Crypto Like

Crypto Like

1634365806

What is French Connection Finance (FCF) | What is FCF token

In this article, we'll discuss information about the French Connection Finance project and FCF token. 

Reflection token that rewards holders with a 9% smart chain reflection every 24 hours. $FCF is building an ecosystem that focuses on encrypted credit card payment through cryptocurrency. French connection finance will allow every credit card holders to be able to make online purchases through the FCF gateway by using cryptocurrency without owning a blockchain wallet.

Decentralized Application Ecosystem Under Construction

FCF Pay (Easy credit card to crypto online payment processing application)

The main problem in world wide cryptocurrency adoption is it’s non-friendly user applications.

$FCF is creating a crypto payment gateway for e-commerces. Allowing merchant to accept any cryptocurrency or FIAT in exchange of their product/services. The payment gateway will function like Paypal and will give the option of purchasinbg crypto on it. Retailers are going to be able to use crypto as a payment method (encrypted online shopping). This payment gateway will allow crypto users to use their capital gains without paying any taxes! All the fees collected from the transactions are going to be sent into the liquidity pool (increasing FCF base price) and the dividend pool (Rewarding holders with BNB)

Tokenquiz

TokenQuiz is a platform where BSC user can learn about new and/or established token and earn money by answering to 5 questions about the token!

BSC developers can use the tokenquiz platform to promote and bring awarness to their project while gaining educated holders. This is the new “airdrops” . Being listed on tokenquiz will generate a big volume of exposure and interest from potential investors.

Tokenquiz will have banner ads and token promoted section. Both being paid advertisement.

To be on the promoted section you will have to hold a certain amount of FCF LP. (Making FCF LP stronger)

To have a banner ad, the projects will have to pay a daily fee. A % of the daily fee will be redistributed to FCF holders as dividends and another % will be sent directly to FCF LP.

FCF NForT (LAUNCHED)

The world’s first NFT collection security vault! Unruggable and unhackable! Legitimate NFT collection creators will host their NFT collection and securing the NFT’s metadata by locking them into the NForT through our API and secured for a lifetime!

Content creators who uses www.nfort.io to secure their NFT metadata will receive a full proof of lock and will earn the NFORT trust emblem that can be shared with their communities. 

FCF Raffle

$FCF daily raffle is being developed right now. You could win daily prizes as NFT/BNB OR FCF$.

Be in it to win it!

FCF World Connect

FCF world connect is a major secret Dapp that will revolutionize the De-Fi world. We are keeping this project super secretive until it’s full release. (Beta version will be tested in April 2022) Stay tuned!

FCF De-Fi Wallet

FCF De-Fi wallet will be launched in december. FCF wallet will allow all the $FCF community to access to the $FCF ecosystem in 1 click! Trade and buy crypto with ease!

The Disruptive Part Of French Connection Finance

The Future of De-Fi

Deflationary tokens are a thing of the past, why would you invest your hard earned money into a De-fi Project who rewards you with micro fractions of pennies in their own cryptocurrency?

We believe that every investor shouldn’t have to spend their day looking at BSC charts while hoping their investments go up. We want our investors to be automatically rewarded daily with high percentage dividends that gets compounded every time!

This is truly the only and the most disruptive token that rewards true holders every day!

Hold the French connection token and get rewarded every 24hours in BNB!

Simple Yet Powerful Tokenomics

2% Marketing

5% Dividend Pool

3% Liquidity pool

Max Supply: 100,000,000,000 FCF token

Circulating Supply: 91.07B FCF

​How and Where to Buy FCF token?

FCF token is now live on the Binance mainnet. The token address for FCF is 0x4673f018cc6d401aad0402bdbf2abcbf43dd69f3. Be cautious not to purchase any other token with a smart contract different from this one (as this can be easily faked). We strongly advise to be vigilant and stay safe throughout the launch. Don’t let the excitement get the best of you.

Just be sure you have enough BNB in your wallet to cover the transaction fees.

Join To Get BNB (Binance Coin)! ☞ CLICK HERE

You will have to first buy one of the major cryptocurrencies, usually either Bitcoin (BTC), Ethereum (ETH), Tether (USDT), Binance (BNB)…

We will use Binance Exchange here as it is one of the largest crypto exchanges that accept fiat deposits.

Once you finished the KYC process. You will be asked to add a payment method. Here you can either choose to provide a credit/debit card or use a bank transfer, and buy one of the major cryptocurrencies, usually either Bitcoin (BTC), Ethereum (ETH), Tether (USDT), Binance (BNB)…

☞ SIGN UP ON BINANCE

Step by Step Guide : What is Binance | How to Create an account on Binance (Updated 2021)

Next step

You need a wallet address to Connect to Pancakeswap Decentralized Exchange, we use Metamask wallet

If you don’t have a Metamask wallet, read this article and follow the steps ☞ What is Metamask wallet | How to Create a wallet and Use

Transfer $BNB to your new Metamask wallet from your existing wallet

Next step

Connect Metamask Wallet to Pancakeswap Decentralized Exchange and Buy, Swap FCF token

Contract: 0x4673f018cc6d401aad0402bdbf2abcbf43dd69f3

Read more: What is Pancakeswap | Beginner’s Guide on How to Use Pancakeswap

The top exchange for trading in FCF token is currently: PancakeSwap v2 

Find more information FCF token

☞ Website ☞ Explorer  ☞ Social Channel ☞ Social Channel 2 ☞ Social Channel 3  ☞ Coinmarketcap

Top exchanges for token-coin trading. Follow instructions and make unlimited money

BinanceBittrexPoloniexBitfinexHuobiMXCProBITGate.ioCoinbase

🔺DISCLAIMER: The Information in the post isn’t financial advice, is intended FOR GENERAL INFORMATION PURPOSES ONLY. Trading Cryptocurrency is VERY risky. Make sure you understand these risks and that you are responsible for what you do with your money.

🔥 If you’re a beginner. I believe the article below will be useful to you ☞ What You Should Know Before Investing in Cryptocurrency - For Beginner

⭐ ⭐ ⭐The project is of interest to the community. Join to Get free ‘GEEK coin’ (GEEKCASH coin)!

☞ **-----https://geekcash.org-----**⭐ ⭐ ⭐

I hope this post will help you. Don't forget to leave a like, comment and sharing it with others. Thank you!

#bitcoin #cryptocurrency

What is GEEK

Buddha Community

What is French Connection Finance (FCF) | What is FCF token
Angelina roda

Angelina roda

1624219980

How to Buy NFT Art Finance Token - The EASIEST METHOD! DO NOT MISS!!! JUST IN 4 MINUTES

NFT Art Finance is currently one of the most popular cryptocurrencies right now on the market, so in today’s video, I will be showing you guys how to easily buy NFT Art Finance on your phone using the Trust Wallet application.
📺 The video in this post was made by More LimSanity
The origin of the article: https://www.youtube.com/watch?v=sKE6Pc_w1IE
🔺 DISCLAIMER: The article is for information sharing. The content of this video is solely the opinions of the speaker who is not a licensed financial advisor or registered investment advisor. Not investment advice or legal advice.
Cryptocurrency trading is VERY risky. Make sure you understand these risks and that you are responsible for what you do with your money
🔥 If you’re a beginner. I believe the article below will be useful to you ☞ What You Should Know Before Investing in Cryptocurrency - For Beginner
⭐ ⭐ ⭐The project is of interest to the community. Join to Get free ‘GEEK coin’ (GEEKCASH coin)!
☞ **-----CLICK HERE-----**⭐ ⭐ ⭐
Thanks for visiting and watching! Please don’t forget to leave a like, comment and share!

#bitcoin #blockchain #nft art finance token #token #buy nft art finance #how to buy nft art finance token - the easiest method!

PostgreSQL Connection Pooling: Part 4 – PgBouncer vs. Pgpool-II

In our previous posts in this series, we spoke at length about using PgBouncer  and Pgpool-II , the connection pool architecture and pros and cons of leveraging one for your PostgreSQL deployment. In our final post, we will put them head-to-head in a detailed feature comparison and compare the results of PgBouncer vs. Pgpool-II performance for your PostgreSQL hosting !

The bottom line – Pgpool-II is a great tool if you need load-balancing and high availability. Connection pooling is almost a bonus you get alongside. PgBouncer does only one thing, but does it really well. If the objective is to limit the number of connections and reduce resource consumption, PgBouncer wins hands down.

It is also perfectly fine to use both PgBouncer and Pgpool-II in a chain – you can have a PgBouncer to provide connection pooling, which talks to a Pgpool-II instance that provides high availability and load balancing. This gives you the best of both worlds!

Using PgBouncer with Pgpool-II - Connection Pooling Diagram

PostgreSQL Connection Pooling: Part 4 – PgBouncer vs. Pgpool-II

CLICK TO TWEET

Performance Testing

While PgBouncer may seem to be the better option in theory, theory can often be misleading. So, we pitted the two connection poolers head-to-head, using the standard pgbench tool, to see which one provides better transactions per second throughput through a benchmark test. For good measure, we ran the same tests without a connection pooler too.

Testing Conditions

All of the PostgreSQL benchmark tests were run under the following conditions:

  1. Initialized pgbench using a scale factor of 100.
  2. Disabled auto-vacuuming on the PostgreSQL instance to prevent interference.
  3. No other workload was working at the time.
  4. Used the default pgbench script to run the tests.
  5. Used default settings for both PgBouncer and Pgpool-II, except max_children*. All PostgreSQL limits were also set to their defaults.
  6. All tests ran as a single thread, on a single-CPU, 2-core machine, for a duration of 5 minutes.
  7. Forced pgbench to create a new connection for each transaction using the -C option. This emulates modern web application workloads and is the whole reason to use a pooler!

We ran each iteration for 5 minutes to ensure any noise averaged out. Here is how the middleware was installed:

  • For PgBouncer, we installed it on the same box as the PostgreSQL server(s). This is the configuration we use in our managed PostgreSQL clusters. Since PgBouncer is a very light-weight process, installing it on the box has no impact on overall performance.
  • For Pgpool-II, we tested both when the Pgpool-II instance was installed on the same machine as PostgreSQL (on box column), and when it was installed on a different machine (off box column). As expected, the performance is much better when Pgpool-II is off the box as it doesn’t have to compete with the PostgreSQL server for resources.

Throughput Benchmark

Here are the transactions per second (TPS) results for each scenario across a range of number of clients:

#database #developer #performance #postgresql #connection control #connection pooler #connection pooler performance #connection queue #high availability #load balancing #number of connections #performance testing #pgbench #pgbouncer #pgbouncer and pgpool-ii #pgbouncer vs pgpool #pgpool-ii #pooling modes #postgresql connection pooling #postgresql limits #resource consumption #throughput benchmark #transactions per second #without pooling

David mr

David mr

1624312800

SPORE FINANCE PREDICTION - WHAT IS SPORE FINANCE & SPORE FINANCE ANALYSIS - SPORE FINANCE

SPORE FINANCE PREDICTION - WHAT IS SPORE FINANCE & SPORE FINANCE ANALYSIS - SPORE FINANCE

In this video, I talk about spore finance coin and give my spore finance prediction. I talk about the latest spore finance analysis & spore finance crypto coin that recently has been hit pretty hard in the last 24 hours. I go over what is spore finance and how many holders are on this new crypto coin spore finance.
📺 The video in this post was made by Josh’s Finance
The origin of the article: https://www.youtube.com/watch?v=qbPQvdxCtEI
🔺 DISCLAIMER: The article is for information sharing. The content of this video is solely the opinions of the speaker who is not a licensed financial advisor or registered investment advisor. Not investment advice or legal advice.
Cryptocurrency trading is VERY risky. Make sure you understand these risks and that you are responsible for what you do with your money
🔥 If you’re a beginner. I believe the article below will be useful to you ☞ What You Should Know Before Investing in Cryptocurrency - For Beginner
⭐ ⭐ ⭐The project is of interest to the community. Join to Get free ‘GEEK coin’ (GEEKCASH coin)!
☞ **-----CLICK HERE-----**⭐ ⭐ ⭐
Thanks for visiting and watching! Please don’t forget to leave a like, comment and share!

#bitcoin #blockchain #spore finance #what is spore finance #spore finance prediction - what is spore finance & spore finance analysis - spore finance #spore finance prediction

Words Counted: A Ruby Natural Language Processor.

WordsCounted

We are all in the gutter, but some of us are looking at the stars.

-- Oscar Wilde

WordsCounted is a Ruby NLP (natural language processor). WordsCounted lets you implement powerful tokensation strategies with a very flexible tokeniser class.

Are you using WordsCounted to do something interesting? Please tell me about it.

 

Demo

Visit this website for one example of what you can do with WordsCounted.

Features

  • Out of the box, get the following data from any string or readable file, or URL:
    • Token count and unique token count
    • Token densities, frequencies, and lengths
    • Char count and average chars per token
    • The longest tokens and their lengths
    • The most frequent tokens and their frequencies.
  • A flexible way to exclude tokens from the tokeniser. You can pass a string, regexp, symbol, lambda, or an array of any combination of those types for powerful tokenisation strategies.
  • Pass your own regexp rules to the tokeniser if you prefer. The default regexp filters special characters but keeps hyphens and apostrophes. It also plays nicely with diacritics (UTF and unicode characters): Bayrūt is treated as ["Bayrūt"] and not ["Bayr", "ū", "t"], for example.
  • Opens and reads files. Pass in a file path or a url instead of a string.

Installation

Add this line to your application's Gemfile:

gem 'words_counted'

And then execute:

$ bundle

Or install it yourself as:

$ gem install words_counted

Usage

Pass in a string or a file path, and an optional filter and/or regexp.

counter = WordsCounted.count(
  "We are all in the gutter, but some of us are looking at the stars."
)

# Using a file
counter = WordsCounted.from_file("path/or/url/to/my/file.txt")

.count and .from_file are convenience methods that take an input, tokenise it, and return an instance of WordsCounted::Counter initialized with the tokens. The WordsCounted::Tokeniser and WordsCounted::Counter classes can be used alone, however.

API

WordsCounted

WordsCounted.count(input, options = {})

Tokenises input and initializes a WordsCounted::Counter object with the resulting tokens.

counter = WordsCounted.count("Hello Beirut!")

Accepts two options: exclude and regexp. See Excluding tokens from the analyser and Passing in a custom regexp respectively.

WordsCounted.from_file(path, options = {})

Reads and tokenises a file, and initializes a WordsCounted::Counter object with the resulting tokens.

counter = WordsCounted.from_file("hello_beirut.txt")

Accepts the same options as .count.

Tokeniser

The tokeniser allows you to tokenise text in a variety of ways. You can pass in your own rules for tokenisation, and apply a powerful filter with any combination of rules as long as they can boil down into a lambda.

Out of the box the tokeniser includes only alpha chars. Hyphenated tokens and tokens with apostrophes are considered a single token.

#tokenise([pattern: TOKEN_REGEXP, exclude: nil])

tokeniser = WordsCounted::Tokeniser.new("Hello Beirut!").tokenise

# With `exclude`
tokeniser = WordsCounted::Tokeniser.new("Hello Beirut!").tokenise(exclude: "hello")

# With `pattern`
tokeniser = WordsCounted::Tokeniser.new("I <3 Beirut!").tokenise(pattern: /[a-z]/i)

See Excluding tokens from the analyser and Passing in a custom regexp for more information.

Counter

The WordsCounted::Counter class allows you to collect various statistics from an array of tokens.

#token_count

Returns the token count of a given string.

counter.token_count #=> 15

#token_frequency

Returns a sorted (unstable) two-dimensional array where each element is a token and its frequency. The array is sorted by frequency in descending order.

counter.token_frequency

[
  ["the", 2],
  ["are", 2],
  ["we",  1],
  # ...
  ["all", 1]
]

#most_frequent_tokens

Returns a hash where each key-value pair is a token and its frequency.

counter.most_frequent_tokens

{ "are" => 2, "the" => 2 }

#token_lengths

Returns a sorted (unstable) two-dimentional array where each element contains a token and its length. The array is sorted by length in descending order.

counter.token_lengths

[
  ["looking", 7],
  ["gutter",  6],
  ["stars",   5],
  # ...
  ["in",      2]
]

#longest_tokens

Returns a hash where each key-value pair is a token and its length.

counter.longest_tokens

{ "looking" => 7 }

#token_density([ precision: 2 ])

Returns a sorted (unstable) two-dimentional array where each element contains a token and its density as a float, rounded to a precision of two. The array is sorted by density in descending order. It accepts a precision argument, which must be a float.

counter.token_density

[
  ["are",     0.13],
  ["the",     0.13],
  ["but",     0.07 ],
  # ...
  ["we",      0.07 ]
]

#char_count

Returns the char count of tokens.

counter.char_count #=> 76

#average_chars_per_token([ precision: 2 ])

Returns the average char count per token rounded to two decimal places. Accepts a precision argument which defaults to two. Precision must be a float.

counter.average_chars_per_token #=> 4

#uniq_token_count

Returns the number of unique tokens.

counter.uniq_token_count #=> 13

Excluding tokens from the tokeniser

You can exclude anything you want from the input by passing the exclude option. The exclude option accepts a variety of filters and is extremely flexible.

  1. A space-delimited string. The filter will normalise the string.
  2. A regular expression.
  3. A lambda.
  4. A symbol that names a predicate method. For example :odd?.
  5. An array of any combination of the above.
tokeniser =
  WordsCounted::Tokeniser.new(
    "Magnificent! That was magnificent, Trevor."
  )

# Using a string
tokeniser.tokenise(exclude: "was magnificent")
# => ["that", "trevor"]

# Using a regular expression
tokeniser.tokenise(exclude: /trevor/)
# => ["magnificent", "that", "was", "magnificent"]

# Using a lambda
tokeniser.tokenise(exclude: ->(t) { t.length < 4 })
# => ["magnificent", "that", "magnificent", "trevor"]

# Using symbol
tokeniser = WordsCounted::Tokeniser.new("Hello! محمد")
tokeniser.tokenise(exclude: :ascii_only?)
# => ["محمد"]

# Using an array
tokeniser = WordsCounted::Tokeniser.new(
  "Hello! اسماءنا هي محمد، كارولينا، سامي، وداني"
)
tokeniser.tokenise(
  exclude: [:ascii_only?, /محمد/, ->(t) { t.length > 6}, "و"]
)
# => ["هي", "سامي", "وداني"]

Passing in a custom regexp

The default regexp accounts for letters, hyphenated tokens, and apostrophes. This means twenty-one is treated as one token. So is Mohamad's.

/[\p{Alpha}\-']+/

You can pass your own criteria as a Ruby regular expression to split your string as desired.

For example, if you wanted to include numbers, you can override the regular expression:

counter = WordsCounted.count("Numbers 1, 2, and 3", pattern: /[\p{Alnum}\-']+/)
counter.tokens
#=> ["numbers", "1", "2", "and", "3"]

Opening and reading files

Use the from_file method to open files. from_file accepts the same options as .count. The file path can be a URL.

counter = WordsCounted.from_file("url/or/path/to/file.text")

Gotchas

A hyphen used in leu of an em or en dash will form part of the token. This affects the tokeniser algorithm.

counter = WordsCounted.count("How do you do?-you are well, I see.")
counter.token_frequency

[
  ["do",   2],
  ["how",  1],
  ["you",  1],
  ["-you", 1], # WTF, mate!
  ["are",  1],
  # ...
]

In this example -you and you are separate tokens. Also, the tokeniser does not include numbers by default. Remember that you can pass your own regular expression if the default behaviour does not fit your needs.

A note on case sensitivity

The program will normalise (downcase) all incoming strings for consistency and filters.

Roadmap

Ability to open URLs

def self.from_url
  # open url and send string here after removing html
end

Contributors

See contributors.

Contributing

  1. Fork it
  2. Create your feature branch (git checkout -b my-new-feature)
  3. Commit your changes (git commit -am 'Add some feature')
  4. Push to the branch (git push origin my-new-feature)
  5. Create new Pull Request

Author: abitdodgy
Source code: https://github.com/abitdodgy/words_counted
License: MIT license

#ruby  #ruby-on-rails 

Royce  Reinger

Royce Reinger

1658068560

WordsCounted: A Ruby Natural Language Processor

WordsCounted

We are all in the gutter, but some of us are looking at the stars.

-- Oscar Wilde

WordsCounted is a Ruby NLP (natural language processor). WordsCounted lets you implement powerful tokensation strategies with a very flexible tokeniser class.

Features

  • Out of the box, get the following data from any string or readable file, or URL:
    • Token count and unique token count
    • Token densities, frequencies, and lengths
    • Char count and average chars per token
    • The longest tokens and their lengths
    • The most frequent tokens and their frequencies.
  • A flexible way to exclude tokens from the tokeniser. You can pass a string, regexp, symbol, lambda, or an array of any combination of those types for powerful tokenisation strategies.
  • Pass your own regexp rules to the tokeniser if you prefer. The default regexp filters special characters but keeps hyphens and apostrophes. It also plays nicely with diacritics (UTF and unicode characters): Bayrūt is treated as ["Bayrūt"] and not ["Bayr", "ū", "t"], for example.
  • Opens and reads files. Pass in a file path or a url instead of a string.

Installation

Add this line to your application's Gemfile:

gem 'words_counted'

And then execute:

$ bundle

Or install it yourself as:

$ gem install words_counted

Usage

Pass in a string or a file path, and an optional filter and/or regexp.

counter = WordsCounted.count(
  "We are all in the gutter, but some of us are looking at the stars."
)

# Using a file
counter = WordsCounted.from_file("path/or/url/to/my/file.txt")

.count and .from_file are convenience methods that take an input, tokenise it, and return an instance of WordsCounted::Counter initialized with the tokens. The WordsCounted::Tokeniser and WordsCounted::Counter classes can be used alone, however.

API

WordsCounted

WordsCounted.count(input, options = {})

Tokenises input and initializes a WordsCounted::Counter object with the resulting tokens.

counter = WordsCounted.count("Hello Beirut!")

Accepts two options: exclude and regexp. See Excluding tokens from the analyser and Passing in a custom regexp respectively.

WordsCounted.from_file(path, options = {})

Reads and tokenises a file, and initializes a WordsCounted::Counter object with the resulting tokens.

counter = WordsCounted.from_file("hello_beirut.txt")

Accepts the same options as .count.

Tokeniser

The tokeniser allows you to tokenise text in a variety of ways. You can pass in your own rules for tokenisation, and apply a powerful filter with any combination of rules as long as they can boil down into a lambda.

Out of the box the tokeniser includes only alpha chars. Hyphenated tokens and tokens with apostrophes are considered a single token.

#tokenise([pattern: TOKEN_REGEXP, exclude: nil])

tokeniser = WordsCounted::Tokeniser.new("Hello Beirut!").tokenise

# With `exclude`
tokeniser = WordsCounted::Tokeniser.new("Hello Beirut!").tokenise(exclude: "hello")

# With `pattern`
tokeniser = WordsCounted::Tokeniser.new("I <3 Beirut!").tokenise(pattern: /[a-z]/i)

See Excluding tokens from the analyser and Passing in a custom regexp for more information.

Counter

The WordsCounted::Counter class allows you to collect various statistics from an array of tokens.

#token_count

Returns the token count of a given string.

counter.token_count #=> 15

#token_frequency

Returns a sorted (unstable) two-dimensional array where each element is a token and its frequency. The array is sorted by frequency in descending order.

counter.token_frequency

[
  ["the", 2],
  ["are", 2],
  ["we",  1],
  # ...
  ["all", 1]
]

#most_frequent_tokens

Returns a hash where each key-value pair is a token and its frequency.

counter.most_frequent_tokens

{ "are" => 2, "the" => 2 }

#token_lengths

Returns a sorted (unstable) two-dimentional array where each element contains a token and its length. The array is sorted by length in descending order.

counter.token_lengths

[
  ["looking", 7],
  ["gutter",  6],
  ["stars",   5],
  # ...
  ["in",      2]
]

#longest_tokens

Returns a hash where each key-value pair is a token and its length.

counter.longest_tokens

{ "looking" => 7 }

#token_density([ precision: 2 ])

Returns a sorted (unstable) two-dimentional array where each element contains a token and its density as a float, rounded to a precision of two. The array is sorted by density in descending order. It accepts a precision argument, which must be a float.

counter.token_density

[
  ["are",     0.13],
  ["the",     0.13],
  ["but",     0.07 ],
  # ...
  ["we",      0.07 ]
]

#char_count

Returns the char count of tokens.

counter.char_count #=> 76

#average_chars_per_token([ precision: 2 ])

Returns the average char count per token rounded to two decimal places. Accepts a precision argument which defaults to two. Precision must be a float.

counter.average_chars_per_token #=> 4

#uniq_token_count

Returns the number of unique tokens.

counter.uniq_token_count #=> 13

Excluding tokens from the tokeniser

You can exclude anything you want from the input by passing the exclude option. The exclude option accepts a variety of filters and is extremely flexible.

  1. A space-delimited string. The filter will normalise the string.
  2. A regular expression.
  3. A lambda.
  4. A symbol that names a predicate method. For example :odd?.
  5. An array of any combination of the above.
tokeniser =
  WordsCounted::Tokeniser.new(
    "Magnificent! That was magnificent, Trevor."
  )

# Using a string
tokeniser.tokenise(exclude: "was magnificent")
# => ["that", "trevor"]

# Using a regular expression
tokeniser.tokenise(exclude: /trevor/)
# => ["magnificent", "that", "was", "magnificent"]

# Using a lambda
tokeniser.tokenise(exclude: ->(t) { t.length < 4 })
# => ["magnificent", "that", "magnificent", "trevor"]

# Using symbol
tokeniser = WordsCounted::Tokeniser.new("Hello! محمد")
tokeniser.tokenise(exclude: :ascii_only?)
# => ["محمد"]

# Using an array
tokeniser = WordsCounted::Tokeniser.new(
  "Hello! اسماءنا هي محمد، كارولينا، سامي، وداني"
)
tokeniser.tokenise(
  exclude: [:ascii_only?, /محمد/, ->(t) { t.length > 6}, "و"]
)
# => ["هي", "سامي", "وداني"]

Passing in a custom regexp

The default regexp accounts for letters, hyphenated tokens, and apostrophes. This means twenty-one is treated as one token. So is Mohamad's.

/[\p{Alpha}\-']+/

You can pass your own criteria as a Ruby regular expression to split your string as desired.

For example, if you wanted to include numbers, you can override the regular expression:

counter = WordsCounted.count("Numbers 1, 2, and 3", pattern: /[\p{Alnum}\-']+/)
counter.tokens
#=> ["numbers", "1", "2", "and", "3"]

Opening and reading files

Use the from_file method to open files. from_file accepts the same options as .count. The file path can be a URL.

counter = WordsCounted.from_file("url/or/path/to/file.text")

Gotchas

A hyphen used in leu of an em or en dash will form part of the token. This affects the tokeniser algorithm.

counter = WordsCounted.count("How do you do?-you are well, I see.")
counter.token_frequency

[
  ["do",   2],
  ["how",  1],
  ["you",  1],
  ["-you", 1], # WTF, mate!
  ["are",  1],
  # ...
]

In this example -you and you are separate tokens. Also, the tokeniser does not include numbers by default. Remember that you can pass your own regular expression if the default behaviour does not fit your needs.

A note on case sensitivity

The program will normalise (downcase) all incoming strings for consistency and filters.

Roadmap

Ability to open URLs

def self.from_url
  # open url and send string here after removing html
end

Are you using WordsCounted to do something interesting? Please tell me about it.

Gem Version 

RubyDoc documentation.

Demo

Visit this website for one example of what you can do with WordsCounted.


Contributors

See contributors.

Contributing

  1. Fork it
  2. Create your feature branch (git checkout -b my-new-feature)
  3. Commit your changes (git commit -am 'Add some feature')
  4. Push to the branch (git push origin my-new-feature)
  5. Create new Pull Request

Author: Abitdodgy
Source Code: https://github.com/abitdodgy/words_counted 
License: MIT license

#ruby #nlp