1637353980
Pandas DataFrame apply()関数を使用すると、ユーザーは関数を渡して、Pandasシリーズのすべての値に適用できます。 apply()メソッドに渡されるオブジェクトは、インデックスがDataFrameのインデックス(axis = 0)またはDataFrameの列(axis = 1)のいずれかであるシリーズオブジェクトです。
Pandas DataFrameのすべての行に関数を適用するには、Pandas df.apply()関数を使用します。
DataFrame.apply(self, func, axis=0, raw=False, result_type=None, args=(), **kwds)
apply()メソッドには次のパラメーターがあります。
DataFrame apply()メソッドは、DataFrameの指定された軸に沿って関数を適用した結果であるSeriesまたはDataFrameを返します。
import numpy as np
import pandas as pd
df = pd.DataFrame([[1, 4], [9, 16], [25, 36]], columns=['1st', '2nd'])
print(df, '\n')
df2 = df.apply(np.sqrt)
print(df2)
1st 2nd
0 1 4
1 9 16
2 25 36
1st 2nd
0 1.0 2.0
1 3.0 4.0
2 5.0 6.0
上記のコードでは、data1という名前のDataFrameを作成し、1、4、9、16などのさまざまな値を取得したことがわかります。
その後、applyメソッドでユニバーサル関数np sqrt()を使用して、DataFrame値を挿入された値の平方根に減らしました(apply()メソッドでユーザー定義関数を使用することもできます)。その後、DataFrameを印刷しました。
この例では、行の値を追加するsum という新しい列 を追加します。
import numpy as np
import pandas as pd
df = pd.DataFrame([[1, 4], [9, 16], [25, 36]], columns=['1st', '2nd'])
print(df, '\n')
df['add'] = df.apply(np.sum, axis=1)
print('\nAfter Applying Function: ')
# printing the new dataframe
print(df)
1st 2nd
0 1 4
1 9 16
2 25 36
After Applying Function:
1st 2nd add
0 1 4 5
1 9 16 25
2 25 36 61
出力から、新しい列の追加に特定の行の値の合計があることがわかります。
Pythonラムダ または無名関数は、名前なしで定義されるメソッドの一種です。標準関数はdef キーワードを使用 してPythonで定義されていますが、無名関数はlambda キーワードを使用して定義されてい ます。
まあ言ってみれば; 引数としてシリーズを受け入れるラムダ関数があります。たとえば、指定されたシリーズの各値に11を掛けることにより、新しいシリーズオブジェクトを返します。
lambda a : a * 11
では、上記のラムダ関数をDataFrameの各行または列に適用する方法を見てみましょう。
我々は、適用することができる * 11:ラムダAの各列に関数をデータフレーム内の唯一の引数としてのラムダ関数を渡し、DataFrame.apply()上記作成したデータフレームのオブジェクトを有します。
次のコードを参照してください。
import pandas as pd
matrix = [(11, 21, 19), (22, 42, 38), (33, 63, 57), (44, 84, 76),
(55, 105, 95)]
# Create a DataFrame object
dfObj = pd.DataFrame(matrix, columns=list('xyz'))
print('Before Lambda Function applied')
print(dfObj)
print('------------------')
# modify the dataframe by applying lambda function
modDfObj = dfObj.apply(lambda a: a * 11)
print('After Lambda Function applied')
print(modDfObj)
Before Lambda Function applied
x y z
0 11 21 19
1 22 42 38
2 33 63 57
3 44 84 76
4 55 105 95
------------------
After Lambda Function applied
x y z
0 121 231 209
1 242 462 418
2 363 693 627
3 484 924 836
4 605 1155 1045
DataFrameの各行にラムダ関数を適用するには、上記で作成したDataFrameオブジェクトを使用してDataFrame.apply()の最初で唯一の引数としてラムダ関数を渡します。
また、apply()関数を各行に指定する必要があることを示すパラメーターとしてaxis = 1を渡す必要があります。
import pandas as pd
matrix = [(11, 21, 19), (22, 42, 38), (33, 63, 57), (44, 84, 76),
(55, 105, 95)]
# Create a DataFrame object
dfObj = pd.DataFrame(matrix, columns=list('xyz'))
print('Before Lambda Function applied')
print(dfObj)
print('------------------')
# modify the dataframe by applying lambda function
modDfObj = dfObj.apply(lambda a: a * 11, axis=1)
print('After Lambda Function applied')
print(modDfObj)
Before Lambda Function applied
x y z
0 11 21 19
1 22 42 38
2 33 63 57
3 44 84 76
4 55 105 95
------------------
After Lambda Function applied
x y z
0 121 231 209
1 242 462 418
2 363 693 627
3 484 924 836
4 605 1155 1045
したがって、DataFrame.apply()は、渡された各行のラムダメソッドを呼び出し、各行の内容をSeriesとしてこのラムダ関数に渡します。
最後に、apply()関数は、元のDataFrameを変更する代わりに、ラムダ関数によって返される行で構築されたDataFrameの変更されたコピーを返します。
ラムダ関数を渡す代わりに、apply()メソッドでユーザー定義関数を渡し、ユーザー定義関数のロジックに基づいて出力を返します。
import pandas as pd
def sicmundus(x):
return x + 33
matrix = [(11, 21, 19), (22, 42, 38), (33, 63, 57), (44, 84, 76),
(55, 105, 95)]
# Create a DataFrame object
dfObj = pd.DataFrame(matrix, columns=list('xyz'))
print('Before User defined Function applied')
print(dfObj)
print('------------------')
# modify the dataframe by applying user defined function
modDfObj = dfObj.apply(sicmundus)
print('After User defined Function applied')
print(modDfObj)
Before User defined Function applied
x y z
0 11 21 19
1 22 42 38
2 33 63 57
3 44 84 76
4 55 105 95
------------------
After User defined Function applied
x y z
0 44 54 52
1 55 75 71
2 66 96 90
3 77 117 109
4 88 138 128
この例では、ユーザー定義関数を使用して、すべてのDataFrame値に33を追加しています。
この記事では、特定のラムダ関数、ユーザー定義関数、またはnumpy関数をDataFrameの各行または列に適用する方法について説明しました。
これは、Pandas DataFrameのapply()関数用です。
リンク: https://appdividend.com/2020/06/30/pandas-dataframe-apply-function-example/
1623927960
Python is famous for its vast selection of libraries and resources from the open-source community. As a Data Analyst/Engineer/Scientist, one might be familiar with popular packages such as Numpy, Pandas, Scikit-learn, Keras, and TensorFlow. Together these modules help us extract value out of data and propels the field of analytics. As data continue to become larger and more complex, one other element to consider is a framework dedicated to processing Big Data, such as Apache Spark. In this article, I will demonstrate the capabilities of distributed/cluster computing and present a comparison between the Pandas DataFrame and Spark DataFrame. My hope is to provide more conviction on choosing the right implementation.
Pandas has become very popular for its ease of use. It utilizes DataFrames to present data in tabular format like a spreadsheet with rows and columns. Importantly, it has very intuitive methods to perform common analytical tasks and a relatively flat learning curve. It loads all of the data into memory on a single machine (one node) for rapid execution. While the Pandas DataFrame has proven to be tremendously powerful in manipulating data, it does have its limits. With data growing at an exponentially rate, complex data processing becomes expensive to handle and causes performance degradation. These operations require parallelization and distributed computing, which the Pandas DataFrame does not support.
Apache Spark is an open-source cluster computing framework. With cluster computing, data processing is distributed and performed in parallel by multiple nodes. This is recognized as the MapReduce framework because the division of labor can usually be characterized by sets of the map, shuffle, and reduce operations found in functional programming. Spark’s implementation of cluster computing is unique because processes 1) are executed in-memory and 2) build up a query plan which does not execute until necessary (known as lazy execution). Although Spark’s cluster computing framework has a broad range of utility, we only look at the Spark DataFrame for the purpose of this article. Similar to those found in Pandas, the Spark DataFrame has intuitive APIs, making it easy to implement.
#pandas dataframe vs. spark dataframe: when parallel computing matters #pandas #pandas dataframe #pandas dataframe vs. spark dataframe #spark #when parallel computing matters
1623370500
Hey - Nick here! This page is a free excerpt from my $199 course Python for Finance, which is 50% off for the next 50 students.
If you want the full course, click here to sign up.
It’s now time for some practice problems! See below for details on how to proceed.
All of the code for this course’s practice problems can be found in this GitHub repository.
There are two options that you can use to complete the practice problems:
Note that binder can take up to a minute to load the repository, so please be patient.
Within that repository, there is a folder called starter-files
and a folder called finished-files
. You should open the appropriate practice problems within the starter-files
folder and only consult the corresponding file in the finished-files
folder if you get stuck.
The repository is public, which means that you can suggest changes using a pull request later in this course if you’d like.
#dataframes #pandas #practice problems: how to join dataframes in pandas #how to join dataframes in pandas #practice #/pandas/issues.
1624431580
In this tutorial, we are going to discuss different ways to add a new column to pandas data frame.
Table of Contents
Pandas data frameis a two-dimensional heterogeneous data structure that stores the data in a tabular form with labeled indexes i.e. rows and columns.
Usually, data frames are used when we have to deal with a large dataset, then we can simply see the summary of that large dataset by loading it into a pandas data frame and see the summary of the data frame.
In the real-world scenario, a pandas data frame is created by loading the datasets from an existing CSV file, Excel file, etc.
But pandas data frame can be also created from the list, dictionary, list of lists, list of dictionaries, dictionary of ndarray/lists, etc. Before we start discussing how to add a new column to an existing data frame we require a pandas data frame.
#pandas #dataframe #pandas dataframe #column #add a new column #how to add a new column to pandas dataframe
1586702221
In this post, we will learn about pandas’ data structures/objects. Pandas provide two type of data structures:-
Pandas Series is a one dimensional indexed data, which can hold datatypes like integer, string, boolean, float, python object etc. A Pandas Series can hold only one data type at a time. The axis label of the data is called the index of the series. The labels need not to be unique but must be a hashable type. The index of the series can be integer, string and even time-series data. In general, Pandas Series is nothing but a column of an excel sheet with row index being the index of the series.
Pandas dataframe is a primary data structure of pandas. Pandas dataframe is a two-dimensional size mutable array with both flexible row indices and flexible column names. In general, it is just like an excel sheet or SQL table. It can also be seen as a python’s dict-like container for series objects.
#python #python-pandas #pandas-dataframe #pandas-series #pandas-tutorial
1623922440
Pandas is a popular data analysis and manipulation library for Python. The core data structure of Pandas is dataframe which stores data in tabular form with labelled rows and columns.
A common operation in data analysis is to filter values based on a condition or multiple conditions. Pandas provides a variety of ways to filter data points (i.e. rows). In this article, we will cover 8 different ways to filter a dataframe.
We start by importing the libraries.
import numpy as np
import pandas as pd
Let’s create a sample dataframe for the examples.
df = pd.DataFrame({
name':['Jane','John','Ashley','Mike','Emily','Jack','Catlin'],
'ctg':['A','A','C','B','B','C','B'],
'val':np.random.random(7).round(2),
'val2':np.random.randint(1,10, size=7)
})
#python #programming #data-science #ways to filter pandas dataframes #filter pandas dataframes #pandas dataframes