1669467844
Since JavaScript array
type is actually a special object
type, comparing two arrays directly with ===
or ==
operator will always return false
:
let arrOne = [1, 2, 3];
let arrTwo = [1, 2, 3];
console.log(arrOne == arrTwo); // false
console.log(arrOne === arrTwo); // false
This is because JavaScript object
type compares the references for the variables instead of just the values. When you need to check for the equality of two arrays, you’ll need to write some code to work around the equality operators ==
and ===
result.
There are two ways you can check for array equality in JavaScript:
every()
and includes()
methodfor
loop and the indexOf()
methodThis tutorial will show you how to do both. Let’s start with the first method
To check if arrOne
is equal to arrTwo
, you can use the every()
method to loop over the first array and see if each element in the first array is included in the second array.
Take a look at the following example:
let arrOne = [1, 5, 6, 6];
let arrTwo = [1, 6, 5];
let result = arrOne.every(function (element) {
return arrTwo.includes(element);
});
console.log(result); // true
But since the code above only checks if elements of the first array is found in the second array, the result
will still be true
when either array has more elements than the other.
The following example shows how the equality check returns true even when arrOne
has more elements than arrTwo
:
let arrOne = [1, 5, 6, 6];
let arrTwo = [1, 6, 5];
let result = arrOne.every(function (element) {
return arrTwo.includes(element);
});
console.log(result); // true
To handle the length
differences, you need to check if the length
property of both arrays is equal as shown below:
let arrOne = [1, 5, 6, 6];
let arrTwo = [1, 6, 5];
let result =
arrOne.length === arrTwo.length &&
arrOne.every(function (element) {
return arrTwo.includes(element);
});
console.log(result); // false
And that’s how you can check for array equality using a combination of every()
and includes()
method. Next, you will learn how to do the same check manually with a for
loop and the indexOf()
method.
Another way to check for array equality is to replace the every()
method with the for
loop and use the indexOf()
method to see if the indexOf()
the first array elements are not -1
inside the second array.
First, you need to create the result
variable with false
as its initial value:
let arrOne = [1, 5, 6];
let arrTwo = [1, 6, 5];
let result = false;
Then, you need to create an if
block to check if the array lengths are equal. Only when the length properties are equal will you check on the array values:
let arrOne = [1, 5, 6];
let arrTwo = [1, 6, 5];
let result = false;
if (arrOne.length === arrTwo.length) {
for (let i = 0; i < arrOne.length; i++) {
// TODO: write the loop code
}
}
console.log(result);
Finally, you need to write the code inside the for
loop that will check for the existence of arrOne
elements inside arrTwo
using the indexOf()
method. The syntax will be arrTwo.indexOf(arrOne[i]) !== -1
.
The result of the indexOf()
method will return either true
or false
, and it will be assigned as the new value of result
variable. When the result
is false
, you must stop the iteration because there’s no point in checking the equality further.
Here’s the full code:
let arrOne = [1, 5, 6];
let arrTwo = [1, 6, 5];
let result = false;
if (arrOne.length === arrTwo.length) {
for (let i = 0; i < arrOne.length; i++) {
result = arrTwo.indexOf(arrOne[i]) !== -1;
if (result === false) {
break;
}
}
}
console.log(result); // true
And with that, you can check if your arrays are actually equal and having the same elements.
Original article source at: https://sebhastian.com/
1670560264
Learn how to use Python arrays. Create arrays in Python using the array module. You'll see how to define them and the different methods commonly used for performing operations on them.
The artcile covers arrays that you create by importing the array module
. We won't cover NumPy arrays here.
Let's get started!
Arrays are a fundamental data structure, and an important part of most programming languages. In Python, they are containers which are able to store more than one item at the same time.
Specifically, they are an ordered collection of elements with every value being of the same data type. That is the most important thing to remember about Python arrays - the fact that they can only hold a sequence of multiple items that are of the same type.
Lists are one of the most common data structures in Python, and a core part of the language.
Lists and arrays behave similarly.
Just like arrays, lists are an ordered sequence of elements.
They are also mutable and not fixed in size, which means they can grow and shrink throughout the life of the program. Items can be added and removed, making them very flexible to work with.
However, lists and arrays are not the same thing.
Lists store items that are of various data types. This means that a list can contain integers, floating point numbers, strings, or any other Python data type, at the same time. That is not the case with arrays.
As mentioned in the section above, arrays store only items that are of the same single data type. There are arrays that contain only integers, or only floating point numbers, or only any other Python data type you want to use.
Lists are built into the Python programming language, whereas arrays aren't. Arrays are not a built-in data structure, and therefore need to be imported via the array module
in order to be used.
Arrays of the array module
are a thin wrapper over C arrays, and are useful when you want to work with homogeneous data.
They are also more compact and take up less memory and space which makes them more size efficient compared to lists.
If you want to perform mathematical calculations, then you should use NumPy arrays by importing the NumPy package. Besides that, you should just use Python arrays when you really need to, as lists work in a similar way and are more flexible to work with.
In order to create Python arrays, you'll first have to import the array module
which contains all the necassary functions.
There are three ways you can import the array module
:
import array
at the top of the file. This includes the module array
. You would then go on to create an array using array.array()
.import array
#how you would create an array
array.array()
array.array()
all the time, you could use import array as arr
at the top of the file, instead of import array
alone. You would then create an array by typing arr.array()
. The arr
acts as an alias name, with the array constructor then immediately following it.import array as arr
#how you would create an array
arr.array()
from array import *
, with *
importing all the functionalities available. You would then create an array by writing the array()
constructor alone.from array import *
#how you would create an array
array()
Once you've imported the array module
, you can then go on to define a Python array.
The general syntax for creating an array looks like this:
variable_name = array(typecode,[elements])
Let's break it down:
variable_name
would be the name of the array.typecode
specifies what kind of elements would be stored in the array. Whether it would be an array of integers, an array of floats or an array of any other Python data type. Remember that all elements should be of the same data type.elements
that would be stored in the array, with each element being separated by a comma. You can also create an empty array by just writing variable_name = array(typecode)
alone, without any elements.Below is a typecode table, with the different typecodes that can be used with the different data types when defining Python arrays:
TYPECODE | C TYPE | PYTHON TYPE | SIZE |
---|---|---|---|
'b' | signed char | int | 1 |
'B' | unsigned char | int | 1 |
'u' | wchar_t | Unicode character | 2 |
'h' | signed short | int | 2 |
'H' | unsigned short | int | 2 |
'i' | signed int | int | 2 |
'I' | unsigned int | int | 2 |
'l' | signed long | int | 4 |
'L' | unsigned long | int | 4 |
'q' | signed long long | int | 8 |
'Q' | unsigned long long | int | 8 |
'f' | float | float | 4 |
'd' | double | float | 8 |
Tying everything together, here is an example of how you would define an array in Python:
import array as arr
numbers = arr.array('i',[10,20,30])
print(numbers)
#output
#array('i', [10, 20, 30])
Let's break it down:
import array as arr
.numbers
array.arr.array()
because of import array as arr
.array()
constructor, we first included i
, for signed integer. Signed integer means that the array can include positive and negative values. Unsigned integer, with H
for example, would mean that no negative values are allowed.Keep in mind that if you tried to include values that were not of i
typecode, meaning they were not integer values, you would get an error:
import array as arr
numbers = arr.array('i',[10.0,20,30])
print(numbers)
#output
#Traceback (most recent call last):
# File "/Users/dionysialemonaki/python_articles/demo.py", line 14, in <module>
# numbers = arr.array('i',[10.0,20,30])
#TypeError: 'float' object cannot be interpreted as an integer
In the example above, I tried to include a floating point number in the array. I got an error because this is meant to be an integer array only.
Another way to create an array is the following:
from array import *
#an array of floating point values
numbers = array('d',[10.0,20.0,30.0])
print(numbers)
#output
#array('d', [10.0, 20.0, 30.0])
The example above imported the array module
via from array import *
and created an array numbers
of float data type. This means that it holds only floating point numbers, which is specified with the 'd'
typecode.
To find out the exact number of elements contained in an array, use the built-in len()
method.
It will return the integer number that is equal to the total number of elements in the array you specify.
import array as arr
numbers = arr.array('i',[10,20,30])
print(len(numbers))
#output
# 3
In the example above, the array contained three elements – 10, 20, 30
– so the length of numbers
is 3
.
Each item in an array has a specific address. Individual items are accessed by referencing their index number.
Indexing in Python, and in all programming languages and computing in general, starts at 0
. It is important to remember that counting starts at 0
and not at 1
.
To access an element, you first write the name of the array followed by square brackets. Inside the square brackets you include the item's index number.
The general syntax would look something like this:
array_name[index_value_of_item]
Here is how you would access each individual element in an array:
import array as arr
numbers = arr.array('i',[10,20,30])
print(numbers[0]) # gets the 1st element
print(numbers[1]) # gets the 2nd element
print(numbers[2]) # gets the 3rd element
#output
#10
#20
#30
Remember that the index value of the last element of an array is always one less than the length of the array. Where n
is the length of the array, n - 1
will be the index value of the last item.
Note that you can also access each individual element using negative indexing.
With negative indexing, the last element would have an index of -1
, the second to last element would have an index of -2
, and so on.
Here is how you would get each item in an array using that method:
import array as arr
numbers = arr.array('i',[10,20,30])
print(numbers[-1]) #gets last item
print(numbers[-2]) #gets second to last item
print(numbers[-3]) #gets first item
#output
#30
#20
#10
You can find out an element's index number by using the index()
method.
You pass the value of the element being searched as the argument to the method, and the element's index number is returned.
import array as arr
numbers = arr.array('i',[10,20,30])
#search for the index of the value 10
print(numbers.index(10))
#output
#0
If there is more than one element with the same value, the index of the first instance of the value will be returned:
import array as arr
numbers = arr.array('i',[10,20,30,10,20,30])
#search for the index of the value 10
#will return the index number of the first instance of the value 10
print(numbers.index(10))
#output
#0
You've seen how to access each individual element in an array and print it out on its own.
You've also seen how to print the array, using the print()
method. That method gives the following result:
import array as arr
numbers = arr.array('i',[10,20,30])
print(numbers)
#output
#array('i', [10, 20, 30])
What if you want to print each value one by one?
This is where a loop comes in handy. You can loop through the array and print out each value, one-by-one, with each loop iteration.
For this you can use a simple for
loop:
import array as arr
numbers = arr.array('i',[10,20,30])
for number in numbers:
print(number)
#output
#10
#20
#30
You could also use the range()
function, and pass the len()
method as its parameter. This would give the same result as above:
import array as arr
values = arr.array('i',[10,20,30])
#prints each individual value in the array
for value in range(len(values)):
print(values[value])
#output
#10
#20
#30
To access a specific range of values inside the array, use the slicing operator, which is a colon :
.
When using the slicing operator and you only include one value, the counting starts from 0
by default. It gets the first item, and goes up to but not including the index number you specify.
import array as arr
#original array
numbers = arr.array('i',[10,20,30])
#get the values 10 and 20 only
print(numbers[:2]) #first to second position
#output
#array('i', [10, 20])
When you pass two numbers as arguments, you specify a range of numbers. In this case, the counting starts at the position of the first number in the range, and up to but not including the second one:
import array as arr
#original array
numbers = arr.array('i',[10,20,30])
#get the values 20 and 30 only
print(numbers[1:3]) #second to third position
#output
#rray('i', [20, 30])
Arrays are mutable, which means they are changeable. You can change the value of the different items, add new ones, or remove any you don't want in your program anymore.
Let's see some of the most commonly used methods which are used for performing operations on arrays.
You can change the value of a specific element by speficying its position and assigning it a new value:
import array as arr
#original array
numbers = arr.array('i',[10,20,30])
#change the first element
#change it from having a value of 10 to having a value of 40
numbers[0] = 40
print(numbers)
#output
#array('i', [40, 20, 30])
To add one single value at the end of an array, use the append()
method:
import array as arr
#original array
numbers = arr.array('i',[10,20,30])
#add the integer 40 to the end of numbers
numbers.append(40)
print(numbers)
#output
#array('i', [10, 20, 30, 40])
Be aware that the new item you add needs to be the same data type as the rest of the items in the array.
Look what happens when I try to add a float to an array of integers:
import array as arr
#original array
numbers = arr.array('i',[10,20,30])
#add the integer 40 to the end of numbers
numbers.append(40.0)
print(numbers)
#output
#Traceback (most recent call last):
# File "/Users/dionysialemonaki/python_articles/demo.py", line 19, in <module>
# numbers.append(40.0)
#TypeError: 'float' object cannot be interpreted as an integer
But what if you want to add more than one value to the end an array?
Use the extend()
method, which takes an iterable (such as a list of items) as an argument. Again, make sure that the new items are all the same data type.
import array as arr
#original array
numbers = arr.array('i',[10,20,30])
#add the integers 40,50,60 to the end of numbers
#The numbers need to be enclosed in square brackets
numbers.extend([40,50,60])
print(numbers)
#output
#array('i', [10, 20, 30, 40, 50, 60])
And what if you don't want to add an item to the end of an array? Use the insert()
method, to add an item at a specific position.
The insert()
function takes two arguments: the index number of the position the new element will be inserted, and the value of the new element.
import array as arr
#original array
numbers = arr.array('i',[10,20,30])
#add the integer 40 in the first position
#remember indexing starts at 0
numbers.insert(0,40)
print(numbers)
#output
#array('i', [40, 10, 20, 30])
To remove an element from an array, use the remove()
method and include the value as an argument to the method.
import array as arr
#original array
numbers = arr.array('i',[10,20,30])
numbers.remove(10)
print(numbers)
#output
#array('i', [20, 30])
With remove()
, only the first instance of the value you pass as an argument will be removed.
See what happens when there are more than one identical values:
import array as arr
#original array
numbers = arr.array('i',[10,20,30,10,20])
numbers.remove(10)
print(numbers)
#output
#array('i', [20, 30, 10, 20])
Only the first occurence of 10
is removed.
You can also use the pop()
method, and specify the position of the element to be removed:
import array as arr
#original array
numbers = arr.array('i',[10,20,30,10,20])
#remove the first instance of 10
numbers.pop(0)
print(numbers)
#output
#array('i', [20, 30, 10, 20])
And there you have it - you now know the basics of how to create arrays in Python using the array module
. Hopefully you found this guide helpful.
You'll start from the basics and learn in an interacitve and beginner-friendly way. You'll also build five projects at the end to put into practice and help reinforce what you learned.
Thanks for reading and happy coding!
Original article source at https://www.freecodecamp.org
#python
1666082925
This tutorialvideo on 'Arrays in Python' will help you establish a strong hold on all the fundamentals in python programming language. Below are the topics covered in this video:
1:15 What is an array?
2:53 Is python list same as an array?
3:48 How to create arrays in python?
7:19 Accessing array elements
9:59 Basic array operations
- 10:33 Finding the length of an array
- 11:44 Adding Elements
- 15:06 Removing elements
- 18:32 Array concatenation
- 20:59 Slicing
- 23:26 Looping
Python Array Tutorial – Define, Index, Methods
In this article, you'll learn how to use Python arrays. You'll see how to define them and the different methods commonly used for performing operations on them.
The artcile covers arrays that you create by importing the array module
. We won't cover NumPy arrays here.
Let's get started!
Arrays are a fundamental data structure, and an important part of most programming languages. In Python, they are containers which are able to store more than one item at the same time.
Specifically, they are an ordered collection of elements with every value being of the same data type. That is the most important thing to remember about Python arrays - the fact that they can only hold a sequence of multiple items that are of the same type.
Lists are one of the most common data structures in Python, and a core part of the language.
Lists and arrays behave similarly.
Just like arrays, lists are an ordered sequence of elements.
They are also mutable and not fixed in size, which means they can grow and shrink throughout the life of the program. Items can be added and removed, making them very flexible to work with.
However, lists and arrays are not the same thing.
Lists store items that are of various data types. This means that a list can contain integers, floating point numbers, strings, or any other Python data type, at the same time. That is not the case with arrays.
As mentioned in the section above, arrays store only items that are of the same single data type. There are arrays that contain only integers, or only floating point numbers, or only any other Python data type you want to use.
Lists are built into the Python programming language, whereas arrays aren't. Arrays are not a built-in data structure, and therefore need to be imported via the array module
in order to be used.
Arrays of the array module
are a thin wrapper over C arrays, and are useful when you want to work with homogeneous data.
They are also more compact and take up less memory and space which makes them more size efficient compared to lists.
If you want to perform mathematical calculations, then you should use NumPy arrays by importing the NumPy package. Besides that, you should just use Python arrays when you really need to, as lists work in a similar way and are more flexible to work with.
In order to create Python arrays, you'll first have to import the array module
which contains all the necassary functions.
There are three ways you can import the array module
:
import array
at the top of the file. This includes the module array
. You would then go on to create an array using array.array()
.import array
#how you would create an array
array.array()
array.array()
all the time, you could use import array as arr
at the top of the file, instead of import array
alone. You would then create an array by typing arr.array()
. The arr
acts as an alias name, with the array constructor then immediately following it.import array as arr
#how you would create an array
arr.array()
from array import *
, with *
importing all the functionalities available. You would then create an array by writing the array()
constructor alone.from array import *
#how you would create an array
array()
Once you've imported the array module
, you can then go on to define a Python array.
The general syntax for creating an array looks like this:
variable_name = array(typecode,[elements])
Let's break it down:
variable_name
would be the name of the array.typecode
specifies what kind of elements would be stored in the array. Whether it would be an array of integers, an array of floats or an array of any other Python data type. Remember that all elements should be of the same data type.elements
that would be stored in the array, with each element being separated by a comma. You can also create an empty array by just writing variable_name = array(typecode)
alone, without any elements.Below is a typecode table, with the different typecodes that can be used with the different data types when defining Python arrays:
TYPECODE | C TYPE | PYTHON TYPE | SIZE |
---|---|---|---|
'b' | signed char | int | 1 |
'B' | unsigned char | int | 1 |
'u' | wchar_t | Unicode character | 2 |
'h' | signed short | int | 2 |
'H' | unsigned short | int | 2 |
'i' | signed int | int | 2 |
'I' | unsigned int | int | 2 |
'l' | signed long | int | 4 |
'L' | unsigned long | int | 4 |
'q' | signed long long | int | 8 |
'Q' | unsigned long long | int | 8 |
'f' | float | float | 4 |
'd' | double | float | 8 |
Tying everything together, here is an example of how you would define an array in Python:
import array as arr
numbers = arr.array('i',[10,20,30])
print(numbers)
#output
#array('i', [10, 20, 30])
Let's break it down:
import array as arr
.numbers
array.arr.array()
because of import array as arr
.array()
constructor, we first included i
, for signed integer. Signed integer means that the array can include positive and negative values. Unsigned integer, with H
for example, would mean that no negative values are allowed.Keep in mind that if you tried to include values that were not of i
typecode, meaning they were not integer values, you would get an error:
import array as arr
numbers = arr.array('i',[10.0,20,30])
print(numbers)
#output
#Traceback (most recent call last):
# File "/Users/dionysialemonaki/python_articles/demo.py", line 14, in <module>
# numbers = arr.array('i',[10.0,20,30])
#TypeError: 'float' object cannot be interpreted as an integer
In the example above, I tried to include a floating point number in the array. I got an error because this is meant to be an integer array only.
Another way to create an array is the following:
from array import *
#an array of floating point values
numbers = array('d',[10.0,20.0,30.0])
print(numbers)
#output
#array('d', [10.0, 20.0, 30.0])
The example above imported the array module
via from array import *
and created an array numbers
of float data type. This means that it holds only floating point numbers, which is specified with the 'd'
typecode.
To find out the exact number of elements contained in an array, use the built-in len()
method.
It will return the integer number that is equal to the total number of elements in the array you specify.
import array as arr
numbers = arr.array('i',[10,20,30])
print(len(numbers))
#output
# 3
In the example above, the array contained three elements – 10, 20, 30
– so the length of numbers
is 3
.
Each item in an array has a specific address. Individual items are accessed by referencing their index number.
Indexing in Python, and in all programming languages and computing in general, starts at 0
. It is important to remember that counting starts at 0
and not at 1
.
To access an element, you first write the name of the array followed by square brackets. Inside the square brackets you include the item's index number.
The general syntax would look something like this:
array_name[index_value_of_item]
Here is how you would access each individual element in an array:
import array as arr
numbers = arr.array('i',[10,20,30])
print(numbers[0]) # gets the 1st element
print(numbers[1]) # gets the 2nd element
print(numbers[2]) # gets the 3rd element
#output
#10
#20
#30
Remember that the index value of the last element of an array is always one less than the length of the array. Where n
is the length of the array, n - 1
will be the index value of the last item.
Note that you can also access each individual element using negative indexing.
With negative indexing, the last element would have an index of -1
, the second to last element would have an index of -2
, and so on.
Here is how you would get each item in an array using that method:
import array as arr
numbers = arr.array('i',[10,20,30])
print(numbers[-1]) #gets last item
print(numbers[-2]) #gets second to last item
print(numbers[-3]) #gets first item
#output
#30
#20
#10
You can find out an element's index number by using the index()
method.
You pass the value of the element being searched as the argument to the method, and the element's index number is returned.
import array as arr
numbers = arr.array('i',[10,20,30])
#search for the index of the value 10
print(numbers.index(10))
#output
#0
If there is more than one element with the same value, the index of the first instance of the value will be returned:
import array as arr
numbers = arr.array('i',[10,20,30,10,20,30])
#search for the index of the value 10
#will return the index number of the first instance of the value 10
print(numbers.index(10))
#output
#0
You've seen how to access each individual element in an array and print it out on its own.
You've also seen how to print the array, using the print()
method. That method gives the following result:
import array as arr
numbers = arr.array('i',[10,20,30])
print(numbers)
#output
#array('i', [10, 20, 30])
What if you want to print each value one by one?
This is where a loop comes in handy. You can loop through the array and print out each value, one-by-one, with each loop iteration.
For this you can use a simple for
loop:
import array as arr
numbers = arr.array('i',[10,20,30])
for number in numbers:
print(number)
#output
#10
#20
#30
You could also use the range()
function, and pass the len()
method as its parameter. This would give the same result as above:
import array as arr
values = arr.array('i',[10,20,30])
#prints each individual value in the array
for value in range(len(values)):
print(values[value])
#output
#10
#20
#30
To access a specific range of values inside the array, use the slicing operator, which is a colon :
.
When using the slicing operator and you only include one value, the counting starts from 0
by default. It gets the first item, and goes up to but not including the index number you specify.
import array as arr
#original array
numbers = arr.array('i',[10,20,30])
#get the values 10 and 20 only
print(numbers[:2]) #first to second position
#output
#array('i', [10, 20])
When you pass two numbers as arguments, you specify a range of numbers. In this case, the counting starts at the position of the first number in the range, and up to but not including the second one:
import array as arr
#original array
numbers = arr.array('i',[10,20,30])
#get the values 20 and 30 only
print(numbers[1:3]) #second to third position
#output
#rray('i', [20, 30])
Arrays are mutable, which means they are changeable. You can change the value of the different items, add new ones, or remove any you don't want in your program anymore.
Let's see some of the most commonly used methods which are used for performing operations on arrays.
You can change the value of a specific element by speficying its position and assigning it a new value:
import array as arr
#original array
numbers = arr.array('i',[10,20,30])
#change the first element
#change it from having a value of 10 to having a value of 40
numbers[0] = 40
print(numbers)
#output
#array('i', [40, 20, 30])
To add one single value at the end of an array, use the append()
method:
import array as arr
#original array
numbers = arr.array('i',[10,20,30])
#add the integer 40 to the end of numbers
numbers.append(40)
print(numbers)
#output
#array('i', [10, 20, 30, 40])
Be aware that the new item you add needs to be the same data type as the rest of the items in the array.
Look what happens when I try to add a float to an array of integers:
import array as arr
#original array
numbers = arr.array('i',[10,20,30])
#add the integer 40 to the end of numbers
numbers.append(40.0)
print(numbers)
#output
#Traceback (most recent call last):
# File "/Users/dionysialemonaki/python_articles/demo.py", line 19, in <module>
# numbers.append(40.0)
#TypeError: 'float' object cannot be interpreted as an integer
But what if you want to add more than one value to the end an array?
Use the extend()
method, which takes an iterable (such as a list of items) as an argument. Again, make sure that the new items are all the same data type.
import array as arr
#original array
numbers = arr.array('i',[10,20,30])
#add the integers 40,50,60 to the end of numbers
#The numbers need to be enclosed in square brackets
numbers.extend([40,50,60])
print(numbers)
#output
#array('i', [10, 20, 30, 40, 50, 60])
And what if you don't want to add an item to the end of an array? Use the insert()
method, to add an item at a specific position.
The insert()
function takes two arguments: the index number of the position the new element will be inserted, and the value of the new element.
import array as arr
#original array
numbers = arr.array('i',[10,20,30])
#add the integer 40 in the first position
#remember indexing starts at 0
numbers.insert(0,40)
print(numbers)
#output
#array('i', [40, 10, 20, 30])
To remove an element from an array, use the remove()
method and include the value as an argument to the method.
import array as arr
#original array
numbers = arr.array('i',[10,20,30])
numbers.remove(10)
print(numbers)
#output
#array('i', [20, 30])
With remove()
, only the first instance of the value you pass as an argument will be removed.
See what happens when there are more than one identical values:
import array as arr
#original array
numbers = arr.array('i',[10,20,30,10,20])
numbers.remove(10)
print(numbers)
#output
#array('i', [20, 30, 10, 20])
Only the first occurence of 10
is removed.
You can also use the pop()
method, and specify the position of the element to be removed:
import array as arr
#original array
numbers = arr.array('i',[10,20,30,10,20])
#remove the first instance of 10
numbers.pop(0)
print(numbers)
#output
#array('i', [20, 30, 10, 20])
And there you have it - you now know the basics of how to create arrays in Python using the array module
. Hopefully you found this guide helpful.
Thanks for reading and happy coding!
#python #programming
1659283860
ActiveInteraction manages application-specific business logic. It's an implementation of service objects designed to blend seamlessly into Rails.
ActiveInteraction gives you a place to put your business logic. It also helps you write safer code by validating that your inputs conform to your expectations. If ActiveModel deals with your nouns, then ActiveInteraction handles your verbs.
Add it to your Gemfile:
gem 'active_interaction', '~> 5.1'
Or install it manually:
$ gem install active_interaction --version '~> 5.1'
This project uses Semantic Versioning. Check out GitHub releases for a detailed list of changes.
To define an interaction, create a subclass of ActiveInteraction::Base
. Then you need to do two things:
Define your inputs. Use class filter methods to define what you expect your inputs to look like. For instance, if you need a boolean flag for pepperoni, use boolean :pepperoni
. Check out the filters section for all the available options.
Define your business logic. Do this by implementing the #execute
method. Each input you defined will be available as the type you specified. If any of the inputs are invalid, #execute
won't be run. Filters are responsible for checking your inputs. Check out the validations section if you need more than that.
That covers the basics. Let's put it all together into a simple example that squares a number.
require 'active_interaction'
class Square < ActiveInteraction::Base
float :x
def execute
x**2
end
end
Call .run
on your interaction to execute it. You must pass a single hash to .run
. It will return an instance of your interaction. By convention, we call this an outcome. You can use the #valid?
method to ask the outcome if it's valid. If it's invalid, take a look at its errors with #errors
. In either case, the value returned from #execute
will be stored in #result
.
outcome = Square.run(x: 'two point one')
outcome.valid?
# => nil
outcome.errors.messages
# => {:x=>["is not a valid float"]}
outcome = Square.run(x: 2.1)
outcome.valid?
# => true
outcome.result
# => 4.41
You can also use .run!
to execute interactions. It's like .run
but more dangerous. It doesn't return an outcome. If the outcome would be invalid, it will instead raise an error. But if the outcome would be valid, it simply returns the result.
Square.run!(x: 'two point one')
# ActiveInteraction::InvalidInteractionError: X is not a valid float
Square.run!(x: 2.1)
# => 4.41
ActiveInteraction checks your inputs. Often you'll want more than that. For instance, you may want an input to be a string with at least one non-whitespace character. Instead of writing your own validation for that, you can use validations from ActiveModel.
These validations aren't provided by ActiveInteraction. They're from ActiveModel. You can also use any custom validations you wrote yourself in your interactions.
class SayHello < ActiveInteraction::Base
string :name
validates :name,
presence: true
def execute
"Hello, #{name}!"
end
end
When you run this interaction, two things will happen. First ActiveInteraction will check your inputs. Then ActiveModel will validate them. If both of those are happy, it will be executed.
SayHello.run!(name: nil)
# ActiveInteraction::InvalidInteractionError: Name is required
SayHello.run!(name: '')
# ActiveInteraction::InvalidInteractionError: Name can't be blank
SayHello.run!(name: 'Taylor')
# => "Hello, Taylor!"
You can define filters inside an interaction using the appropriate class method. Each method has the same signature:
Some symbolic names. These are the attributes to create.
An optional hash of options. Each filter supports at least these two options:
default
is the fallback value to use if nil
is given. To make a filter optional, set default: nil
.
desc
is a human-readable description of the input. This can be useful for generating documentation. For more information about this, read the descriptions section.
An optional block of sub-filters. Only array and hash filters support this. Other filters will ignore blocks when given to them.
Let's take a look at an example filter. It defines three inputs: x
, y
, and z
. Those inputs are optional and they all share the same description ("an example filter").
array :x, :y, :z,
default: nil,
desc: 'an example filter' do
# Some filters support sub-filters here.
end
In general, filters accept values of the type they correspond to, plus a few alternatives that can be reasonably coerced. Typically the coercions come from Rails, so "1"
can be interpreted as the boolean value true
, the string "1"
, or the number 1
.
In addition to accepting arrays, array inputs will convert ActiveRecord::Relation
s into arrays.
class ArrayInteraction < ActiveInteraction::Base
array :toppings
def execute
toppings.size
end
end
ArrayInteraction.run!(toppings: 'everything')
# ActiveInteraction::InvalidInteractionError: Toppings is not a valid array
ArrayInteraction.run!(toppings: [:cheese, 'pepperoni'])
# => 2
Use a block to constrain the types of elements an array can contain. Note that you can only have one filter inside an array block, and it must not have a name.
array :birthdays do
date
end
For interface
, object
, and record
filters, the name of the array filter will be singularized and used to determine the type of value passed. In the example below, the objects passed would need to be of type Cow
.
array :cows do
object
end
You can override this by passing the necessary information to the inner filter.
array :managers do
object class: People
end
Errors that occur will be indexed based on the Rails configuration setting index_nested_attribute_errors
. You can also manually override this setting with the :index_errors
option. In this state is is possible to get multiple errors from a single filter.
class ArrayInteraction < ActiveInteraction::Base
array :favorite_numbers, index_errors: true do
integer
end
def execute
favorite_numbers
end
end
ArrayInteraction.run(favorite_numbers: [8, 'bazillion']).errors.details
=> {:"favorite_numbers[1]"=>[{:error=>:invalid_type, :type=>"array"}]}
With :index_errors
set to false
the error would have been:
{:favorite_numbers=>[{:error=>:invalid_type, :type=>"array"}]}
Boolean filters convert the strings "1"
, "true"
, and "on"
(case-insensitive) into true
. They also convert "0"
, "false"
, and "off"
into false
. Blank strings will be treated as nil
.
class BooleanInteraction < ActiveInteraction::Base
boolean :kool_aid
def execute
'Oh yeah!' if kool_aid
end
end
BooleanInteraction.run!(kool_aid: 1)
# ActiveInteraction::InvalidInteractionError: Kool aid is not a valid boolean
BooleanInteraction.run!(kool_aid: true)
# => "Oh yeah!"
File filters also accept TempFile
s and anything that responds to #rewind
. That means that you can pass the params
from uploading files via forms in Rails.
class FileInteraction < ActiveInteraction::Base
file :readme
def execute
readme.size
end
end
FileInteraction.run!(readme: 'README.md')
# ActiveInteraction::InvalidInteractionError: Readme is not a valid file
FileInteraction.run!(readme: File.open('README.md'))
# => 21563
Hash filters accept hashes. The expected value types are given by passing a block and nesting other filters. You can have any number of filters inside a hash, including other hashes.
class HashInteraction < ActiveInteraction::Base
hash :preferences do
boolean :newsletter
boolean :sweepstakes
end
def execute
puts 'Thanks for joining the newsletter!' if preferences[:newsletter]
puts 'Good luck in the sweepstakes!' if preferences[:sweepstakes]
end
end
HashInteraction.run!(preferences: 'yes, no')
# ActiveInteraction::InvalidInteractionError: Preferences is not a valid hash
HashInteraction.run!(preferences: { newsletter: true, 'sweepstakes' => false })
# Thanks for joining the newsletter!
# => nil
Setting default hash values can be tricky. The default value has to be either nil
or {}
. Use nil
to make the hash optional. Use {}
if you want to set some defaults for values inside the hash.
hash :optional,
default: nil
# => {:optional=>nil}
hash :with_defaults,
default: {} do
boolean :likes_cookies,
default: true
end
# => {:with_defaults=>{:likes_cookies=>true}}
By default, hashes remove any keys that aren't given as nested filters. To allow all hash keys, set strip: false
. In general we don't recommend doing this, but it's sometimes necessary.
hash :stuff,
strip: false
String filters define inputs that only accept strings.
class StringInteraction < ActiveInteraction::Base
string :name
def execute
"Hello, #{name}!"
end
end
StringInteraction.run!(name: 0xDEADBEEF)
# ActiveInteraction::InvalidInteractionError: Name is not a valid string
StringInteraction.run!(name: 'Taylor')
# => "Hello, Taylor!"
String filter strips leading and trailing whitespace by default. To disable it, set the strip
option to false
.
string :comment,
strip: false
Symbol filters define inputs that accept symbols. Strings will be converted into symbols.
class SymbolInteraction < ActiveInteraction::Base
symbol :method
def execute
method.to_proc
end
end
SymbolInteraction.run!(method: -> {})
# ActiveInteraction::InvalidInteractionError: Method is not a valid symbol
SymbolInteraction.run!(method: :object_id)
# => #<Proc:0x007fdc9ba94118>
Filters that work with dates and times behave similarly. By default, they all convert strings into their expected data types using .parse
. Blank strings will be treated as nil
. If you give the format
option, they will instead convert strings using .strptime
. Note that formats won't work with DateTime
and Time
filters if a time zone is set.
Date
class DateInteraction < ActiveInteraction::Base
date :birthday
def execute
birthday + (18 * 365)
end
end
DateInteraction.run!(birthday: 'yesterday')
# ActiveInteraction::InvalidInteractionError: Birthday is not a valid date
DateInteraction.run!(birthday: Date.new(1989, 9, 1))
# => #<Date: 2007-08-28 ((2454341j,0s,0n),+0s,2299161j)>
date :birthday,
format: '%Y-%m-%d'
DateTime
class DateTimeInteraction < ActiveInteraction::Base
date_time :now
def execute
now.iso8601
end
end
DateTimeInteraction.run!(now: 'now')
# ActiveInteraction::InvalidInteractionError: Now is not a valid date time
DateTimeInteraction.run!(now: DateTime.now)
# => "2015-03-11T11:04:40-05:00"
date_time :start,
format: '%Y-%m-%dT%H:%M:%S'
Time
In addition to converting strings with .parse
(or .strptime
), time filters convert numbers with .at
.
class TimeInteraction < ActiveInteraction::Base
time :epoch
def execute
Time.now - epoch
end
end
TimeInteraction.run!(epoch: 'a long, long time ago')
# ActiveInteraction::InvalidInteractionError: Epoch is not a valid time
TimeInteraction.run!(epoch: Time.new(1970))
# => 1426068362.5136619
time :start,
format: '%Y-%m-%dT%H:%M:%S'
All numeric filters accept numeric input. They will also convert strings using the appropriate method from Kernel
(like .Float
). Blank strings will be treated as nil
.
Decimal
class DecimalInteraction < ActiveInteraction::Base
decimal :price
def execute
price * 1.0825
end
end
DecimalInteraction.run!(price: 'one ninety-nine')
# ActiveInteraction::InvalidInteractionError: Price is not a valid decimal
DecimalInteraction.run!(price: BigDecimal(1.99, 2))
# => #<BigDecimal:7fe792a42028,'0.2165E1',18(45)>
To specify the number of significant digits, use the digits
option.
decimal :dollars,
digits: 2
Float
class FloatInteraction < ActiveInteraction::Base
float :x
def execute
x**2
end
end
FloatInteraction.run!(x: 'two point one')
# ActiveInteraction::InvalidInteractionError: X is not a valid float
FloatInteraction.run!(x: 2.1)
# => 4.41
Integer
class IntegerInteraction < ActiveInteraction::Base
integer :limit
def execute
limit.downto(0).to_a
end
end
IntegerInteraction.run!(limit: 'ten')
# ActiveInteraction::InvalidInteractionError: Limit is not a valid integer
IntegerInteraction.run!(limit: 10)
# => [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
When a String
is passed into an integer
input, the value will be coerced. A default base of 10
is used though it may be overridden with the base
option. If a base of 0
is provided, the coercion will respect radix indicators present in the string.
class IntegerInteraction < ActiveInteraction::Base
integer :limit1
integer :limit2, base: 8
integer :limit3, base: 0
def execute
[limit1, limit2, limit3]
end
end
IntegerInteraction.run!(limit1: 71, limit2: 71, limit3: 71)
# => [71, 71, 71]
IntegerInteraction.run!(limit1: "071", limit2: "071", limit3: "0x71")
# => [71, 57, 113]
IntegerInteraction.run!(limit1: "08", limit2: "08", limit3: "08")
ActiveInteraction::InvalidInteractionError: Limit2 is not a valid integer, Limit3 is not a valid integer
Interface filters allow you to specify an interface that the passed value must meet in order to pass. The name of the interface is used to look for a constant inside the ancestor listing for the passed value. This allows for a variety of checks depending on what's passed. Class instances are checked for an included module or an inherited ancestor class. Classes are checked for an extended module or an inherited ancestor class. Modules are checked for an extended module.
class InterfaceInteraction < ActiveInteraction::Base
interface :exception
def execute
exception
end
end
InterfaceInteraction.run!(exception: Exception)
# ActiveInteraction::InvalidInteractionError: Exception is not a valid interface
InterfaceInteraction.run!(exception: NameError) # a subclass of Exception
# => NameError
You can use :from
to specify a class or module. This would be the equivalent of what's above.
class InterfaceInteraction < ActiveInteraction::Base
interface :error,
from: Exception
def execute
error
end
end
You can also create an anonymous interface on the fly by passing the methods
option.
class InterfaceInteraction < ActiveInteraction::Base
interface :serializer,
methods: %i[dump load]
def execute
input = '{ "is_json" : true }'
object = serializer.load(input)
output = serializer.dump(object)
output
end
end
require 'json'
InterfaceInteraction.run!(serializer: Object.new)
# ActiveInteraction::InvalidInteractionError: Serializer is not a valid interface
InterfaceInteraction.run!(serializer: JSON)
# => "{\"is_json\":true}"
Object filters allow you to require an instance of a particular class or one of its subclasses.
class Cow
def moo
'Moo!'
end
end
class ObjectInteraction < ActiveInteraction::Base
object :cow
def execute
cow.moo
end
end
ObjectInteraction.run!(cow: Object.new)
# ActiveInteraction::InvalidInteractionError: Cow is not a valid object
ObjectInteraction.run!(cow: Cow.new)
# => "Moo!"
The class name is automatically determined by the filter name. If your filter name is different than your class name, use the class
option. It can be either the class, a string, or a symbol.
object :dolly1,
class: Sheep
object :dolly2,
class: 'Sheep'
object :dolly3,
class: :Sheep
If you have value objects or you would like to build one object from another, you can use the converter
option. It is only called if the value provided is not an instance of the class or one of its subclasses. The converter
option accepts a symbol that specifies a class method on the object class or a proc. Both will be passed the value and any errors thrown inside the converter will cause the value to be considered invalid. Any returned value that is not the correct class will also be treated as invalid. Any default
that is not an instance of the class or subclass and is not nil
will also be converted.
class ObjectInteraction < ActiveInteraction::Base
object :ip_address,
class: IPAddr,
converter: :new
def execute
ip_address
end
end
ObjectInteraction.run!(ip_address: '192.168.1.1')
# #<IPAddr: IPv4:192.168.1.1/255.255.255.255>
ObjectInteraction.run!(ip_address: 1)
# ActiveInteraction::InvalidInteractionError: Ip address is not a valid object
Record filters allow you to require an instance of a particular class (or one of its subclasses) or a value that can be used to locate an instance of the object. If the value does not match, it will call find
on the class of the record. This is particularly useful when working with ActiveRecord objects. Like an object filter, the class is derived from the name passed but can be specified with the class
option. Any default
that is not an instance of the class or subclass and is not nil
will also be found. Blank strings passed in will be treated as nil
.
class RecordInteraction < ActiveInteraction::Base
record :encoding
def execute
encoding
end
end
> RecordInteraction.run!(encoding: Encoding::US_ASCII)
=> #<Encoding:US-ASCII>
> RecordInteraction.run!(encoding: 'ascii')
=> #<Encoding:US-ASCII>
A different method can be specified by providing a symbol to the finder
option.
ActiveInteraction plays nicely with Rails. You can use interactions to handle your business logic instead of models or controllers. To see how it all works, let's take a look at a complete example of a controller with the typical resourceful actions.
We recommend putting your interactions in app/interactions
. It's also very helpful to group them by model. That way you can look in app/interactions/accounts
for all the ways you can interact with accounts.
- app/
- controllers/
- accounts_controller.rb
- interactions/
- accounts/
- create_account.rb
- destroy_account.rb
- find_account.rb
- list_accounts.rb
- update_account.rb
- models/
- account.rb
- views/
- account/
- edit.html.erb
- index.html.erb
- new.html.erb
- show.html.erb
# GET /accounts
def index
@accounts = ListAccounts.run!
end
Since we're not passing any inputs to ListAccounts
, it makes sense to use .run!
instead of .run
. If it failed, that would mean we probably messed up writing the interaction.
class ListAccounts < ActiveInteraction::Base
def execute
Account.not_deleted.order(last_name: :asc, first_name: :asc)
end
end
Up next is the show action. For this one we'll define a helper method to handle raising the correct errors. We have to do this because calling .run!
would raise an ActiveInteraction::InvalidInteractionError
instead of an ActiveRecord::RecordNotFound
. That means Rails would render a 500 instead of a 404.
# GET /accounts/:id
def show
@account = find_account!
end
private
def find_account!
outcome = FindAccount.run(params)
if outcome.valid?
outcome.result
else
fail ActiveRecord::RecordNotFound, outcome.errors.full_messages.to_sentence
end
end
This probably looks a little different than you're used to. Rails commonly handles this with a before_filter
that sets the @account
instance variable. Why is all this interaction code better? Two reasons: One, you can reuse the FindAccount
interaction in other places, like your API controller or a Resque task. And two, if you want to change how accounts are found, you only have to change one place.
Inside the interaction, we could use #find
instead of #find_by_id
. That way we wouldn't need the #find_account!
helper method in the controller because the error would bubble all the way up. However, you should try to avoid raising errors from interactions. If you do, you'll have to deal with raised exceptions as well as the validity of the outcome.
class FindAccount < ActiveInteraction::Base
integer :id
def execute
account = Account.not_deleted.find_by_id(id)
if account
account
else
errors.add(:id, 'does not exist')
end
end
end
Note that it's perfectly fine to add errors during execution. Not all errors have to come from checking or validation.
The new action will be a little different than the ones we've looked at so far. Instead of calling .run
or .run!
, it's going to initialize a new interaction. This is possible because interactions behave like ActiveModels.
# GET /accounts/new
def new
@account = CreateAccount.new
end
Since interactions behave like ActiveModels, we can use ActiveModel validations with them. We'll use validations here to make sure that the first and last names are not blank. The validations section goes into more detail about this.
class CreateAccount < ActiveInteraction::Base
string :first_name, :last_name
validates :first_name, :last_name,
presence: true
def to_model
Account.new
end
def execute
account = Account.new(inputs)
unless account.save
errors.merge!(account.errors)
end
account
end
end
We used a couple of advanced features here. The #to_model
method helps determine the correct form to use in the view. Check out the section on forms for more about that. Inside #execute
, we merge errors. This is a convenient way to move errors from one object to another. Read more about it in the errors section.
The create action has a lot in common with the new action. Both of them use the CreateAccount
interaction. And if creating the account fails, this action falls back to rendering the new action.
# POST /accounts
def create
outcome = CreateAccount.run(params.fetch(:account, {}))
if outcome.valid?
redirect_to(outcome.result)
else
@account = outcome
render(:new)
end
end
Note that we have to pass a hash to .run
. Passing nil
is an error.
Since we're using an interaction, we don't need strong parameters. The interaction will ignore any inputs that weren't defined by filters. So you can forget about params.require
and params.permit
because interactions handle that for you.
The destroy action will reuse the #find_account!
helper method we wrote earlier.
# DELETE /accounts/:id
def destroy
DestroyAccount.run!(account: find_account!)
redirect_to(accounts_url)
end
In this simple example, the destroy interaction doesn't do much. It's not clear that you gain anything by putting it in an interaction. But in the future, when you need to do more than account.destroy
, you'll only have to update one spot.
class DestroyAccount < ActiveInteraction::Base
object :account
def execute
account.destroy
end
end
Just like the destroy action, editing uses the #find_account!
helper. Then it creates a new interaction instance to use as a form object.
# GET /accounts/:id/edit
def edit
account = find_account!
@account = UpdateAccount.new(
account: account,
first_name: account.first_name,
last_name: account.last_name)
end
The interaction that updates accounts is more complicated than the others. It requires an account to update, but the other inputs are optional. If they're missing, it'll ignore those attributes. If they're present, it'll update them.
class UpdateAccount < ActiveInteraction::Base
object :account
string :first_name, :last_name,
default: nil
validates :first_name,
presence: true,
unless: -> { first_name.nil? }
validates :last_name,
presence: true,
unless: -> { last_name.nil? }
def execute
account.first_name = first_name if first_name.present?
account.last_name = last_name if last_name.present?
unless account.save
errors.merge!(account.errors)
end
account
end
end
Hopefully you've gotten the hang of this by now. We'll use #find_account!
to get the account. Then we'll build up the inputs for UpdateAccount
. Then we'll run the interaction and either redirect to the updated account or back to the edit page.
# PUT /accounts/:id
def update
inputs = { account: find_account! }.reverse_merge(params[:account])
outcome = UpdateAccount.run(inputs)
if outcome.valid?
redirect_to(outcome.result)
else
@account = outcome
render(:edit)
end
end
ActiveSupport::Callbacks provides a powerful framework for defining callbacks. ActiveInteraction uses that framework to allow hooking into various parts of an interaction's lifecycle.
class Increment < ActiveInteraction::Base
set_callback :filter, :before, -> { puts 'before filter' }
integer :x
set_callback :validate, :after, -> { puts 'after validate' }
validates :x,
numericality: { greater_than_or_equal_to: 0 }
set_callback :execute, :around, lambda { |_interaction, block|
puts '>>>'
block.call
puts '<<<'
}
def execute
puts 'executing'
x + 1
end
end
Increment.run!(x: 1)
# before filter
# after validate
# >>>
# executing
# <<<
# => 2
In order, the available callbacks are filter
, validate
, and execute
. You can set before
, after
, or around
on any of them.
You can run interactions from within other interactions with #compose
. If the interaction is successful, it'll return the result (just like if you had called it with .run!
). If something went wrong, execution will halt immediately and the errors will be moved onto the caller.
class Add < ActiveInteraction::Base
integer :x, :y
def execute
x + y
end
end
class AddThree < ActiveInteraction::Base
integer :x
def execute
compose(Add, x: x, y: 3)
end
end
AddThree.run!(x: 5)
# => 8
To bring in filters from another interaction, use .import_filters
. Combined with inputs
, delegating to another interaction is a piece of cake.
class AddAndDouble < ActiveInteraction::Base
import_filters Add
def execute
compose(Add, inputs) * 2
end
end
Note that errors in composed interactions have a few tricky cases. See the errors section for more information about them.
The default value for an input can take on many different forms. Setting the default to nil
makes the input optional. Setting it to some value makes that the default value for that input. Setting it to a lambda will lazily set the default value for that input. That means the value will be computed when the interaction is run, as opposed to when it is defined.
Lambda defaults are evaluated in the context of the interaction, so you can use the values of other inputs in them.
# This input is optional.
time :a, default: nil
# This input defaults to `Time.at(123)`.
time :b, default: Time.at(123)
# This input lazily defaults to `Time.now`.
time :c, default: -> { Time.now }
# This input defaults to the value of `c` plus 10 seconds.
time :d, default: -> { c + 10 }
Use the desc
option to provide human-readable descriptions of filters. You should prefer these to comments because they can be used to generate documentation. The interaction class has a .filters
method that returns a hash of filters. Each filter has a #desc
method that returns the description.
class Descriptive < ActiveInteraction::Base
string :first_name,
desc: 'your first name'
string :last_name,
desc: 'your last name'
end
Descriptive.filters.each do |name, filter|
puts "#{name}: #{filter.desc}"
end
# first_name: your first name
# last_name: your last name
ActiveInteraction provides detailed errors for easier introspection and testing of errors. Detailed errors improve on regular errors by adding a symbol that represents the type of error that has occurred. Let's look at an example where an item is purchased using a credit card.
class BuyItem < ActiveInteraction::Base
object :credit_card, :item
hash :options do
boolean :gift_wrapped
end
def execute
order = credit_card.purchase(item)
notify(credit_card.account)
order
end
private def notify(account)
# ...
end
end
Having missing or invalid inputs causes the interaction to fail and return errors.
outcome = BuyItem.run(item: 'Thing', options: { gift_wrapped: 'yes' })
outcome.errors.messages
# => {:credit_card=>["is required"], :item=>["is not a valid object"], :"options.gift_wrapped"=>["is not a valid boolean"]}
Determining the type of error based on the string is difficult if not impossible. Calling #details
instead of #messages
on errors
gives you the same list of errors with a testable label representing the error.
outcome.errors.details
# => {:credit_card=>[{:error=>:missing}], :item=>[{:error=>:invalid_type, :type=>"object"}], :"options.gift_wrapped"=>[{:error=>:invalid_type, :type=>"boolean"}]}
Detailed errors can also be manually added during the execute call by passing a symbol to #add
instead of a string.
def execute
errors.add(:monster, :no_passage)
end
ActiveInteraction also supports merging errors. This is useful if you want to delegate validation to some other object. For example, if you have an interaction that updates a record, you might want that record to validate itself. By using the #merge!
helper on errors
, you can do exactly that.
class UpdateThing < ActiveInteraction::Base
object :thing
def execute
unless thing.save
errors.merge!(thing.errors)
end
thing
end
end
When a composed interaction fails, its errors are merged onto the caller. This generally produces good error messages, but there are a few cases to look out for.
class Inner < ActiveInteraction::Base
boolean :x, :y
end
class Outer < ActiveInteraction::Base
string :x
boolean :z, default: nil
def execute
compose(Inner, x: x, y: z)
end
end
outcome = Outer.run(x: 'yes')
outcome.errors.details
# => { :x => [{ :error => :invalid_type, :type => "boolean" }],
# :base => [{ :error => "Y is required" }] }
outcome.errors.full_messages.join(' and ')
# => "X is not a valid boolean and Y is required"
Since both interactions have an input called x
, the inner error for that input is moved to the x
error on the outer interaction. This results in a misleading error that claims the input x
is not a valid boolean even though it's a string on the outer interaction.
Since only the inner interaction has an input called y
, the inner error for that input is moved to the base
error on the outer interaction. This results in a confusing error that claims the input y
is required even though it's not present on the outer interaction.
The outcome returned by .run
can be used in forms as though it were an ActiveModel object. You can also create a form object by calling .new
on the interaction.
Given an application with an Account
model we'll create a new Account
using the CreateAccount
interaction.
# GET /accounts/new
def new
@account = CreateAccount.new
end
# POST /accounts
def create
outcome = CreateAccount.run(params.fetch(:account, {}))
if outcome.valid?
redirect_to(outcome.result)
else
@account = outcome
render(:new)
end
end
The form used to create a new Account
has slightly more information on the form_for
call than you might expect.
<%= form_for @account, as: :account, url: accounts_path do |f| %>
<%= f.text_field :first_name %>
<%= f.text_field :last_name %>
<%= f.submit 'Create' %>
<% end %>
This is necessary because we want the form to act like it is creating a new Account
. Defining to_model
on the CreateAccount
interaction tells the form to treat our interaction like an Account
.
class CreateAccount < ActiveInteraction::Base
# ...
def to_model
Account.new
end
end
Now our form_for
call knows how to generate the correct URL and param name (i.e. params[:account]
).
# app/views/accounts/new.html.erb
<%= form_for @account do |f| %>
<%# ... %>
<% end %>
If you have an interaction that updates an Account
, you can define to_model
to return the object you're updating.
class UpdateAccount < ActiveInteraction::Base
# ...
object :account
def to_model
account
end
end
ActiveInteraction also supports formtastic and simple_form. The filters used to define the inputs on your interaction will relay type information to these gems. As a result, form fields will automatically use the appropriate input type.
It can be convenient to apply the same options to a bunch of inputs. One common use case is making many inputs optional. Instead of setting default: nil
on each one of them, you can use with_options
to reduce duplication.
with_options default: nil do
date :birthday
string :name
boolean :wants_cake
end
Optional inputs can be defined by using the :default
option as described in the filters section. Within the interaction, provided and default values are merged to create inputs
. There are times where it is useful to know whether a value was passed to run
or the result of a filter default. In particular, it is useful when nil
is an acceptable value. For example, you may optionally track your users' birthdays. You can use the inputs.given?
predicate to see if an input was even passed to run
. With inputs.given?
you can also check the input of a hash or array filter by passing a series of keys or indexes to check.
class UpdateUser < ActiveInteraction::Base
object :user
date :birthday,
default: nil
def execute
user.birthday = birthday if inputs.given?(:birthday)
errors.merge!(user.errors) unless user.save
user
end
end
Now you have a few options. If you don't want to update their birthday, leave it out of the hash. If you want to remove their birthday, set birthday: nil
. And if you want to update it, pass in the new value as usual.
user = User.find(...)
# Don't update their birthday.
UpdateUser.run!(user: user)
# Remove their birthday.
UpdateUser.run!(user: user, birthday: nil)
# Update their birthday.
UpdateUser.run!(user: user, birthday: Date.new(2000, 1, 2))
ActiveInteraction is i18n aware out of the box! All you have to do is add translations to your project. In Rails, these typically go into config/locales
. For example, let's say that for some reason you want to print everything out backwards. Simply add translations for ActiveInteraction to your hsilgne
locale.
# config/locales/hsilgne.yml
hsilgne:
active_interaction:
types:
array: yarra
boolean: naeloob
date: etad
date_time: emit etad
decimal: lamiced
file: elif
float: taolf
hash: hsah
integer: regetni
interface: ecafretni
object: tcejbo
string: gnirts
symbol: lobmys
time: emit
errors:
messages:
invalid: dilavni si
invalid_type: '%{type} dilav a ton si'
missing: deriuqer si
Then set your locale and run interactions like normal.
class I18nInteraction < ActiveInteraction::Base
string :name
end
I18nInteraction.run(name: false).errors.messages[:name]
# => ["is not a valid string"]
I18n.locale = :hsilgne
I18nInteraction.run(name: false).errors.messages[:name]
# => ["gnirts dilav a ton si"]
Everything else works like an activerecord
entry. For example, to rename an attribute you can use attributes
.
Here we'll rename the num
attribute on an interaction named product
:
en:
active_interaction:
attributes:
product:
num: 'Number'
ActiveInteraction is brought to you by Aaron Lasseigne. Along with Aaron, Taylor Fausak helped create and maintain ActiveInteraction but has since moved on.
If you want to contribute to ActiveInteraction, please read our contribution guidelines. A complete list of contributors is available on GitHub.
ActiveInteraction is licensed under the MIT License.
Author: AaronLasseigne
Source code: https://github.com/AaronLasseigne/active_interaction
License: MIT license
1659511140
:warning: | This gem is now in [passive maintenance mode][passive]. [(more)][passive] |
Making HTML emails comfortable for the Ruby rockstars
Roadie tries to make sending HTML emails a little less painful by inlining stylesheets and rewriting relative URLs for you inside your emails.
Email clients have bad support for stylesheets, and some of them blocks stylesheets from downloading. The easiest way to handle this is to work with inline styles (style="..."
), but that is error prone and hard to work with as you cannot use classes and/or reuse styling over your HTML.
This gem makes this easier by automatically inlining stylesheets into the document. You give Roadie your CSS, or let it find it by itself from the <link>
and <style>
tags in the markup, and it will go through all of the selectors assigning the styles to the matching elements. Careful attention has been put into selectors being applied in the correct order, so it should behave just like in the browser.
"Dynamic" selectors (:hover
, :visited
, :focus
, etc.), or selectors not understood by Nokogiri will be inlined into a single <style>
element for those email clients that support it. This changes specificity a great deal for these rules, so it might not work 100% out of the box. (See more about this below)
Roadie also rewrites all relative URLs in the email to an absolute counterpart, making images you insert and those referenced in your stylesheets work. No more headaches about how to write the stylesheets while still having them work with emails from your acceptance environments. You can disable this on specific elements using a data-roadie-ignore
marker.
!important
styles.style
attribute of tags.:hover
, @media { ... }
and friends around in a separate <style>
element.href
s and img
src
s absolute.data-roadie-ignore
markers before finishing the HTML.Add this gem to your Gemfile as recommended by Rubygems and run bundle install
.
gem 'roadie', '~> 4.0'
Your document instance can be configured with several options:
url_options
- Dictates how absolute URLs should be built.keep_uninlinable_css
- Set to false to skip CSS that cannot be inlined.merge_media_queries
- Set to false to not group media queries. Some users might prefer to not group rules within media queries because it will result in rules getting reordered. e.g.@media(max-width: 600px) { .col-6 { display: block; } }
@media(max-width: 400px) { .col-12 { display: inline-block; } }
@media(max-width: 600px) { .col-12 { display: block; } }
@media(max-width: 600px) { .col-6 { display: block; } .col-12 { display: block; } }
@media(max-width: 400px) { .col-12 { display: inline-block; } }
asset_providers
- A list of asset providers that are invoked when CSS files are referenced. See below.external_asset_providers
- A list of asset providers that are invoked when absolute CSS URLs are referenced. See below.before_transformation
- A callback run before transformation starts.after_transformation
- A callback run after transformation is completed.In order to make URLs absolute you need to first configure the URL options of the document.
html = '... <a href="/about-us">Read more!</a> ...'
document = Roadie::Document.new html
document.url_options = {host: "myapp.com", protocol: "https"}
document.transform
# => "... <a href=\"https://myapp.com/about-us\">Read more!</a> ..."
The following URLs will be rewritten for you:
a[href]
(HTML)img[src]
(HTML)url()
(CSS)You can disable individual elements by adding an data-roadie-ignore
marker on them. CSS will still be inlined on those elements, but URLs will not be rewritten.
<a href="|UNSUBSCRIBE_URL|" data-roadie-ignore>Unsubscribe</a>
By default, style
and link
elements in the email document's head
are processed along with the stylesheets and removed from the head
.
You can set a special data-roadie-ignore
attribute on style
and link
tags that you want to ignore (the attribute will be removed, however). This is the place to put things like :hover
selectors that you want to have for email clients allowing them.
Style and link elements with media="print"
are also ignored.
<head>
<link rel="stylesheet" type="text/css" href="/assets/emails/rock.css"> <!-- Will be inlined with normal providers -->
<link rel="stylesheet" type="text/css" href="http://www.metal.org/metal.css"> <!-- Will be inlined with external providers, *IF* specified; otherwise ignored. -->
<link rel="stylesheet" type="text/css" href="/assets/jazz.css" media="print"> <!-- Will NOT be inlined; print style -->
<link rel="stylesheet" type="text/css" href="/ambient.css" data-roadie-ignore> <!-- Will NOT be inlined; ignored -->
<style></style> <!-- Will be inlined -->
<style data-roadie-ignore></style> <!-- Will NOT be inlined; ignored -->
</head>
Roadie will use the given asset providers to look for the actual CSS that is referenced. If you don't change the default, it will use the Roadie::FilesystemProvider
which looks for stylesheets on the filesystem, relative to the current working directory.
Example:
# /home/user/foo/stylesheets/primary.css
body { color: green; }
# /home/user/foo/script.rb
html = <<-HTML
<html>
<head>
<link rel="stylesheet" type="text/css" href="/stylesheets/primary.css">
</head>
<body>
</body>
</html>
HTML
Dir.pwd # => "/home/user/foo"
document = Roadie::Document.new html
document.transform # =>
# <!DOCTYPE html>
# <html>
# <head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"></head>
# <body style="color:green;"></body>
# </html>
If a referenced stylesheet cannot be found, the #transform
method will raise an Roadie::CssNotFound
error. If you instead want to ignore missing stylesheets, you can use the NullProvider
.
You can write your own providers if you need very specific behavior for your app, or you can use the built-in providers. Providers come in two groups: normal and external. Normal providers handle paths without host information (/style/foo.css
) while external providers handle URLs with host information (//example.com/foo.css
, localhost:3001/bar.css
, and so on).
The default configuration is to not have any external providers configured, which will cause those referenced stylesheets to be ignored. Adding one or more providers for external assets causes all of them to be searched and inlined, so if you only want this to happen to specific stylesheets you need to add ignore markers to every other styleshheet (see above).
Included providers:
FilesystemProvider
– Looks for files on the filesystem, relative to the given directory unless otherwise specified.ProviderList
– Wraps a list of other providers and searches them in order. The asset_providers
setting is an instance of this. It behaves a lot like an array, so you can push, pop, shift and unshift to it.NullProvider
– Does not actually provide anything, it always finds empty stylesheets. Use this in tests or if you want to ignore stylesheets that cannot be found by your other providers (or if you want to force the other providers to never run).NetHttpProvider
– Downloads stylesheets using Net::HTTP
. Can be given a whitelist of hosts to download from.CachedProvider
– Wraps another provider (or ProviderList
) and caches responses inside the provided cache store.PathRewriterProvider
– Rewrites the passed path and then passes it on to another provider (or ProviderList
).If you want to search several locations on the filesystem, you can declare that:
document.asset_providers = [
Roadie::FilesystemProvider.new(App.root.join("resources", "stylesheets")),
Roadie::FilesystemProvider.new(App.root.join("system", "uploads", "stylesheets")),
]
NullProvider
If you want to ignore stylesheets that cannot be found instead of crashing, push the NullProvider
to the end:
# Don't crash on missing assets
document.asset_providers << Roadie::NullProvider.new
# Don't download assets in tests
document.external_asset_providers.unshift Roadie::NullProvider.new
Note: This will cause the referenced stylesheet to be removed from the source code, so email client will never see it either.
NetHttpProvider
The NetHttpProvider
will download the URLs that is is given using Ruby's standard Net::HTTP
library.
You can give it a whitelist of hosts that downloads are allowed from:
document.external_asset_providers << Roadie::NetHttpProvider.new(
whitelist: ["myapp.com", "assets.myapp.com", "cdn.cdnnetwork.co.jp"],
)
document.external_asset_providers << Roadie::NetHttpProvider.new # Allows every host
CachedProvider
You might want to cache providers from working several times. If you are sending several emails quickly from the same process, this might also save a lot of time on parsing the stylesheets if you use in-memory storage such as a hash.
You can wrap any other kind of providers with it, even a ProviderList
:
document.external_asset_providers = Roadie::CachedProvider.new(document.external_asset_providers, my_cache)
If you don't pass a cache backend, it will use a normal Hash
. The cache store must follow this protocol:
my_cache["key"] = some_stylesheet_instance # => #<Roadie::Stylesheet instance>
my_cache["key"] # => #<Roadie::Stylesheet instance>
my_cache["missing"] # => nil
Warning: The default Hash
store will never be cleared, so make sure you don't allow the number of unique asset paths to grow too large in a single run. This is especially important if you run Roadie in a daemon that accepts arbritary documents, and/or if you use hash digests in your filenames. Making a new instance of CachedProvider
will use a new Hash
instance.
You can implement your own custom cache store by implementing the []
and []=
methods.
class MyRoadieMemcacheStore
def initialize(memcache)
@memcache = memcache
end
def [](path)
css = memcache.read("assets/#{path}/css")
if css
name = memcache.read("assets/#{path}/name") || "cached #{path}"
Roadie::Stylesheet.new(name, css)
end
end
def []=(path, stylesheet)
memcache.write("assets/#{path}/css", stylesheet.to_s)
memcache.write("assets/#{path}/name", stylesheet.name)
stylesheet # You need to return the set Stylesheet
end
end
document.external_asset_providers = Roadie::CachedProvider.new(
document.external_asset_providers,
MyRoadieMemcacheStore.new(MemcacheClient.instance)
)
If you are using Rspec, you can test your implementation by using the shared examples for the "roadie cache store" role:
require "roadie/rspec"
describe MyRoadieMemcacheStore do
let(:memcache_client) { MemcacheClient.instance }
subject { MyRoadieMemcacheStore.new(memcache_client) }
it_behaves_like "roadie cache store" do
before { memcache_client.clear }
end
end
PathRewriterProvider
With this provider, you can rewrite the paths that are searched in order to more easily support another provider. Examples could include rewriting absolute URLs into something that can be found on the filesystem, or to access internal hosts instead of external ones.
filesystem = Roadie::FilesystemProvider.new("assets")
document.asset_providers << Roadie::PathRewriterProvider.new(filesystem) do |path|
path.sub('stylesheets', 'css').downcase
end
document.external_asset_providers = Roadie::PathRewriterProvider.new(filesystem) do |url|
if url =~ /myapp\.com/
URI.parse(url).path.sub(%r{^/assets}, '')
else
url
end
end
You can also wrap a list, for example to implement external_asset_providers
by composing the normal asset_providers
:
document.external_asset_providers =
Roadie::PathRewriterProvider.new(document.asset_providers) do |url|
URI.parse(url).path
end
Writing your own provider is also easy. You need to provide:
#find_stylesheet(name)
, returning either a Roadie::Stylesheet
or nil
.#find_stylesheet!(name)
, returning either a Roadie::Stylesheet
or raising Roadie::CssNotFound
.class UserAssetsProvider
def initialize(user_collection)
@user_collection = user_collection
end
def find_stylesheet(name)
if name =~ %r{^/users/(\d+)\.css$}
user = @user_collection.find_user($1)
Roadie::Stylesheet.new("user #{user.id} stylesheet", user.stylesheet)
end
end
def find_stylesheet!(name)
find_stylesheet(name) or
raise Roadie::CssNotFound.new(
css_name: name, message: "does not match a user stylesheet", provider: self
)
end
# Instead of implementing #find_stylesheet!, you could also:
# include Roadie::AssetProvider
# That will give you a default implementation without any error message. If
# you have multiple error cases, it's recommended that you implement
# #find_stylesheet! without #find_stylesheet and raise with an explanatory
# error message.
end
# Try to look for a user stylesheet first, then fall back to normal filesystem lookup.
document.asset_providers = [
UserAssetsProvider.new(app),
Roadie::FilesystemProvider.new('./stylesheets'),
]
You can test for compliance by using the built-in RSpec examples:
require 'spec_helper'
require 'roadie/rspec'
describe MyOwnProvider do
# Will use the default `subject` (MyOwnProvider.new)
it_behaves_like "roadie asset provider", valid_name: "found.css", invalid_name: "does_not_exist.css"
# Extra setup just for these tests:
it_behaves_like "roadie asset provider", valid_name: "found.css", invalid_name: "does_not_exist.css" do
subject { MyOwnProvider.new(...) }
before { stub_dependencies }
end
end
Some CSS is impossible to inline properly. :hover
and ::after
comes to mind. Roadie tries its best to keep these around by injecting them inside a new <style>
element in the <head>
(or at the beginning of the partial if transforming a partial document).
The problem here is that Roadie cannot possible adjust the specificity for you, so they will not apply the same way as they did before the styles were inlined.
Another caveat is that a lot of email clients does not support this (which is the entire point of inlining in the first place), so don't put anything important in here. Always handle the case of these selectors not being part of the email.
Inlined styles will have much higher specificity than styles in a <style>
. Here's an example:
<style>p:hover { color: blue; }</style>
<p style="color: green;">Hello world</p>
When hovering over this <p>
, the color will not change as the color: green
rule takes precedence. You can get it to work by adding !important
to the :hover
rule.
It would be foolish to try to automatically inject !important
on every rule automatically, so this is a manual process.
If you'd rather skip this and have the styles not possible to inline disappear, you can turn off this feature by setting the keep_uninlinable_css
option to false.
document.keep_uninlinable_css = false
Callbacks allow you to do custom work on documents before they are transformed. The Nokogiri document tree is passed to the callable along with the Roadie::Document
instance:
class TrackNewsletterLinks
def call(dom, document)
dom.css("a").each { |link| fix_link(link) }
end
def fix_link(link)
divider = (link['href'] =~ /?/ ? '&' : '?')
link['href'] = link['href'] + divider + 'source=newsletter'
end
end
document.before_transformation = ->(dom, document) {
logger.debug "Inlining document with title #{dom.at_css('head > title').try(:text)}"
}
document.after_transformation = TrackNewsletterLinks.new
You can configure the underlying HTML/XML engine to output XHTML or HTML (which is the default). One usecase for this is that {
tokens usually gets escaped to {
, which would be a problem if you then pass the resulting HTML on to some other templating engine that uses those tokens (like Handlebars or Mustache).
document.mode = :xhtml
This will also affect the emitted <!DOCTYPE>
if transforming a full document. Partial documents does not have a <!DOCTYPE>
.
Tested with Github CI using:
Let me know if you want any other runtime supported officially.
This project follows Semantic Versioning and has been since version 1.0.0.
Roadie uses Nokogiri to parse and regenerate the HTML of your email, which means that some unintentional changes might show up.
One example would be that Nokogiri might remove your
s in some cases.
Another example is Nokogiri's lack of HTML5 support, so certain new element might have spaces removed. I recommend you don't use HTML5 in emails anyway because of bad email client support (that includes web mail!).
Roadie uses Nokogiri to parse the HTML of your email, so any C-like problems like segfaults are likely in that end. The best way to fix this is to first upgrade libxml2 on your system and then reinstall Nokogiri. Instructions on how to do this on most platforms, see Nokogiri's official install guide.
@keyframes
?The CSS Parser used in Roadie does not handle keyframes. I don't think any email clients do either, but if you want to keep on trying you can add them manually to a <style>
element (or a separate referenced stylesheet) and tell Roadie not to touch them.
@media
queries are reordered, how can I fix this?Different @media
query blocks with the same conditions are merged by default, which will change the order in some cases. You can disable this by setting merge_media_queries
to false
. (See Install & Usage section above).
<body>
elements that are added?It sounds like you want to transform a partial document. Maybe you are building partials or template fragments to later place in other documents. Use Document#transform_partial
instead of Document#transform
in order to treat the HTML as a partial document.
If you add the data-roadie-ignore
attribute on an element, URL rewriting will not be performed on that element. This could be really useful for you if you intend to send the email through some other rendering pipeline that replaces some placeholders/variables.
<a href="/about-us">About us</a>
<a href="|UNSUBSCRIBE_URL|" data-roadie-ignore>Unsubscribe</a>
Note that this will not skip CSS inlining on the element; it will still get the correct styles applied.
If the URL is invalid on purpose, see Can I skip URL rewriting on a specific element? above. Otherwise, you can try to parse it yourself using Ruby's URI
class and see if you can figure it out.
require "uri"
URI.parse("https://example.com/best image.jpg") # raises
URI.parse("https://example.com/best%20image.jpg") # Works!
bundle install
rake
Roadie is set up with the assumption that all CSS and HTML passing through it is under your control. It is not recommended to run arbritary HTML with the default settings.
Care has been given to try to secure all file system accesses, but it is never guaranteed that someone cannot access something they should not be able to access.
In order to secure Roadie against file system access, only use your own asset providers that you yourself can secure against your particular environment.
If you have found any security vulnerability, please email me at magnus.bergmark+security@gmail.com
to disclose it. For very sensitive issues, please use my public GPG key. You can also encrypt your message with my public key and open an issue if you do not want to email me directly. Thank you.
This gem was previously tied to Rails. It is now framework-agnostic and supports any type of HTML documents. If you want to use it with Rails, check out roadie-rails.
Major contributors to Roadie:
You can see all contributors on GitHub.
(The MIT License)
Copyright (c) 2009-2022 Magnus Bergmark, Jim Neath / Purify, and contributors.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the ‘Software’), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Author: Mange
Source code: https://github.com/Mange/roadie
License: MIT license
1669099573
In this article, we will know what is face recognition and how is different from face detection. We will go briefly over the theory of face recognition and then jump on to the coding section. At the end of this article, you will be able to make a face recognition program for recognizing faces in images as well as on a live webcam feed.
In computer vision, one essential problem we are trying to figure out is to automatically detect objects in an image without human intervention. Face detection can be thought of as such a problem where we detect human faces in an image. There may be slight differences in the faces of humans but overall, it is safe to say that there are certain features that are associated with all the human faces. There are various face detection algorithms but Viola-Jones Algorithm is one of the oldest methods that is also used today and we will use the same later in the article. You can go through the Viola-Jones Algorithm after completing this article as I’ll link it at the end of this article.
Face detection is usually the first step towards many face-related technologies, such as face recognition or verification. However, face detection can have very useful applications. The most successful application of face detection would probably be photo taking. When you take a photo of your friends, the face detection algorithm built into your digital camera detects where the faces are and adjusts the focus accordingly.
For a tutorial on Real-Time Face detection
Now that we are successful in making such algorithms that can detect faces, can we also recognise whose faces are they?
Face recognition is a method of identifying or verifying the identity of an individual using their face. There are various algorithms that can do face recognition but their accuracy might vary. Here I am going to describe how we do face recognition using deep learning.
So now let us understand how we recognise faces using deep learning. We make use of face embedding in which each face is converted into a vector and this technique is called deep metric learning. Let me further divide this process into three simple steps for easy understanding:
Face Detection: The very first task we perform is detecting faces in the image or video stream. Now that we know the exact location/coordinates of face, we extract this face for further processing ahead.
Feature Extraction: Now that we have cropped the face out of the image, we extract features from it. Here we are going to use face embeddings to extract the features out of the face. A neural network takes an image of the person’s face as input and outputs a vector which represents the most important features of a face. In machine learning, this vector is called embedding and thus we call this vector as face embedding. Now how does this help in recognizing faces of different persons?
While training the neural network, the network learns to output similar vectors for faces that look similar. For example, if I have multiple images of faces within different timespan, of course, some of the features of my face might change but not up to much extent. So in this case the vectors associated with the faces are similar or in short, they are very close in the vector space. Take a look at the below diagram for a rough idea:
Now after training the network, the network learns to output vectors that are closer to each other(similar) for faces of the same person(looking similar). The above vectors now transform into:
We are not going to train such a network here as it takes a significant amount of data and computation power to train such networks. We will use a pre-trained network trained by Davis King on a dataset of ~3 million images. The network outputs a vector of 128 numbers which represent the most important features of a face.
Now that we know how this network works, let us see how we use this network on our own data. We pass all the images in our data to this pre-trained network to get the respective embeddings and save these embeddings in a file for the next step.
Comparing faces: Now that we have face embeddings for every face in our data saved in a file, the next step is to recognise a new t image that is not in our data. So the first step is to compute the face embedding for the image using the same network we used above and then compare this embedding with the rest of the embeddings we have. We recognise the face if the generated embedding is closer or similar to any other embedding as shown below:
So we passed two images, one of the images is of Vladimir Putin and other of George W. Bush. In our example above, we did not save the embeddings for Putin but we saved the embeddings of Bush. Thus when we compared the two new embeddings with the existing ones, the vector for Bush is closer to the other face embeddings of Bush whereas the face embeddings of Putin are not closer to any other embedding and thus the program cannot recognise him.
In the field of Artificial Intelligence, Computer Vision is one of the most interesting and Challenging tasks. Computer Vision acts like a bridge between Computer Software and visualizations around us. It allows computer software to understand and learn about the visualizations in the surroundings. For Example: Based on the color, shape and size determining the fruit. This task can be very easy for the human brain however in the Computer Vision pipeline, first we gather the data, then we perform the data processing activities and then we train and teach the model to understand how to distinguish between the fruits based on size, shape and color of fruit.
Currently, various packages are present to perform machine learning, deep learning and computer vision tasks. By far, computer vision is the best module for such complex activities. OpenCV is an open-source library. It is supported by various programming languages such as R, Python. It runs on most of the platforms such as Windows, Linux and MacOS.
To know more about how face recognition works on opencv, check out the free course on face recognition in opencv.
Advantages of OpenCV:
Installation:
Here we will be focusing on installing OpenCV for python only. We can install OpenCV using pip or conda(for anaconda environment).
Using pip, the installation process of openCV can be done by using the following command in the command prompt.
pip install opencv-python
If you are using anaconda environment, either you can execute the above code in anaconda prompt or you can execute the following code in anaconda prompt.
conda install -c conda-forge opencv
In this section, we shall implement face recognition using OpenCV and Python. First, let us see the libraries we will need and how to install them:
OpenCV is an image and video processing library and is used for image and video analysis, like facial detection, license plate reading, photo editing, advanced robotic vision, optical character recognition, and a whole lot more.
The dlib library, maintained by Davis King, contains our implementation of “deep metric learning” which is used to construct our face embeddings used for the actual recognition process.
The face_recognition library, created by Adam Geitgey, wraps around dlib’s facial recognition functionality, and this library is super easy to work with and we will be using this in our code. Remember to install dlib library first before you install face_recognition.
To install OpenCV, type in command prompt
pip install opencv-python |
I have tried various ways to install dlib on Windows but the easiest of all of them is via Anaconda. First, install Anaconda (here is a guide to install it) and then use this command in your command prompt:
conda install -c conda-forge dlib |
Next to install face_recognition, type in command prompt
pip install face_recognition |
Now that we have all the dependencies installed, let us start coding. We will have to create three files, one will take our dataset and extract face embedding for each face using dlib. Next, we will save these embedding in a file.
In the next file we will compare the faces with the existing the recognise faces in images and next we will do the same but recognise faces in live webcam feed
First, you need to get a dataset or even create one of you own. Just make sure to arrange all images in folders with each folder containing images of just one person.
Next, save the dataset in a folder the same as you are going to make the file. Now here is the code:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
|
Now that we have stored the embedding in a file named “face_enc”, we can use them to recognise faces in images or live video stream.
Here is the script to recognise faces on a live webcam feed:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
|
https://www.youtube.com/watch?v=fLnGdkZxRkg
Although in the example above we have used haar cascade to detect faces, you can also use face_recognition.face_locations to detect a face as we did in the previous script
The script for detecting and recognising faces in images is almost similar to what you saw above. Try it yourself and if you can’t take a look at the code below:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
|
Output:
InputOutput
This brings us to the end of this article where we learned about face recognition.
You can also upskill with Great Learning’s PGP Artificial Intelligence and Machine Learning Course. The course offers mentorship from industry leaders, and you will also have the opportunity to work on real-time industry-relevant projects.
Original article source at: https://www.mygreatlearning.com