thus leverages the benefits of a Cloud that is architected and designed to run mission-critical Enterprise workloads and databases. Furthermore, the same MySQL Server is used in the cloud, on-premises, and in hybrid deployments. Hence, customers can get maximum flexibility for their deployment strategy.
Various public cloud vendors have offered a managed MySQL database service on their platform for some time now. Microsoft, for instance, has a MySQL service on Azure generally available since 2018, and Google started offering the Google Cloud SQL as a fully-managed MySQL since 2013. Moreover, even earlier AWS had a MySQL offering called Amazon RDS, as of 2009.
#oracle #database #mysql #relational databases #cloud #cloud data management #architecture & design #development #devops #news
1594960860
Solutions for challenging technical problems shouldn’t result in a whole set of new ones. Sometimes, we make things harder on ourselves by choosing the new hotness to tackle technical problems (such as scaling infrastructure). We may be solving our problem in an interesting and fun way, but we bring on more complexity (and more problems) as a result of that technology choice.
I put out a few tweets a while back showing my true curmudgeon colors (AKA, a grumpy operator reminiscing about the good old days). And while initially the tweets were voiced in frustration over a technical issue I was grappling with, the sentiment remains true: we need a resurgence of boring tech (and I’m not the first to say it).
At the risk of truly proving myself to be that grumpy operator, there’s a case to be made for going back to the old — but tested, tried, and true — software of yesteryear. In this post, I make my case, drawing from one of my favorite examples: distributed versus relational databases.
Etcd 2.0 (its first stable release) came on in the scene in January 2015 and started growing in popularity, with Cloud Foundry and Kubernetes driving significant adoption. Distributed databases like etcd are great for high availability, which they offer through replication. With multiple copies of the same piece of data on multiple machines, you can rest assured that data will always be available at a moment’s notice.
But, the problem with distributed systems is there are many more moving parts (not to mention problems due to their susceptibility to network partitions and slow members). As such, the complexity goes up. Being an operator trying to reason about the system becomes all the more difficult. There are instances in which a distributed database won’t perform nearly as well as its predecessor (more on that later!), as in many of them you need some form of consensus. Every node in your cluster needs to agree on what the value might be for a particular key. So now, not only do you have additional overhead but also the chance for conflict, for which you need conflict resolution.
The thing about distributed databases — or really any technology — is it has to fit your data needs. The data you put in it and how you’re going to access it has to fit a certain mold. Forcing anything upon this technology is foolish.
As with many technical problems, they grow exponentially at scale. For instance, if you’re abusing a distributed key-value store or database for something it wasn’t designed for, it’s going to be very problematic. At scale, you simply dump more gasoline on the fire — your problems get amplified and outages increase.
At certain levels, doubling the size of your infrastructure isn’t a big deal — i.e., going from 100 to 200 servers. If you’re at 10,000 servers and double, that’s another story. The stresses on the system are more significant and can hit you in an instant.
#cloud native #data #contributed #cloud
1620633584
In SSMS, we many of may noticed System Databases under the Database Folder. But how many of us knows its purpose?. In this article lets discuss about the System Databases in SQL Server.
Fig. 1 System Databases
There are five system databases, these databases are created while installing SQL Server.
#sql server #master system database #model system database #msdb system database #sql server system databases #ssms #system database #system databases in sql server #tempdb system database