1674105180
A well tested and comprehensive Golang statistics library / package / module with no dependencies.
If you have any suggestions, problems or bug reports please create an issue and I'll do my best to accommodate you. In addition simply starring the repo would show your support for the project and be very much appreciated!
go get github.com/montanaflynn/stats
All the functions can be seen in examples/main.go but here's a little taste:
// start with some source data to use
data := []float64{1.0, 2.1, 3.2, 4.823, 4.1, 5.8}
// you could also use different types like this
// data := stats.LoadRawData([]int{1, 2, 3, 4, 5})
// data := stats.LoadRawData([]interface{}{1.1, "2", 3})
// etc...
median, _ := stats.Median(data)
fmt.Println(median) // 3.65
roundedMedian, _ := stats.Round(median, 0)
fmt.Println(roundedMedian) // 4
The entire API documentation is available on GoDoc.org or pkg.go.dev.
You can also view docs offline with the following commands:
# Command line
godoc . # show all exported apis
godoc . Median # show a single function
godoc -ex . Round # show function with example
godoc . Float64Data # show the type and methods
# Local website
godoc -http=:4444 # start the godoc server on port 4444
open http://localhost:4444/pkg/github.com/montanaflynn/stats/
The exported API is as follows:
var (
ErrEmptyInput = statsError{"Input must not be empty."}
ErrNaN = statsError{"Not a number."}
ErrNegative = statsError{"Must not contain negative values."}
ErrZero = statsError{"Must not contain zero values."}
ErrBounds = statsError{"Input is outside of range."}
ErrSize = statsError{"Must be the same length."}
ErrInfValue = statsError{"Value is infinite."}
ErrYCoord = statsError{"Y Value must be greater than zero."}
)
func Round(input float64, places int) (rounded float64, err error) {}
type Float64Data []float64
func LoadRawData(raw interface{}) (f Float64Data) {}
func AutoCorrelation(data Float64Data, lags int) (float64, error) {}
func ChebyshevDistance(dataPointX, dataPointY Float64Data) (distance float64, err error) {}
func Correlation(data1, data2 Float64Data) (float64, error) {}
func Covariance(data1, data2 Float64Data) (float64, error) {}
func CovariancePopulation(data1, data2 Float64Data) (float64, error) {}
func CumulativeSum(input Float64Data) ([]float64, error) {}
func Entropy(input Float64Data) (float64, error) {}
func EuclideanDistance(dataPointX, dataPointY Float64Data) (distance float64, err error) {}
func GeometricMean(input Float64Data) (float64, error) {}
func HarmonicMean(input Float64Data) (float64, error) {}
func InterQuartileRange(input Float64Data) (float64, error) {}
func ManhattanDistance(dataPointX, dataPointY Float64Data) (distance float64, err error) {}
func Max(input Float64Data) (max float64, err error) {}
func Mean(input Float64Data) (float64, error) {}
func Median(input Float64Data) (median float64, err error) {}
func MedianAbsoluteDeviation(input Float64Data) (mad float64, err error) {}
func MedianAbsoluteDeviationPopulation(input Float64Data) (mad float64, err error) {}
func Midhinge(input Float64Data) (float64, error) {}
func Min(input Float64Data) (min float64, err error) {}
func MinkowskiDistance(dataPointX, dataPointY Float64Data, lambda float64) (distance float64, err error) {}
func Mode(input Float64Data) (mode []float64, err error) {}
func NormBoxMullerRvs(loc float64, scale float64, size int) []float64 {}
func NormCdf(x float64, loc float64, scale float64) float64 {}
func NormEntropy(loc float64, scale float64) float64 {}
func NormFit(data []float64) [2]float64{}
func NormInterval(alpha float64, loc float64, scale float64 ) [2]float64 {}
func NormIsf(p float64, loc float64, scale float64) (x float64) {}
func NormLogCdf(x float64, loc float64, scale float64) float64 {}
func NormLogPdf(x float64, loc float64, scale float64) float64 {}
func NormLogSf(x float64, loc float64, scale float64) float64 {}
func NormMean(loc float64, scale float64) float64 {}
func NormMedian(loc float64, scale float64) float64 {}
func NormMoment(n int, loc float64, scale float64) float64 {}
func NormPdf(x float64, loc float64, scale float64) float64 {}
func NormPpf(p float64, loc float64, scale float64) (x float64) {}
func NormPpfRvs(loc float64, scale float64, size int) []float64 {}
func NormSf(x float64, loc float64, scale float64) float64 {}
func NormStats(loc float64, scale float64, moments string) []float64 {}
func NormStd(loc float64, scale float64) float64 {}
func NormVar(loc float64, scale float64) float64 {}
func Pearson(data1, data2 Float64Data) (float64, error) {}
func Percentile(input Float64Data, percent float64) (percentile float64, err error) {}
func PercentileNearestRank(input Float64Data, percent float64) (percentile float64, err error) {}
func PopulationVariance(input Float64Data) (pvar float64, err error) {}
func Sample(input Float64Data, takenum int, replacement bool) ([]float64, error) {}
func SampleVariance(input Float64Data) (svar float64, err error) {}
func Sigmoid(input Float64Data) ([]float64, error) {}
func SoftMax(input Float64Data) ([]float64, error) {}
func StableSample(input Float64Data, takenum int) ([]float64, error) {}
func StandardDeviation(input Float64Data) (sdev float64, err error) {}
func StandardDeviationPopulation(input Float64Data) (sdev float64, err error) {}
func StandardDeviationSample(input Float64Data) (sdev float64, err error) {}
func StdDevP(input Float64Data) (sdev float64, err error) {}
func StdDevS(input Float64Data) (sdev float64, err error) {}
func Sum(input Float64Data) (sum float64, err error) {}
func Trimean(input Float64Data) (float64, error) {}
func VarP(input Float64Data) (sdev float64, err error) {}
func VarS(input Float64Data) (sdev float64, err error) {}
func Variance(input Float64Data) (sdev float64, err error) {}
func ProbGeom(a int, b int, p float64) (prob float64, err error) {}
func ExpGeom(p float64) (exp float64, err error) {}
func VarGeom(p float64) (exp float64, err error) {}
type Coordinate struct {
X, Y float64
}
type Series []Coordinate
func ExponentialRegression(s Series) (regressions Series, err error) {}
func LinearRegression(s Series) (regressions Series, err error) {}
func LogarithmicRegression(s Series) (regressions Series, err error) {}
type Outliers struct {
Mild Float64Data
Extreme Float64Data
}
type Quartiles struct {
Q1 float64
Q2 float64
Q3 float64
}
func Quartile(input Float64Data) (Quartiles, error) {}
func QuartileOutliers(input Float64Data) (Outliers, error) {}
Pull request are always welcome no matter how big or small. I've included a Makefile that has a lot of helper targets for common actions such as linting, testing, code coverage reporting and more.
git checkout -b some-thing
)go test -cover
or make test
)go vet .
or make lint
)git commit -am 'Did something'
)git push origin some-thing
)To make things as seamless as possible please also consider the following steps:
examples/main.go
with a simple example of the new featureREADME.md
documentation section with any new exported APImake coverage
)git rebase -i new-feature
This is not required by contributors and mostly here as a reminder to myself as the maintainer of this repo. To release a new version we should update the CHANGELOG.md and DOCUMENTATION.md.
First install the tools used to generate the markdown files and release:
go install github.com/davecheney/godoc2md@latest
go install github.com/golangci/golangci-lint/cmd/golangci-lint@latest
brew tap git-chglog/git-chglog
brew install gnu-sed hub git-chglog
Then you can run these make
directives:
# Generate DOCUMENTATION.md
make docs
Then we can create a CHANGELOG.md a new git tag and a github release:
make release TAG=v0.x.x
To authenticate hub
for the release you will need to create a personal access token and use it as the password when it's requested.
Author: Montanaflynn
Source Code: https://github.com/montanaflynn/stats
License: MIT license
#machinelearning #go #data #statistics #math #analytics
1617882011
Does your business need a robust system across large-scale network servers then developing your app with a Golang programming language is the way to go. Golang is generally used for the development of highly secured, High Speed and High Modularity apps such as a FinTech Industry.
Want to develop a Highly secured app for your business?
Then hire a dedicated Golang developer from WebClues Infotech that are highly skilled in carrying out the work in a timely and qualitative output. With WebClues Infotech you get the assurance that we know what are the customers’ expectations and how to deliver on them on time.
Get your desired Golang Developer based on your project requirement!!
Share your requirements here https://www.webcluesinfotech.com/contact-us/
Book Free Interview with Golang developer: https://bit.ly/3dDShFg
#hire golang developer #hire go language developer #dedicated golang app developers #golang web development company #hire golang developers india #hire expert golang developers
1602065961
https://www.mobinius.com/blogs/golang-web-development-company
#golang web development #golang-app-development-company #golang-development-solutions #hire-golang-developers #golang-development-services
1674105180
A well tested and comprehensive Golang statistics library / package / module with no dependencies.
If you have any suggestions, problems or bug reports please create an issue and I'll do my best to accommodate you. In addition simply starring the repo would show your support for the project and be very much appreciated!
go get github.com/montanaflynn/stats
All the functions can be seen in examples/main.go but here's a little taste:
// start with some source data to use
data := []float64{1.0, 2.1, 3.2, 4.823, 4.1, 5.8}
// you could also use different types like this
// data := stats.LoadRawData([]int{1, 2, 3, 4, 5})
// data := stats.LoadRawData([]interface{}{1.1, "2", 3})
// etc...
median, _ := stats.Median(data)
fmt.Println(median) // 3.65
roundedMedian, _ := stats.Round(median, 0)
fmt.Println(roundedMedian) // 4
The entire API documentation is available on GoDoc.org or pkg.go.dev.
You can also view docs offline with the following commands:
# Command line
godoc . # show all exported apis
godoc . Median # show a single function
godoc -ex . Round # show function with example
godoc . Float64Data # show the type and methods
# Local website
godoc -http=:4444 # start the godoc server on port 4444
open http://localhost:4444/pkg/github.com/montanaflynn/stats/
The exported API is as follows:
var (
ErrEmptyInput = statsError{"Input must not be empty."}
ErrNaN = statsError{"Not a number."}
ErrNegative = statsError{"Must not contain negative values."}
ErrZero = statsError{"Must not contain zero values."}
ErrBounds = statsError{"Input is outside of range."}
ErrSize = statsError{"Must be the same length."}
ErrInfValue = statsError{"Value is infinite."}
ErrYCoord = statsError{"Y Value must be greater than zero."}
)
func Round(input float64, places int) (rounded float64, err error) {}
type Float64Data []float64
func LoadRawData(raw interface{}) (f Float64Data) {}
func AutoCorrelation(data Float64Data, lags int) (float64, error) {}
func ChebyshevDistance(dataPointX, dataPointY Float64Data) (distance float64, err error) {}
func Correlation(data1, data2 Float64Data) (float64, error) {}
func Covariance(data1, data2 Float64Data) (float64, error) {}
func CovariancePopulation(data1, data2 Float64Data) (float64, error) {}
func CumulativeSum(input Float64Data) ([]float64, error) {}
func Entropy(input Float64Data) (float64, error) {}
func EuclideanDistance(dataPointX, dataPointY Float64Data) (distance float64, err error) {}
func GeometricMean(input Float64Data) (float64, error) {}
func HarmonicMean(input Float64Data) (float64, error) {}
func InterQuartileRange(input Float64Data) (float64, error) {}
func ManhattanDistance(dataPointX, dataPointY Float64Data) (distance float64, err error) {}
func Max(input Float64Data) (max float64, err error) {}
func Mean(input Float64Data) (float64, error) {}
func Median(input Float64Data) (median float64, err error) {}
func MedianAbsoluteDeviation(input Float64Data) (mad float64, err error) {}
func MedianAbsoluteDeviationPopulation(input Float64Data) (mad float64, err error) {}
func Midhinge(input Float64Data) (float64, error) {}
func Min(input Float64Data) (min float64, err error) {}
func MinkowskiDistance(dataPointX, dataPointY Float64Data, lambda float64) (distance float64, err error) {}
func Mode(input Float64Data) (mode []float64, err error) {}
func NormBoxMullerRvs(loc float64, scale float64, size int) []float64 {}
func NormCdf(x float64, loc float64, scale float64) float64 {}
func NormEntropy(loc float64, scale float64) float64 {}
func NormFit(data []float64) [2]float64{}
func NormInterval(alpha float64, loc float64, scale float64 ) [2]float64 {}
func NormIsf(p float64, loc float64, scale float64) (x float64) {}
func NormLogCdf(x float64, loc float64, scale float64) float64 {}
func NormLogPdf(x float64, loc float64, scale float64) float64 {}
func NormLogSf(x float64, loc float64, scale float64) float64 {}
func NormMean(loc float64, scale float64) float64 {}
func NormMedian(loc float64, scale float64) float64 {}
func NormMoment(n int, loc float64, scale float64) float64 {}
func NormPdf(x float64, loc float64, scale float64) float64 {}
func NormPpf(p float64, loc float64, scale float64) (x float64) {}
func NormPpfRvs(loc float64, scale float64, size int) []float64 {}
func NormSf(x float64, loc float64, scale float64) float64 {}
func NormStats(loc float64, scale float64, moments string) []float64 {}
func NormStd(loc float64, scale float64) float64 {}
func NormVar(loc float64, scale float64) float64 {}
func Pearson(data1, data2 Float64Data) (float64, error) {}
func Percentile(input Float64Data, percent float64) (percentile float64, err error) {}
func PercentileNearestRank(input Float64Data, percent float64) (percentile float64, err error) {}
func PopulationVariance(input Float64Data) (pvar float64, err error) {}
func Sample(input Float64Data, takenum int, replacement bool) ([]float64, error) {}
func SampleVariance(input Float64Data) (svar float64, err error) {}
func Sigmoid(input Float64Data) ([]float64, error) {}
func SoftMax(input Float64Data) ([]float64, error) {}
func StableSample(input Float64Data, takenum int) ([]float64, error) {}
func StandardDeviation(input Float64Data) (sdev float64, err error) {}
func StandardDeviationPopulation(input Float64Data) (sdev float64, err error) {}
func StandardDeviationSample(input Float64Data) (sdev float64, err error) {}
func StdDevP(input Float64Data) (sdev float64, err error) {}
func StdDevS(input Float64Data) (sdev float64, err error) {}
func Sum(input Float64Data) (sum float64, err error) {}
func Trimean(input Float64Data) (float64, error) {}
func VarP(input Float64Data) (sdev float64, err error) {}
func VarS(input Float64Data) (sdev float64, err error) {}
func Variance(input Float64Data) (sdev float64, err error) {}
func ProbGeom(a int, b int, p float64) (prob float64, err error) {}
func ExpGeom(p float64) (exp float64, err error) {}
func VarGeom(p float64) (exp float64, err error) {}
type Coordinate struct {
X, Y float64
}
type Series []Coordinate
func ExponentialRegression(s Series) (regressions Series, err error) {}
func LinearRegression(s Series) (regressions Series, err error) {}
func LogarithmicRegression(s Series) (regressions Series, err error) {}
type Outliers struct {
Mild Float64Data
Extreme Float64Data
}
type Quartiles struct {
Q1 float64
Q2 float64
Q3 float64
}
func Quartile(input Float64Data) (Quartiles, error) {}
func QuartileOutliers(input Float64Data) (Outliers, error) {}
Pull request are always welcome no matter how big or small. I've included a Makefile that has a lot of helper targets for common actions such as linting, testing, code coverage reporting and more.
git checkout -b some-thing
)go test -cover
or make test
)go vet .
or make lint
)git commit -am 'Did something'
)git push origin some-thing
)To make things as seamless as possible please also consider the following steps:
examples/main.go
with a simple example of the new featureREADME.md
documentation section with any new exported APImake coverage
)git rebase -i new-feature
This is not required by contributors and mostly here as a reminder to myself as the maintainer of this repo. To release a new version we should update the CHANGELOG.md and DOCUMENTATION.md.
First install the tools used to generate the markdown files and release:
go install github.com/davecheney/godoc2md@latest
go install github.com/golangci/golangci-lint/cmd/golangci-lint@latest
brew tap git-chglog/git-chglog
brew install gnu-sed hub git-chglog
Then you can run these make
directives:
# Generate DOCUMENTATION.md
make docs
Then we can create a CHANGELOG.md a new git tag and a github release:
make release TAG=v0.x.x
To authenticate hub
for the release you will need to create a personal access token and use it as the password when it's requested.
Author: Montanaflynn
Source Code: https://github.com/montanaflynn/stats
License: MIT license
1624960485
The backend of your application is truly the essential part of your product. No matter how much you appreciate the design, the application’s success lies in its backend. A scalable backend that effectively implements the required business logic is the primary goal of programmers.
Therefore, it is crucial to choose the most powerful and scalable technology. There are plenty of languages in the market that can form the backend of any application, Node.js and Golang are the two most popular technologies among them.
They are real and developed languages that have recently been used in various outstanding projects. Golang is an open-source programming language, whereas Node.js is an open-source server framework. They both are gaining popularity for various reasons.
According to a development stat, it is observed that almost 50% out of 58,543 respondents use Node.js as their preferred app development tool.
Golang, on the other hand, has overtaken other programming languages in the application development market and has gained huge recognition over the past few years.
But, which backend framework is best for you? In this article, I’ll make a healthy comparison of two of Google’s most popular backend development tools based on several essential features and various other factors.
#best backend frameworks #node or golang #golang or nodejs #nodejs vs golang #golang vs nodejs #top backend frameworks
1599732000
We spoke to Rob Pike, the co-author of the Go programming language, about a career spanning four decades, the evolution of Go over the last ten years, and into the future.
Evrone: Unlike many developers today, you started your career decades ago at Bell Labs. What’s been the biggest change in the way we develop software that you can think of, given your rare perspective?
**Rob: **The scale is much bigger today. Not just of the computers and the network, but the programs themselves. All of Unix version 6 (circa 1975) fits comfortably on a single RK05 disk pack, which has just over 2MB of storage, with lots of room left over for user software. And that was a fine computing environment, or at least seemed like one at the time. Although I can, of course, explain much of the growth, it is astonishing and perhaps not all of it is justified.
#golang #golang-api #golang-tools #golang-website #rob-pike #interview-transcript-go #latest-tech-stories #cloud-infrastructure-and-go