Kubernetes Pods with YAML - Demo

Kubernetes Pods with YAML - Demo

Kubernetes is the hottest trend currently in the DevOps world, learn it thoroughly and make sure you get certified as well.

https://kodekloud.com/p/kubernetes-for-the-absolute-beginners-hands-on

Video from Course on Kubernetes for the Absolute Beginners

“This is by far the best Kubernetes course”—Student Testimonial

Learning Kubernetes is essential for any DevOps professional. DevOps engineers are always in demand. Currently, the average Silicon Valley salary for a DevOps engineer is 20% higher than what a software engineer makes.

DevOps engineers make an average of $140,000 to $200,000 annually. And One of the most in-demand skills is Kubernetes Deployment.

Kubernetes is an open-source system for automating deployment, scaling, and management of containerized applications. It was originally designed by Google and is now maintained by the Cloud Native Computing Foundation.
Kubernetes is at the cutting-edge of application deployment. The best way to kick-start your DevOps career is by learning how to effectively deploy Kubernetes.

This course is for absolute Kubernetes beginners. With zero knowledge about Kubernetes, once you take this course and complete all of the hands-on coding exercises, you will be ready to deploy your own applications on a Kubernetes platform.

“Excellent course. If you are new to Kubernetes and have never used it before as was my case, I highly recommend this.” - Student Testimonial
You will start your journey as a beginner and go through 10 simple, step-by-step lectures. Each lecture and demo is designed to give you the time to fully grasp all of the concepts. The most important part of the course is the series of hands-on coding exercises that accompany each major concept.

But, lectures alone won’t give you the skills you need to make it as a DevOps engineer. In this course, you will learn by doing. Each exercise will help you make sure you have truly mastered the concepts and will help have the confidence to apply your Kubernetes knowledge in real-world situations.

“Perfect Kubernetes 101. Enough to understand the topic and know how to proceed further.” - Student Testimonial

You will be developing your own services using Kubernetes configuration files for different use cases right in your browser. The coding exercises will validate your commands to make sure you have written them correctly.

After you have completed the lectures and coding exercises you will have the opportunity to complete a series of assignments that put your new skills to the test. You will be given the challenge to solve using the Kubernetes skills you have learned.

This will give you real-world experience and the chance to work with other students in the community. You will develop a Kubernetes deployment and get feedback for your work.

This course is the best way to learn the Kubernetes skills you will need to succeed in your DevOps career.

Don’t waste any more time wondering what course is best for you. You’ve already found it. Get started right now getting the Kubernetes skills you need to be successful as a DevOps engineer.

“The Best Course for the Kubernetes . For Beginners the perfect search ends here.” - Student Testimonial

#kubernetes #devops

What is GEEK

Buddha Community

Kubernetes Pods with YAML - Demo
Christa  Stehr

Christa Stehr

1602964260

50+ Useful Kubernetes Tools for 2020 - Part 2

Introduction

Last year, we provided a list of Kubernetes tools that proved so popular we have decided to curate another list of some useful additions for working with the platform—among which are many tools that we personally use here at Caylent. Check out the original tools list here in case you missed it.

According to a recent survey done by Stackrox, the dominance Kubernetes enjoys in the market continues to be reinforced, with 86% of respondents using it for container orchestration.

(State of Kubernetes and Container Security, 2020)

And as you can see below, more and more companies are jumping into containerization for their apps. If you’re among them, here are some tools to aid you going forward as Kubernetes continues its rapid growth.

(State of Kubernetes and Container Security, 2020)

#blog #tools #amazon elastic kubernetes service #application security #aws kms #botkube #caylent #cli #container monitoring #container orchestration tools #container security #containers #continuous delivery #continuous deployment #continuous integration #contour #developers #development #developments #draft #eksctl #firewall #gcp #github #harbor #helm #helm charts #helm-2to3 #helm-aws-secret-plugin #helm-docs #helm-operator-get-started #helm-secrets #iam #json #k-rail #k3s #k3sup #k8s #keel.sh #keycloak #kiali #kiam #klum #knative #krew #ksniff #kube #kube-prod-runtime #kube-ps1 #kube-scan #kube-state-metrics #kube2iam #kubeapps #kubebuilder #kubeconfig #kubectl #kubectl-aws-secrets #kubefwd #kubernetes #kubernetes command line tool #kubernetes configuration #kubernetes deployment #kubernetes in development #kubernetes in production #kubernetes ingress #kubernetes interfaces #kubernetes monitoring #kubernetes networking #kubernetes observability #kubernetes plugins #kubernetes secrets #kubernetes security #kubernetes security best practices #kubernetes security vendors #kubernetes service discovery #kubernetic #kubesec #kubeterminal #kubeval #kudo #kuma #microsoft azure key vault #mozilla sops #octant #octarine #open source #palo alto kubernetes security #permission-manager #pgp #rafay #rakess #rancher #rook #secrets operations #serverless function #service mesh #shell-operator #snyk #snyk container #sonobuoy #strongdm #tcpdump #tenkai #testing #tigera #tilt #vert.x #wireshark #yaml

Rupert  Beatty

Rupert Beatty

1666454701

Fully Customizable & Extensible Action Sheet Controller

XLActionController

By XMARTLABS.

XLActionController is an extensible library to quickly create any custom action sheet controller.

Examples

demo_spotify.gifdemo_twitter.gifdemo_tweetbot.gif
demo_periscope.gifdemo_youtube.gifdemo_skype.gif

The action sheet controllers shown above were entirely created using XLActionController and are included in the Examples. To run the Example project: clone XLActionController repository, open XLActionController workspace and run the Example project.

The code snippet below shows how to present the Tweetbot action sheet controller:

let actionController = TweetbotActionController()

actionController.addAction(Action("View Details", style: .default, handler: { action in
  // do something useful
}))
actionController.addAction(Action("View Retweets", style: .default, handler: { action in
  // do something useful
}))
actionController.addAction(Action("View in Favstar", style: .default, handler: { action in
  // do something useful
}))
actionController.addAction(Action("Translate", style: .default, executeImmediatelyOnTouch: true, handler: { action in
  // do something useful
}))

actionController.addSection(Section())
actionController.addAction(Action("Cancel", style: .cancel, handler:nil))

present(actionController, animated: true, completion: nil)

As you may have noticed, the library usage looks pretty similar to UIAlertController.

Actions' handlers are executed after the alert controller is dismissed from screen. If you want, you can change this passing true to the action's constructor to the argument executeImmediatelyOnTouch.

Behind the scenes XLActionController uses a UICollectionView to display the action sheet.

Usage

First create a custom action sheet view controller by extending from the ActionController generic class. For details on how to create a custom action sheet controller look at the Extensibility section.

For instance, let's suppose we've already created TwitterActionController.

// Instantiate custom action sheet controller
let actionSheet = TwitterActionController()
// set up a header title
actionSheet.headerData = "Accounts"
// Add some actions, note that the first parameter of `Action` initializer is `ActionData`.
actionSheet.addAction(Action(ActionData(title: "Xmartlabs", subtitle: "@xmartlabs", image: UIImage(named: "tw-xmartlabs")!), style: .default, handler: { action in
   // do something useful
}))
actionSheet.addAction(Action(ActionData(title: "Miguel", subtitle: "@remer88", image: UIImage(named: "tw-remer")!), style: .default, handler: { action in
   // do something useful
}))
// present actionSheet like any other view controller
present(actionSheet, animated: true, completion: nil)

As the code above illustrates, there are no relevant differences compared to the UIAlertController API.

The main difference is that XLActionController works with any header data type and not only the standard UIAlertController title and message properties. Similarly XLActionController's Action works with any data Type and not only the title string.

// XLActionController:
xlActionController.headerData = SpotifyHeaderData(title: "The Fast And The Furious Soundtrack Collection", subtitle: "Various Artists", image: UIImage(named: "sp-header-icon")!)

// vs UIAlertController:
uiActionController.title = "The Fast And The Furious Soundtrack Collection" // no way to pass an image
uiActionController.message = "Various Artists"
// XLActionController:
let xlAction = Action(ActionData(title: "Save Full Album", image: UIImage(named: "sp-add-icon")!), style: .default, handler: { action in })
// notice that we are able to pass an image in addition to the title
xlActionController.addAction(xlAction)

// vs UIAlertController:
let uiAction = UIAlertAction(title: "Xmartlabs", style: .default, handler: { action in }))
uiActionController.addAction(uiAction)

This can be accomplished because XLActionController is a generic type.

Another important difference is that XLActionController provides a way to add action sections as illustrated in the code below:

  actionController.addSection(Section())

and also each section has a data property. This property is generic, so that it can hold any type. This data will be used to create this section's header view.

let section = actionController.addSection(Section())
section.data = "String" // assuming section data Type is String

Each section contains a set of actions. We typically use sections to show a header view above a set of actions.

Extensibility

ActionController uses a UICollectionView to show actions and headers on screen. Actions will be rendered as instances of UICollectionViewCell. You can use your own subclass of UICollectionViewCell by specifying it in the action controller declaration. Additionally, ActionController allows you to specify a global header and a section header. Headers are shown as collection view's supplementary views.

The ActionController class is a generic type that works with any cell, header, section header type and its associated data types.

Create your custom action sheet controller

XLActionController provides extension points to specify a whole new look and feel to our custom sheet controller and to tweak present and dismiss animations. Let's see an example:

// As first step we should extend the ActionController generic type
public class PeriscopeActionController: ActionController<PeriscopeCell, String, PeriscopeHeader, String, UICollectionReusableView, Void> {

    // override init in order to customize behavior and animations
    public override init(nibName nibNameOrNil: String? = nil, bundle nibBundleOrNil: Bundle? = nil) {
        super.init(nibName: nibNameOrNil, bundle: nibBundleOrNil)
        // customizing behavior and present/dismiss animations
        settings.behavior.hideOnScrollDown = false
        settings.animation.scale = nil
        settings.animation.present.duration = 0.6
        settings.animation.dismiss.duration = 0.5
        settings.animation.dismiss.options = .curveEaseIn
        settings.animation.dismiss.offset = 30

        // providing a specific collection view cell which will be used to display each action, height parameter expects a block that returns the cell height for a particular action.
        cellSpec = .nibFile(nibName: "PeriscopeCell", bundle: Bundle(for: PeriscopeCell.self), height: { _ in 60})
        // providing a specific view that will render each section header.
        sectionHeaderSpec = .cellClass(height: { _ in 5 })
        // providing a specific view that will render the action sheet header. We calculate its height according the text that should be displayed.
        headerSpec = .cellClass(height: { [weak self] (headerData: String) in
            guard let me = self else { return 0 }
            let label = UILabel(frame: CGRect(x: 0, y: 0, width: me.view.frame.width - 40, height: CGFloat.greatestFiniteMagnitude))
            label.numberOfLines = 0
            label.font = .systemFontOfSize(17.0)
            label.text = headerData
            label.sizeToFit()
            return label.frame.size.height + 20
        })

        // once we specify the views, we have to provide three blocks that will be used to set up these views.
        // block used to setup the header. Header view and the header are passed as block parameters
        onConfigureHeader = { [weak self] header, headerData in
            guard let me = self else { return }
            header.label.frame = CGRect(x: 0, y: 0, width: me.view.frame.size.width - 40, height: CGFloat.greatestFiniteMagnitude)
            header.label.text = headerData
            header.label.sizeToFit()
            header.label.center = CGPoint(x: header.frame.size.width  / 2, y: header.frame.size.height / 2)
        }
        // block used to setup the section header
        onConfigureSectionHeader = { sectionHeader, sectionHeaderData in
            sectionHeader.backgroundColor = UIColor(white: 0.95, alpha: 1.0)
        }
        // block used to setup the collection view cell
        onConfigureCellForAction = { [weak self] cell, action, indexPath in
            cell.setup(action.data, detail: nil, image: nil)
            cell.separatorView?.isHidden = indexPath.item == self!.collectionView.numberOfItems(inSection: indexPath.section) - 1
            cell.alpha = action.enabled ? 1.0 : 0.5
            cell.actionTitleLabel?.textColor = action.style == .destructive ? UIColor(red: 210/255.0, green: 77/255.0, blue: 56/255.0, alpha: 1.0) : UIColor(red: 0.28, green: 0.64, blue: 0.76, alpha: 1.0)
        }
    }
}

ActionController type declaration:

public class ActionController<ActionViewType: UICollectionViewCell, ActionDataType, HeaderViewType: UICollectionReusableView, HeaderDataType, SectionHeaderViewType: UICollectionReusableView, SectionHeaderDataType>

When extending ActionController we must specify the following view types ActionViewType, HeaderViewType, SectionHeaderViewType. These types are the cell type used to render an action, the view used to render the action sheet header and the view used to render the section header.

Each view type has its associated data: ActionDataType, HeaderDataType, SectionHeaderDataType respectively.

If your custom action sheet doesn't have a header view we can use UICollectionReusableView as HeaderViewType and Void as HeaderDataType. If it doesn't have a section header view you can use UICollectionReusableView as SectionHeaderViewType and Void as SectionHeaderDataType.

The code below shows how we specify these types for the action controllers provided in the example project:

class PeriscopeActionController: ActionController<PeriscopeCell, String, PeriscopeHeader, String, UICollectionReusableView, Void> { ... } // doesn't need to show a section header
class SpotifyActionController: ActionController<SpotifyCell, ActionData, SpotifyHeaderView, SpotifyHeaderData, UICollectionReusableView, Void> { ... } // doesn't need to show a section header
class TwitterActionController: ActionController<TwitterCell, ActionData, TwitterActionControllerHeader, String, UICollectionReusableView, Void> { ... } // doesn't need to show a section header
class YoutubeActionController: ActionController<YoutubeCell, ActionData, UICollectionReusableView, Void, UICollectionReusableView, Void>

Tweaking default style and animation parameters

By following the previous section steps you should already be able to play with your custom action controller. It happens quite often that we need some other customization such as zooming out the presenting view, changing the status bar color or customizing the default present and dismiss animation.

ActionController class defines the settings property of type ActionSheetControllerSettings to tweak all these.

UICollectionView's behavior

// Indicates if the action controller must be dismissed when the user taps the background view. `true` by default.
settings.behavior.hideOnTap: Bool
// Indicates if the action controller must be dismissed when the user scrolls down the collection view. `true` by default.
settings.behavior.hideOnScrollDown: Bool
// Indicates if the collectionView's scroll is enabled. `false` by default.
settings.behavior.scrollEnabled: Bool
// Controls whether the collection view scroll bounces past the edge of content and back again. `false` by default.
settings.behavior.bounces: Bool
// Indicates if the collection view layout will use UIDynamics to animate its items. `false` by default.
settings.behavior.useDynamics: Bool
// Determines whether the navigation bar is hidden when action controller is being presented. `true` by default
settings.hideCollectionViewBehindCancelView: Bool

UICollectionView Style

// Margins between the collection view and the container view's margins. `0` by default
settings.collectionView.lateralMargin: CGFloat
// Cells height when UIDynamics is used to animate items. `50` by default.
settings.collectionView.cellHeightWhenDynamicsIsUsed: CGFloat

Animation settings

Struct that contains all properties related to presentation & dismissal animations

// Used to scale the presenting view controller when the action controller is being presented. If `nil` is set, then the presenting view controller won't be scaled. `(0.9, 0.9)` by default.
settings.animation.scale: CGSize? = CGSize(width: 0.9, height: 0.9)

Present animation settings

// damping value for the animation block. `1.0` by default.
settings.animation.present.damping: CGFloat
// delay for the animation block. `0.0` by default.
settings.animation.present.delay: TimeInterval
// Indicates the animation duration. `0.7` by default.
settings.animation.present.duration: TimeInterval
// Used as `springVelocity` for the animation block. `0.0` by default.
settings.animation.present.springVelocity: CGFloat
// Present animation options. `UIViewAnimationOptions.curveEaseOut` by default.
settings.animation.present.options: UIViewAnimationOptions

Dismiss animation settings

// damping value for the animation block. `1.0` by default.
settings.animation.dismiss.damping: CGFloat
// Used as delay for the animation block. `0.0` by default.
settings.animation.dismiss.delay: TimeInterval
// animation duration. `0.7` by default.
settings.animation.dismiss.duration: TimeInterval
// springVelocity for the animation block. `0.0` by default
settings.animation.dismiss.springVelocity: CGFloat
// dismiss animation options. `UIViewAnimationOptions.curveEaseIn` by default
settings.animation.dismiss.options: UIViewAnimationOptions

StatusBar Style

// Indicates if the status bar should be visible or hidden when the action controller is visible. Its default value is `true`
settings.statusBar.showStatusBar: Bool
// Determines the style of the device’s status bar when the action controller is visible. `UIStatusBarStyle.LightContent` by default.
settings.statusBar.style: UIStatusBarStyle
// Determines whether the action controller takes over control of status bar appearance from the presenting view controller. `true` by default.
settings.statusBar.modalPresentationCapturesStatusBarAppearance: Bool

Cancel view style

Sometimes we need to show a cancel view below the collection view. This is the case of the SpotifyActionController. These properties have nothing to do with the actions added to an action Controller nor with the actions with .Cancel as style value.

 // Indicates if the cancel view is shown. `false` by default.
settings.cancelView.showCancel: Bool
 // Cancel view's title. "Cancel" by default.
settings.cancelView.title: String?
 // Cancel view's height. `60` by default.
settings.cancelView.height: CGFloat
 // Cancel view's background color. `UIColor.black.withAlphaComponent(0.8)` by default.
settings.cancelView.backgroundColor: UIColor
// Indicates if the collection view is partially hidden by the cancelView when it is pulled down.
settings.cancelView.hideCollectionViewBehindCancelView: Bool

Advanced animations

If tweaking previous settings is not enough to make the animations work like you want, XLActionController allows you to change the present/dismiss animation by overriding some functions.

Presentation

open func presentView(_ presentedView: UIView, presentingView: UIView, animationDuration: Double, completion: ((_ completed: Bool) -> Void)?)

The function above is responsible for making the present animation. It encapsulates how the presentation is performed and invokes onWillPresentView, performCustomPresentationAnimation and onDidPresentView to allow you to change a specific point of the animation.

Typically we don't need to override presentView function because overriding either onWillPresentView, performCustomPresentationAnimation or onDidPresentView is enough.

open func onWillPresentView()

onWillPresentView is called before the animation block starts. Any change here won't be animated. It's intended to set the initial animated properties values.

open func performCustomPresentationAnimation(_ presentedView: UIView, presentingView: UIView)

performCustomPresentationAnimation is called from within the main animation block.

open func onDidPresentView()

After the present animation is completed, presentView calls onDidPresentView from within completion callback.

onWillPresentView, performCustomPresentationAnimation, onDidPresentView won't be invoked if you override presentView implementation.

Dismissal

Dismissal animation can be customized in the same way as presentation animation.

open func dismissView(_ presentedView: UIView, presentingView: UIView, animationDuration: Double, completion: ((_ completed: Bool) -> Void)?)

The function above is responsible for making the dismissal animation. It encapsulates how the dismissal animation is performed and invokes onWillDismissView, performCustomDismissingAnimation and onDidDismissView to allow you to change an specific point of the animation.

Typically we don't need to override dismissView method because overriding either onWillDismissView, performCustomDismissingAnimationoronDidDismissView` is enough.

open func onWillDismissView()

Overrides onWillDismissView to perform any set up before the animation begins.

open func performCustomDismissingAnimation(_ presentedView: UIView, presentingView: UIView)

performCustomDismissingAnimation function is invoked from within the main animation block.

open func onDidDismissView()

After the dismissal animation completes, dismissView calls onDidDismissView from within completion callback.

onWillDismissView, performCustomDismissingAnimation, onDidDismissView won't be invoked if you override dismissView implementation.

To show how simple and powerful XLActionController is and give several examples of how to extend ActionController we have mimicked the Skype, Tweetbot, Twitter, Youtube, Periscope and Spotify action controllers.

Requirements

  • iOS 9.3+
  • Xcode 10.2+
  • Swift 5.0+

Getting involved

  • If you want to contribute please feel free to submit pull requests.
  • If you have a feature request please open an issue.
  • If you found a bug or need help please check older issues before submitting an issue.

If you use XLActionController in your app we would love to hear about it! Drop us a line on twitter.

Installation

CocoaPods

CocoaPods is a dependency manager for Cocoa projects.

Specify XLActionController into your project's Podfile:

source 'https://github.com/CocoaPods/Specs.git'
use_frameworks!

target '<Your App Target>' do
  # This will install just the library's core, won't include any examples
  pod 'XLActionController'

  # Uncomment depending on the examples that you want to install
  #pod 'XLActionController/Periscope'
  #pod 'XLActionController/Skype'
  #pod 'XLActionController/Spotify'
  #pod 'XLActionController/Tweetbot'
  #pod 'XLActionController/Twitter'
  #pod 'XLActionController/Youtube'
end

Then run the following command:

$ pod install

Carthage

Carthage is a simple, decentralized dependency manager for Cocoa.

Specify XLActionController into your project's Carthage:

github "xmartlabs/XLActionController" ~> 5.1.0

Manually as Embedded Framework

Clone XLActionController as a git submodule by running the following command from your project root git folder.

$ git submodule add https://github.com/xmartlabs/XLActionController.git

Open XLActionController folder that was created by the previous git submodule command and drag the XLActionController.xcodeproj into the Project Navigator of your application's Xcode project.

Select the XLActionController.xcodeproj in the Project Navigator and verify the deployment target matches with your application deployment target.

Select your project in the Xcode Navigation and then select your application target from the sidebar. Next select the "General" tab and click on the + button under the "Embedded Binaries" section.

Select XLActionController.framework and we are done!

Download Details:

Author: xmartlabs
Source Code: https://github.com/xmartlabs/XLActionController 
License: MIT license

#swift #ios 

Maud  Rosenbaum

Maud Rosenbaum

1601051854

Kubernetes in the Cloud: Strategies for Effective Multi Cloud Implementations

Kubernetes is a highly popular container orchestration platform. Multi cloud is a strategy that leverages cloud resources from multiple vendors. Multi cloud strategies have become popular because they help prevent vendor lock-in and enable you to leverage a wide variety of cloud resources. However, multi cloud ecosystems are notoriously difficult to configure and maintain.

This article explains how you can leverage Kubernetes to reduce multi cloud complexities and improve stability, scalability, and velocity.

Kubernetes: Your Multi Cloud Strategy

Maintaining standardized application deployments becomes more challenging as your number of applications and the technologies they are based on increase. As environments, operating systems, and dependencies differ, management and operations require more effort and extensive documentation.

In the past, teams tried to get around these difficulties by creating isolated projects in the data center. Each project, including its configurations and requirements were managed independently. This required accurately predicting performance and the number of users before deployment and taking down applications to update operating systems or applications. There were many chances for error.

Kubernetes can provide an alternative to the old method, enabling teams to deploy applications independent of the environment in containers. This eliminates the need to create resource partitions and enables teams to operate infrastructure as a unified whole.

In particular, Kubernetes makes it easier to deploy a multi cloud strategy since it enables you to abstract away service differences. With Kubernetes deployments you can work from a consistent platform and optimize services and applications according to your business needs.

The Compelling Attributes of Multi Cloud Kubernetes

Multi cloud Kubernetes can provide multiple benefits beyond a single cloud deployment. Below are some of the most notable advantages.

Stability

In addition to the built-in scalability, fault tolerance, and auto-healing features of Kubernetes, multi cloud deployments can provide service redundancy. For example, you can mirror applications or split microservices across vendors. This reduces the risk of a vendor-related outage and enables you to create failovers.

#kubernetes #multicloud-strategy #kubernetes-cluster #kubernetes-top-story #kubernetes-cluster-install #kubernetes-explained #kubernetes-infrastructure #cloud

AWS Fargate for Amazon Elastic Kubernetes Service | Caylent

On-demand cloud computing brings new ways to ensure scalability and efficiency. Rather than pre-allocating and managing certain server resources or having to go through the usual process of setting up a cloud cluster, apps and microservices can now rely on on-demand serverless computing blocks designed to be efficient and highly optimized.

Amazon Elastic Kubernetes Service (EKS) already makes running Kubernetes on AWS very easy. Support for AWS Fargate, which introduces the on-demand serverless computing element to the environment, makes deploying Kubernetes pods even easier and more efficient. AWS Fargate offers a wide range of features that make managing clusters and pods intuitive.

Utilizing Fargate
As with many other AWS services, using Fargate to manage Kubernetes clusters is very easy to do. To integrate Fargate and run a cluster on top of it, you only need to add the command –fargate to the end of your eksctl command.

EKS automatically configures the cluster to run on Fargate. It creates a pod execution role so that pod creation and management can be automated in an on-demand environment. It also patches coredns so the cluster can run smoothly on Fargate.

A Fargate profile is automatically created by the command. You can choose to customize the profile later or configure namespaces yourself, but the default profile is suitable for a wide range of applications already, requiring no human input other than a namespace for the cluster.

There are some prerequisites to keep in mind though. For starters, Fargate requires eksctl version 0.20.0 or later. Fargate also comes with some limitations, starting with support for only a handful of regions. For example, Fargate doesn’t support stateful apps, DaemonSets or privileged containers at the moment. Check out this link for Fargate limitations for your consideration.

Support for conventional load balancing is also limited, which is why ALB Ingress Controller is recommended. At the time of this writing, Classic Load Balancers and Network Load Balancers are not supported yet.

However, you can still be very meticulous in how you manage your clusters, including using different clusters to separate trusted and untrusted workloads.

Everything else is straightforward. Once the cluster is created, you can begin specifying pod execution roles for Fargate. You have the ability to use IAM console to create a role and assign it to a Fargate cluster. Or you can also create IAM roles and Fargate profiles via Terraform.

#aws #blog #amazon eks #aws fargate #aws management console #aws services #kubernetes #kubernetes clusters #kubernetes deployment #kubernetes pods

Mitchel  Carter

Mitchel Carter

1601305200

Microsoft Announces General Availability Of Bridge To Kubernetes

Recently, Microsoft announced the general availability of Bridge to Kubernetes, formerly known as Local Process with Kubernetes. It is an iterative development tool offered in Visual Studio and VS Code, which allows developers to write, test as well as debug microservice code on their development workstations while consuming dependencies and inheriting the existing configuration from a Kubernetes environment.

Nick Greenfield, Program Manager, Bridge to Kubernetes stated in an official blog post, “Bridge to Kubernetes is expanding support to any Kubernetes. Whether you’re connecting to your development cluster running in the cloud, or to your local Kubernetes cluster, Bridge to Kubernetes is available for your end-to-end debugging scenarios.”

Bridge to Kubernetes provides a number of compelling features. Some of them are mentioned below-

#news #bridge to kubernetes #developer tools #kubernetes #kubernetes platform #kubernetes tools #local process with kubernetes #microsoft