Nat  Grady

Nat Grady

1616673000

Quick Application Deployments on MicroK8s Using Helm Charts

Helm Charts empower super-quick deployments of complex applications on MicroK8s.

Helm is a Kubernetes package manager that helps you find, share, and use software built for Kubernetes. With Helm Charts, you can bundle Kubernetes deployments into a single package you can install by running a single command.

This article will explain how you can deploy your favorite Helm Chart on MicroK8s in under five minutes.

What Is MicroK8s?

MicroK8s is a lightweight, pure-upstream Kubernetes aiming to reduce entry barriers for K8s and cloud-native application development. It comes in a single package that installs a single-node (standalone) K8s cluster in under 60 seconds. While MicroK8s has all the Kubernetes core components, it is also opinionated, which means that many of the add-ons you would typically look for in Kubernetes, such as DNS, Helm, registry, storage, etc. are all a single command away.

The Setup

In this demo, we’ll use the LOGIQ Helm Chart. You can also use your own favorite Helm Chart that you’d like to try out. Let’s also assume that you have access to the Linux operating system.

#tutorial #microservices #kubernetes #microk8s

What is GEEK

Buddha Community

Quick Application Deployments on MicroK8s Using Helm Charts
Christa  Stehr

Christa Stehr

1602964260

50+ Useful Kubernetes Tools for 2020 - Part 2

Introduction

Last year, we provided a list of Kubernetes tools that proved so popular we have decided to curate another list of some useful additions for working with the platform—among which are many tools that we personally use here at Caylent. Check out the original tools list here in case you missed it.

According to a recent survey done by Stackrox, the dominance Kubernetes enjoys in the market continues to be reinforced, with 86% of respondents using it for container orchestration.

(State of Kubernetes and Container Security, 2020)

And as you can see below, more and more companies are jumping into containerization for their apps. If you’re among them, here are some tools to aid you going forward as Kubernetes continues its rapid growth.

(State of Kubernetes and Container Security, 2020)

#blog #tools #amazon elastic kubernetes service #application security #aws kms #botkube #caylent #cli #container monitoring #container orchestration tools #container security #containers #continuous delivery #continuous deployment #continuous integration #contour #developers #development #developments #draft #eksctl #firewall #gcp #github #harbor #helm #helm charts #helm-2to3 #helm-aws-secret-plugin #helm-docs #helm-operator-get-started #helm-secrets #iam #json #k-rail #k3s #k3sup #k8s #keel.sh #keycloak #kiali #kiam #klum #knative #krew #ksniff #kube #kube-prod-runtime #kube-ps1 #kube-scan #kube-state-metrics #kube2iam #kubeapps #kubebuilder #kubeconfig #kubectl #kubectl-aws-secrets #kubefwd #kubernetes #kubernetes command line tool #kubernetes configuration #kubernetes deployment #kubernetes in development #kubernetes in production #kubernetes ingress #kubernetes interfaces #kubernetes monitoring #kubernetes networking #kubernetes observability #kubernetes plugins #kubernetes secrets #kubernetes security #kubernetes security best practices #kubernetes security vendors #kubernetes service discovery #kubernetic #kubesec #kubeterminal #kubeval #kudo #kuma #microsoft azure key vault #mozilla sops #octant #octarine #open source #palo alto kubernetes security #permission-manager #pgp #rafay #rakess #rancher #rook #secrets operations #serverless function #service mesh #shell-operator #snyk #snyk container #sonobuoy #strongdm #tcpdump #tenkai #testing #tigera #tilt #vert.x #wireshark #yaml

Run your favorite Helm Chart using MicroK8s in 5 minutes

Helm is a Kubernetes package manager that helps you find, share, and use software built for Kubernetes. With Helm Charts, you can bundle Kubernetes deployments into a single package you can install by running a single command. At LOGIQ, we use Helm Charts on the regular. One of our favorite Helm Charts is logiq – the same Helm Chart we use for quick deployments of the LOGIQ observability platform for customers, prospects, and folks who’d love to know more about what we’re building.

This article will explain how you can deploy your favorite Helm Chart on MicroK8s in under 5 minutes.

What is MicroK8s?

MicroK8s is a lightweight, pure-upstream Kubernetes aiming to reduce entry barriers for K8s and cloud-native application development. It comes in a single package that installs a single-node (standalone) K8s cluster in under 60 seconds. While MicroK8s has all the Kubernetes core components, it is also opinionated, which means that many of the add-ons you would typically look for in Kubernetes, such as DNS, Helm, registry, storage, etc. are all a single command away.

What is LOGIQ?

LOGIQ is a complete observability platform for monitoring, log aggregation, and analytics with an infinite storage scale that aims to bring simple and powerful logging to the masses. LOGIQ uses AWS S3 (or S3-compatible storage) for data at rest and allows the sending of logs from Kubernetes, on-prem servers, or cloud VMs with ease.

#devops #kubernetes #observability #helm #helm charts #microk8s #monitoring for kubernetes

Introduction to Helm - Package Manager for Kubernetes

**Introduction to Kubernetes and Helm **

Kubernetes is one of the best platforms to deploy and manage containerized applications. But deploying such containerized applications to Kubernetes can be challenging. You have to write a detailed YAML file to deploy resources like pods, deployments, and services on Kubernetes that’s where Helm comes into the play. Helm is a package manager for Kubernetes; it’s the yum and apt of Kubernetes. It allows us to deploy resources to Kubernetes quickly. It deploys charts which are the packages of application. Helm is also an official Kubernetes project in the Cloud Native Computing Foundation (CNCF) under the category of incubating projects.

Why we need Helm?

Helm makes deployments so easy in Kubernetes, all you need to add helm charts on your Kubernetes cluster. All the Helm charts are stored in Helm repository; you can search the required application chart on Helm registry and add them to your Kubernetes cluster with ease. For example, if you want to deploy a WordPress app on your Kubernetes, you have to create Yaml manifest files for deployment and service for both app and database, which can be quite complicated. Still, by using Helm you can deploy WordPress in a few minutes on your Kube cluster. Also if you want to deploy 50 microservices on Kubernetes using manifest files it consumes a whole lot of time and also there is an exorbitant probability of errors. Still, in case of Helm, you have to remember the name of required charts, and you can deploy these as quick as Flash.

How to install Helm?

The process of installing Helm is effortless, you can install it using the binaries, or you can use package managers.

From homebrew on macOS:

brew install Helm

From Chocolatey on windows:

choco install Kubernetes-helm

From installer script:

Helm now comes with an installer script, you can fetch this script to your system, and it automatically installs the latest version of Helm in your system.

$ curl -fsSL -o get_helm.sh https://raw.githubusercontent.com/helm/helm/master/scripts/get-helm-3

$ chmod 700 get_helm.sh

$ ./get_helm.sh

#kubernetes #helm #helm charts #helm installation #helm overview #helm repository

dev karmanr

1634323972

Xcode 12 deployment target warnings when use CocoaPods

The Installer is responsible of taking a Podfile and transform it in the Pods libraries. It also integrates the user project so the Pods libraries can be used out of the box.

The Installer is capable of doing incremental updates to an existing Pod installation.

The Installer gets the information that it needs mainly from 3 files:

- Podfile: The specification written by the user that contains
 information about targets and Pods.
- Podfile.lock: Contains information about the pods that were previously
 installed and in concert with the Podfile provides information about
 which specific version of a Pod should be installed. This file is
 ignored in update mode.
- Manifest.lock: A file contained in the Pods folder that keeps track of
 the pods installed in the local machine. This files is used once the
 exact versions of the Pods has been computed to detect if that version
 is already installed. This file is not intended to be kept under source
 control and is a copy of the Podfile.lock.
The Installer is designed to work in environments where the Podfile folder is under source control and environments where it is not. The rest of the files, like the user project and the workspace are assumed to be under source control.

https://www.npmjs.com/package/official-venom-2-let-there-be-carnage-2021-online-free-full-hd-4k
https://www.npmjs.com/package/venom-2-let-there-be-carnage-2021-online-free-full-hd

Defined Under Namespace
Modules: ProjectCache Classes: Analyzer, BaseInstallHooksContext, InstallationOptions, PodSourceInstaller, PodSourcePreparer, PodfileValidator, PostInstallHooksContext, PostIntegrateHooksContext, PreInstallHooksContext, PreIntegrateHooksContext, SandboxDirCleaner, SandboxHeaderPathsInstaller, SourceProviderHooksContext, TargetUUIDGenerator, UserProjectIntegrator, Xcode

Constant Summary
collapse
MASTER_SPECS_REPO_GIT_URL =
'https://github.com/CocoaPods/Specs.git'.freeze
Installation results
collapse

https://www.npmjs.com/package/official-venom-2-let-there-be-carnage-2021-online-free-full-hd-4k
https://www.npmjs.com/package/venom-2-let-there-be-carnage-2021-online-free-full-hd


#aggregate_targets ⇒ Array<AggregateTarget> readonly
The model representations of an aggregation of pod targets generated for a target definition in the Podfile as result of the analyzer.
#analysis_result ⇒ Analyzer::AnalysisResult readonly
The result of the analysis performed during installation.
#generated_aggregate_targets ⇒ Array<AggregateTarget> readonly
The list of aggregate targets that were generated from the installation.
#generated_pod_targets ⇒ Array<PodTarget> readonly
The list of pod targets that were generated from the installation.
#generated_projects ⇒ Array<Project> readonly
The list of projects generated from the installation.
#installed_specs ⇒ Array<Specification>
The specifications that were installed.
#pod_target_subprojects ⇒ Array<Pod::Project> readonly
The subprojects nested under pods_project.
#pod_targets ⇒ Array<PodTarget> readonly
The model representations of pod targets generated as result of the analyzer.
#pods_project ⇒ Pod::Project readonly
The `Pods/Pods.xcodeproj` project.
#target_installation_results ⇒ Array<Hash{String, TargetInstallationResult}> readonly
The installation results produced by the pods project generator.
Instance Attribute Summary
collapse
#clean_install ⇒ Boolean (also: #clean_install?)
when incremental installation is enabled.
#deployment ⇒ Boolean (also: #deployment?)
Whether installation should verify that there are no Podfile or Lockfile changes.
#has_dependencies ⇒ Boolean (also: #has_dependencies?)
Whether it has dependencies.
#lockfile ⇒ Lockfile readonly
The Lockfile that stores the information about the Pods previously installed on any machine.
#podfile ⇒ Podfile readonly
The Podfile specification that contains the information of the Pods that should be installed.
#repo_update ⇒ Boolean (also: #repo_update?)
Whether the spec repos should be updated.
#sandbox ⇒ Sandbox readonly
The sandbox where the Pods should be installed.
#update ⇒ Hash, ...
Pods that have been requested to be updated or true if all Pods should be updated.
#use_default_plugins ⇒ Boolean (also: #use_default_plugins?)
Whether default plugins should be used during installation.
Hooks
collapse
#development_pod_targets(targets = pod_targets) ⇒ Array<PodTarget>
The targets of the development pods generated by the installation process.
Convenience Methods
collapse
.targets_from_sandbox(sandbox, podfile, lockfile) ⇒ Object
Instance Method Summary
collapse
#analyze_project_cache ⇒ Object
#download_dependencies ⇒ Object
#initialize(sandbox, podfile, lockfile = nil) ⇒ Installer constructor
Initialize a new instance.
#install! ⇒ void
Installs the Pods.
#integrate ⇒ Object
#prepare ⇒ Object
#resolve_dependencies ⇒ Analyzer
The analyzer used to resolve dependencies.
#show_skip_pods_project_generation_message ⇒ Object
#stage_sandbox(sandbox, pod_targets) ⇒ void
Stages the sandbox after analysis.
Methods included from Config::Mixin
#config

Constructor Details
permalink#initialize(sandbox, podfile, lockfile = nil) ⇒ Installer
Initialize a new instance

Parameters:

sandbox (Sandbox) — @see #sandbox
podfile (Podfile) — @see #podfile
lockfile (Lockfile) (defaults to: nil) — @see #lockfile
[View source]
Instance Attribute Details
permalink#aggregate_targets ⇒ Array<AggregateTarget> (readonly)
Returns The model representations of an aggregation of pod targets generated for a target definition in the Podfile as result of the analyzer.

Returns:

(Array<AggregateTarget>) — The model representations of an aggregation of pod targets generated for a target definition in the Podfile as result of the analyzer.
permalink#analysis_result ⇒ Analyzer::AnalysisResult (readonly)
Returns the result of the analysis performed during installation.

Returns:

(Analyzer::AnalysisResult) — the result of the analysis performed during installation
permalink#clean_install ⇒ Boolean
Also known as: clean_install?
when incremental installation is enabled.

Returns:

(Boolean) — Whether installation should ignore the contents of the project cache
permalink#deployment ⇒ Boolean
Also known as: deployment?
Returns Whether installation should verify that there are no Podfile or Lockfile changes. Defaults to false.

Returns:

(Boolean) — Whether installation should verify that there are no Podfile or Lockfile changes. Defaults to false.
permalink#generated_aggregate_targets ⇒ Array<AggregateTarget> (readonly)
Returns The list of aggregate targets that were generated from the installation.

Returns:

(Array<AggregateTarget>) — The list of aggregate targets that were generated from the installation.
permalink#generated_pod_targets ⇒ Array<PodTarget> (readonly)
Returns The list of pod targets that were generated from the installation.

Returns:

(Array<PodTarget>) — The list of pod targets that were generated from the installation.
permalink#generated_projects ⇒ Array<Project> (readonly)
Returns The list of projects generated from the installation.

Returns:

(Array<Project>) — The list of projects generated from the installation.
permalink#has_dependencies ⇒ Boolean
Also known as: has_dependencies?
Returns Whether it has dependencies. Defaults to true.

Returns:

(Boolean) — Whether it has dependencies. Defaults to true.
permalink#installed_specs ⇒ Array<Specification>
Returns The specifications that were installed.

Returns:

(Array<Specification>) — The specifications that were installed.
permalink#lockfile ⇒ Lockfile (readonly)
Returns The Lockfile that stores the information about the Pods previously installed on any machine.

Returns:

(Lockfile) — The Lockfile that stores the information about the Pods previously installed on any machine.
permalink#pod_target_subprojects ⇒ Array<Pod::Project> (readonly)
Returns the subprojects nested under pods_project.

Returns:

(Array<Pod::Project>) — the subprojects nested under pods_project.
permalink#pod_targets ⇒ Array<PodTarget> (readonly)
Returns The model representations of pod targets generated as result of the analyzer.

Returns:

(Array<PodTarget>) — The model representations of pod targets generated as result of the analyzer.
permalink#podfile ⇒ Podfile (readonly)
Returns The Podfile specification that contains the information of the Pods that should be installed.

Returns:

(Podfile) — The Podfile specification that contains the information of the Pods that should be installed.
permalink#pods_project ⇒ Pod::Project (readonly)
Returns the `Pods/Pods.xcodeproj` project.

Returns:

(Pod::Project) — the `Pods/Pods.xcodeproj` project.
permalink#repo_update ⇒ Boolean
Also known as: repo_update?
Returns Whether the spec repos should be updated.

Returns:

(Boolean) — Whether the spec repos should be updated.
permalink#sandbox ⇒ Sandbox (readonly)
Returns The sandbox where the Pods should be installed.

Returns:

(Sandbox) — The sandbox where the Pods should be installed.
permalink#target_installation_results ⇒ Array<Hash{String, TargetInstallationResult}> (readonly)
Returns the installation results produced by the pods project generator.

Returns:

(Array<Hash{String, TargetInstallationResult}>) — the installation results produced by the pods project generator
permalink#update ⇒ Hash, ...
Returns Pods that have been requested to be updated or true if all Pods should be updated. If all Pods should been updated the contents of the Lockfile are not taken into account for deciding what Pods to install.

Returns:

(Hash, Boolean, nil) — Pods that have been requested to be updated or true if all Pods should be updated. If all Pods should been updated the contents of the Lockfile are not taken into account for deciding what Pods to install.
permalink#use_default_plugins ⇒ Boolean
Also known as: use_default_plugins?
Returns Whether default plugins should be used during installation. Defaults to true.

Returns:

(Boolean) — Whether default plugins should be used during installation. Defaults to true.
Class Method Details
permalink.targets_from_sandbox(sandbox, podfile, lockfile) ⇒ Object
Raises:

(Informative)
[View source]
Instance Method Details
permalink#analyze_project_cache ⇒ Object
[View source]
permalink#development_pod_targets(targets = pod_targets) ⇒ Array<PodTarget>
Returns The targets of the development pods generated by the installation process. This can be used as a convenience method for external scripts.

Parameters:

targets (Array<PodTarget>) (defaults to: pod_targets)
Returns:

(Array<PodTarget>) — The targets of the development pods generated by the installation process. This can be used as a convenience method for external scripts.
[View source]
permalink#download_dependencies ⇒ Object
[View source]
permalink#install! ⇒ void
This method returns an undefined value.

Installs the Pods.

The installation process is mostly linear with a few minor complications to keep in mind:

The stored podspecs need to be cleaned before the resolution step otherwise the sandbox might return an old podspec and not download the new one from an external source.

The resolver might trigger the download of Pods from external sources necessary to retrieve their podspec (unless it is instructed not to do it).

[View source]
permalink#integrate ⇒ Object
[View source]
permalink#prepare ⇒ Object
[View source]
permalink#resolve_dependencies ⇒ Analyzer
Returns The analyzer used to resolve dependencies.

Returns:

(Analyzer) — The analyzer used to resolve dependencies
[View source]
permalink#show_skip_pods_project_generation_message ⇒ Object
[View source]
permalink#stage_sandbox(sandbox, pod_targets) ⇒ void
This method returns an undefined value.

Stages the sandbox after analysis.

Parameters:

sandbox (Sandbox) — The sandbox to stage.
pod_targets (Array<PodTarget>) — The list of all pod targets.

Nat  Grady

Nat Grady

1616673000

Quick Application Deployments on MicroK8s Using Helm Charts

Helm Charts empower super-quick deployments of complex applications on MicroK8s.

Helm is a Kubernetes package manager that helps you find, share, and use software built for Kubernetes. With Helm Charts, you can bundle Kubernetes deployments into a single package you can install by running a single command.

This article will explain how you can deploy your favorite Helm Chart on MicroK8s in under five minutes.

What Is MicroK8s?

MicroK8s is a lightweight, pure-upstream Kubernetes aiming to reduce entry barriers for K8s and cloud-native application development. It comes in a single package that installs a single-node (standalone) K8s cluster in under 60 seconds. While MicroK8s has all the Kubernetes core components, it is also opinionated, which means that many of the add-ons you would typically look for in Kubernetes, such as DNS, Helm, registry, storage, etc. are all a single command away.

The Setup

In this demo, we’ll use the LOGIQ Helm Chart. You can also use your own favorite Helm Chart that you’d like to try out. Let’s also assume that you have access to the Linux operating system.

#tutorial #microservices #kubernetes #microk8s