1615543080
Okay, so you have decided to break your old and outdated monolith application into a more modern and efficient microservices architecture.
One of the first problems that will arise comes from the fact that a distributed architecture means your small pieces aren’t tied to each other anymore, they will have to talk to each other through a pattern of communication called REST, and no longer they will share in-memory data among them.
Well, it just happens that one of the most important pieces of data for your whole application is kept in-memory and shared throughout all modules of your application: the user session.
When you do a little research on microservices authentication and authorization, one technology comes up as the best, if not the only, solution: JWT.
Basically, this approach suggests that you put all of your session data into a signed / encrypted hash (the token) and send it back to the client that has logged into your application.
So, with every request, the client will send back that token (usually in the request header), and then you can verify the authenticity of the token and extract the session data from it.
Session data in hands, you can send it to any service you need until you fulfill that request. You can set up a serverless function to decrypt and verify the signature of the token, or even delegate this task to you API Gateway.
This looks so neat and elegant at first, but wait a minute … it looks fairly more complex than what it used to be, right? Let’s take a look at how it used to work with our monolith application, and why did it have to change so drastically.
#microservices #redis-and-jedis
1599055326
The shift towards microservices and modular applications makes testing more important and more challenging at the same time. You have to make sure that the microservices running in containers perform well and as intended, but you can no longer rely on conventional testing strategies to get the job done.
This is where new testing approaches are needed. Testing your microservices applications require the right approach, a suitable set of tools, and immense attention to details. This article will guide you through the process of testing your microservices and talk about the challenges you will have to overcome along the way. Let’s get started, shall we?
Traditionally, testing a monolith application meant configuring a test environment and setting up all of the application components in a way that matched the production environment. It took time to set up the testing environment, and there were a lot of complexities around the process.
Testing also requires the application to run in full. It is not possible to test monolith apps on a per-component basis, mainly because there is usually a base code that ties everything together, and the app is designed to run as a complete app to work properly.
Microservices running in containers offer one particular advantage: universal compatibility. You don’t have to match the testing environment with the deployment architecture exactly, and you can get away with testing individual components rather than the full app in some situations.
Of course, you will have to embrace the new cloud-native approach across the pipeline. Rather than creating critical dependencies between microservices, you need to treat each one as a semi-independent module.
The only monolith or centralized portion of the application is the database, but this too is an easy challenge to overcome. As long as you have a persistent database running on your test environment, you can perform tests at any time.
Keep in mind that there are additional things to focus on when testing microservices.
Test containers are the method of choice for many developers. Unlike monolith apps, which lets you use stubs and mocks for testing, microservices need to be tested in test containers. Many CI/CD pipelines actually integrate production microservices as part of the testing process.
As mentioned before, there are many ways to test microservices effectively, but the one approach that developers now use reliably is contract testing. Loosely coupled microservices can be tested in an effective and efficient way using contract testing, mainly because this testing approach focuses on contracts; in other words, it focuses on how components or microservices communicate with each other.
Syntax and semantics construct how components communicate with each other. By defining syntax and semantics in a standardized way and testing microservices based on their ability to generate the right message formats and meet behavioral expectations, you can rest assured knowing that the microservices will behave as intended when deployed.
#testing #software testing #test automation #microservice architecture #microservice #test #software test automation #microservice best practices #microservice deployment #microservice components
1620992479
In this digital world, online businesses aspire to catch the attention of users in a modern and smarter way. To achieve it, they need to traverse through new approaches. Here comes to spotlight is the user-generated content or UGC.
What is user-generated content?
“ It is the content by users for users.”
Generally, the UGC is the unbiased content created and published by the brand users, social media followers, fans, and influencers that highlight their experiences with the products or services. User-generated content has superseded other marketing trends and fallen into the advertising feeds of brands. Today, more than 86 percent of companies use user-generated content as part of their marketing strategy.
In this article, we have explained the ten best ideas to create wonderful user-generated content for your brand. Let’s start without any further ado.
Generally, social media platforms help the brand to generate content for your users. Any user content that promotes your brand on the social media platform is the user-generated content for your business. When users create and share content on social media, they get 28% higher engagement than a standard company post.
Furthermore, you can embed your social media feed on your website also. you can use the Social Stream Designer WordPress plugin that will integrate various social media feeds from different social media platforms like Facebook, Twitter, Instagram, and many more. With this plugin, you can create a responsive wall on your WordPress website or blog in a few minutes. In addition to this, the plugin also provides more than 40 customization options to make your social stream feeds more attractive.
In general, surveys can be used to figure out attitudes, reactions, to evaluate customer satisfaction, estimate their opinions about different problems. Another benefit of customer surveys is that collecting outcomes can be quick. Within a few minutes, you can design and load a customer feedback survey and send it to your customers for their response. From the customer survey data, you can find your strengths, weaknesses, and get the right way to improve them to gain more customers.
Additionally, it is the best way to convert your brand leads to valuable customers. The key to running a successful contest is to make sure that the reward is fair enough to motivate your participation. If the product is relevant to your participant, then chances are they were looking for it in the first place, and giving it to them for free just made you move forward ahead of your competitors. They will most likely purchase more if your product or service satisfies them.
Furthermore, running contests also improve the customer-brand relationship and allows more people to participate in it. It will drive a real result for your online business. If your WordPress website has Google Analytics, then track contest page visits, referral traffic, other website traffic, and many more.
The business reviews help your consumers to make a buying decision without any hurdle. While you may decide to remove all the negative reviews about your business, those are still valuable user-generated content that provides honest opinions from real users. Customer feedback can help you with what needs to be improved with your products or services. This thing is not only beneficial to the next customer but your business as a whole.
Reviews are powerful as the platform they are built upon. That is the reason it is important to gather reviews from third-party review websites like Google review, Facebook review, and many more, or direct reviews on a website. It is the most vital form of feedback that can help brands grow globally and motivate audience interactions.
However, you can also invite your customers to share their unique or successful testimonials. It is a great way to display your products while inspiring others to purchase from your website.
Moreover, Instagram videos create around 3x more comments rather than Instagram photo posts. Instagram videos generally include short videos posted by real customers on Instagram with the tag of a particular brand. Brands can repost the stories as user-generated content to engage more audiences and create valid promotions on social media.
Similarly, imagine you are browsing a YouTube channel, and you look at a brand being supported by some authentic customers through a small video. So, it will catch your attention. With the videos, they can tell you about the branded products, especially the unboxing videos displaying all the inside products and how well it works for them. That type of video is enough to create a sense of desire in the consumers.
#how to get more user generated content #importance of user generated content #user generated content #user generated content advantages #user generated content best practices #user generated content pros and cons
1597438200
We have been building software applications for many years using various tools, technologies, architectural patterns and best practices. It is evident that many software applications become large complex monolith over a period for various reasons. A monolith software application is like a large ball of spaghetti with criss-cross dependencies among its constituent modules. It becomes more complex to develop, deploy and maintain monoliths, constraining the agility and competitive advantages of development teams. Also, let us not undermine the challenge of clearing any sort of technical debt monoliths accumulate, as changing part of monolith code may have cascading impact of destabilizing a working software in production.
Over the years, architectural patterns such as Service Oriented Architecture (SOA) and Microservices have emerged as alternatives to Monoliths.
SOA was arguably the first architectural pattern aimed at solving the typical monolith issues by breaking down a large complex software application to sub-systems or “services”. All these services communicate over a common enterprise service bus (ESB). However, these sub-systems or services are actually mid-sized monoliths, as they share the same database. Also, more and more service-aware logic gets added to ESB and it becomes the single point of failure.
Microservice as an architectural pattern has gathered steam due to large scale adoption by companies like Amazon, Netflix, SoundCloud, Spotify etc. It breaks downs a large software application to a number of loosely coupled microservices. Each microservice is responsible for doing specific discrete tasks, can have its own database and can communicate with other microservices through Application Programming Interfaces (APIs) to solve a large complex business problem. Each microservice can be developed, deployed and maintained independently as long as it operates without breaching a well-defined set of APIs called contract to communicate with other microservices.
#microservice architecture #microservice #scaling #thought leadership #microservices build #microservice
1615543080
Okay, so you have decided to break your old and outdated monolith application into a more modern and efficient microservices architecture.
One of the first problems that will arise comes from the fact that a distributed architecture means your small pieces aren’t tied to each other anymore, they will have to talk to each other through a pattern of communication called REST, and no longer they will share in-memory data among them.
Well, it just happens that one of the most important pieces of data for your whole application is kept in-memory and shared throughout all modules of your application: the user session.
When you do a little research on microservices authentication and authorization, one technology comes up as the best, if not the only, solution: JWT.
Basically, this approach suggests that you put all of your session data into a signed / encrypted hash (the token) and send it back to the client that has logged into your application.
So, with every request, the client will send back that token (usually in the request header), and then you can verify the authenticity of the token and extract the session data from it.
Session data in hands, you can send it to any service you need until you fulfill that request. You can set up a serverless function to decrypt and verify the signature of the token, or even delegate this task to you API Gateway.
This looks so neat and elegant at first, but wait a minute … it looks fairly more complex than what it used to be, right? Let’s take a look at how it used to work with our monolith application, and why did it have to change so drastically.
#microservices #redis-and-jedis
1595335187
For pure frontend developers who doesn’t have much exposure to backend or middleware technology, microservices are a vague thing. They might have high-level introduction. So, let us have some deep understanding of what microservices are, and how it is different from monolithic application data management.
In a monolithic application, all the stakeholders like all the business logic, routing features, middle-wares and Database access code get used to implement all the functionalities of the application. It is basically a single unit application. It has a lot of challenges in terms of scalability and agility. On the other side, in a microservice, all the business logic, routing features, middle-wares, and database access code get used to implement a single functionality of the application. We break down the functionalities to the core level and then connect to related services. So, the functionalities are actually dependent on related services only and does not get affected if there is an issue with other services. This helps to make the application agile, flexible, and highly scalable.
The very first important thing associated with microservices is that each functionality requires its own database and never connects to the database of other services. In a monolithic service, since you have a single database. if something goes wrong with it then the whole application gets crashed. But in microservice, since we have an independent database for each service, in case of any problem with any particular database, it certainly does not affect other services and your application does not crash as a whole.
We have many services in our application and each service requires its own database. Hence, each database has its own schema or structure. But, if any service is connected to other service and shares the data and during development, the source database changes its schema and does not update the dependent services, then the service will not function correctly and may crash. So, there should be no dependency on databases.
Depending on the nature of service, we choose the appropriate type of DB. Some services are more efficient in specific database. So, creating a single database for all the services in the application might affect performance. In Microservice, since we have individual DB for each of the service, it is quite flexible, independent, and functions efficiently.
Unlike the monolithic approach, in microservice, each functionality or service connects to its own database and never gets connected to other database. So, the big question arises of how we communicate between two services. It is quite generic in an application that we require to get some information based on the combination of many service outputs. But as a thumb rule, services dont communicate. Then what is the solution to this issue? Let us see, how data communicates between the services.
#data management #monolith vs microservice #microservices benefits #microservices communication #microservices archiecture