Askari Haider

1612443976

How To Encrypt & Decrypt URL in Django 5 Lines Of Code

https://www.youtube.com/watch?v=pp6I4rw-dtk

Download Link is Avaiable On my Video Discription ":) https://www.youtube.com/watch?v=pp6I4rw-dtk

Subscribe Now

#python #django #djangoecnryption #ecommerce

What is GEEK

Buddha Community

How To Encrypt & Decrypt URL in Django 5 Lines Of Code
Ahebwe  Oscar

Ahebwe Oscar

1620177818

Django admin full Customization step by step

Welcome to my blog , hey everyone in this article you learn how to customize the Django app and view in the article you will know how to register  and unregister  models from the admin view how to add filtering how to add a custom input field, and a button that triggers an action on all objects and even how to change the look of your app and page using the Django suit package let’s get started.

Database

Custom Titles of Django Admin

Exclude in Django Admin

Fields in Django Admin

#django #create super user django #customize django admin dashboard #django admin #django admin custom field display #django admin customization #django admin full customization #django admin interface #django admin register all models #django customization

Ethen Ellen

1619519725

Immediate $olution to Fix AOL Blerk Error Code 5 with easy instructions

This is image title

AOL Email is one of the leading web email services. It has a number of features who access easily at any place. Through this, you can easily share messages, documents or files, etc.AOL Blerk Error is not a big issue. It is a temporary error and it occurs when there is an issue in loading messages from the AOL server. If your mind is stuck, How to Resolve or Fix AOL Blerk Error Code 5? Here, In this article, we mentioned troubleshooting steps to fix AOL Blerk Error Code 5.

What are the causes of AOL Blerk Error Code 5?

AOL mail usually presents an AOL Blerk Error 5 after the AOL connection details have been entered. meaning. Your password and your username. This error is usually found in words! Or 'BLERK! Error 5 Authentication problem, 'Your sign-in has been received.

Some of the reasons for the error are as follows:
• Internet browser configuration problem

• Saved erroneous bookmark addresses

• browser cache or cookie

• An AOL Desktop Gold technical error.
How to Fix AOL Mail Blerk Error 5 in a Simple Way

This type of error is mostly due to your browser settings or the use of outdated, obsolete software. Users should remember that the steps to solve problems vary, depending on the browser you are using. Here are the steps to fix the mistake, check your browser and follow the steps.

Internet Explorer: Make sure you use the most recent web browser version. Open a new window and follow the “Tools> Web Options> Security> Internet Zone” thread. Activate ‘Safeguard Mode’ and follow the steps to include AOL Mail in the list of assured websites. Start the browser again to save changes and run Internet Explorer without additional information.
Firefox Mozilla: Open a new Firefox window and press Menu. To start the browser in safe mode, disable the add-on and choose the option to restart Firefox. You can see two options in the dialog box. Use the “Start in Safe Mode” option to disable all themes and extensions. The browser also turns off the hardware speed and resets the toolbar. You should be able to execute AOL mail when this happens.

Google Chrome: Update to the latest version of Chrome. Open the browser and go to the Advanced Options section. Go to ‘Security and Privacy’ and close the appropriate add-ons. Once the browsing history is deleted, the password, cookies saved and the cache will be cleared. Restart your system and try to log in to your AOL account with a new window.

Safari: Some pop-up windows block AOL mail when it comes to Safari and causes authentication issues. To fix the error, use Safari Security Preferences to enable the pop-up window and disable the security warning.

If you see, even when you change the required browser settings, the black error will not disappear, you can consult a skilled professional and see all the AOL email customer support numbers.

Get Connect to Fix Blerk Error Even After Clearing Cache & Cookies?
Somehow you can contact AOL technical support directly and get immediate help if you still get the error. Call +1(888)857-5157 to receive assistance from the AOL technical support team.

Source: https://email-expert247.blogspot.com/2021/04/immediate-olution-to-fix-aol-blerk.html “How to Resolve or Fix AOL Blerk Error Code 5”)**? Here, In this article, we mentioned troubleshooting steps to fix AOL Blerk Error Code 5.

What are the causes of AOL Blerk Error Code 5?

AOL mail usually presents an AOL Blerk Error 5 after the AOL connection details have been entered. meaning. Your password and your username. This error is usually found in words! Or 'BLERK! Error 5 Authentication problem, 'Your sign-in has been received.

Some of the reasons for the error are as follows:
• Internet browser configuration problem

• Saved erroneous bookmark addresses

• browser cache or cookie

• An AOL Desktop Gold technical error.
How to Fix AOL Mail Blerk Error 5 in a Simple Way

This type of error is mostly due to your browser settings or the use of outdated, obsolete software. Users should remember that the steps to solve problems vary, depending on the browser you are using. Here are the steps to fix the mistake, check your browser and follow the steps.

  1. Internet Explorer: Make sure you use the most recent web browser version. Open a new window and follow the “Tools> Web Options> Security> Internet Zone” thread. Activate ‘Safeguard Mode’ and follow the steps to include AOL Mail in the list of assured websites. Start the browser again to save changes and run Internet Explorer without additional information.

  2. Firefox Mozilla: Open a new Firefox window and press Menu. To start the browser in safe mode, disable the add-on and choose the option to restart Firefox. You can see two options in the dialog box. Use the “Start in Safe Mode” option to disable all themes and extensions. The browser also turns off the hardware speed and resets the toolbar. You should be able to execute AOL mail when this happens.

  3. Google Chrome: Update to the latest version of Chrome. Open the browser and go to the Advanced Options section. Go to ‘Security and Privacy’ and close the appropriate add-ons. Once the browsing history is deleted, the password, cookies saved and the cache will be cleared. Restart your system and try to log in to your AOL account with a new window.

  4. Safari: Some pop-up windows block AOL mail when it comes to Safari and causes authentication issues. To fix the error, use Safari Security Preferences to enable the pop-up window and disable the security warning.

If you see, even when you change the required browser settings, the black error will not disappear, you can consult a skilled professional and see all the AOL email customer support numbers.

Get Connect to Fix Blerk Error Even After Clearing Cache & Cookies?

Somehow you can contact AOL technical support directly and get immediate help if you still get the error. Call +1(888)857-5157 to receive assistance from the AOL technical support team.

Source: https://email-expert247.blogspot.com/2021/04/immediate-olution-to-fix-aol-blerk.html

#aol blerk error code 5 #aol blerk error 5 #aol mail blerk error code 5 #aol mail blerk error 5 #aol error code 5 #aol error 5

Swift Tips: A Collection Useful Tips for The Swift Language

SwiftTips

The following is a collection of tips I find to be useful when working with the Swift language. More content is available on my Twitter account!

Property Wrappers as Debugging Tools

Property Wrappers allow developers to wrap properties with specific behaviors, that will be seamlessly triggered whenever the properties are accessed.

While their primary use case is to implement business logic within our apps, it's also possible to use Property Wrappers as debugging tools!

For example, we could build a wrapper called @History, that would be added to a property while debugging and would keep track of all the values set to this property.

import Foundation

@propertyWrapper
struct History<Value> {
    private var value: Value
    private(set) var history: [Value] = []

    init(wrappedValue: Value) {
        self.value = wrappedValue
    }
    
    var wrappedValue: Value {
        get { value }

        set {
            history.append(value)
            value = newValue
        }
    }
    
    var projectedValue: Self {
        return self
    }
}

// We can then decorate our business code
// with the `@History` wrapper
struct User {
    @History var name: String = ""
}

var user = User()

// All the existing call sites will still
// compile, without the need for any change
user.name = "John"
user.name = "Jane"

// But now we can also access an history of
// all the previous values!
user.$name.history // ["", "John"]

Localization through String interpolation

Swift 5 gave us the possibility to define our own custom String interpolation methods.

This feature can be used to power many use cases, but there is one that is guaranteed to make sense in most projects: localizing user-facing strings.

import Foundation

extension String.StringInterpolation {
    mutating func appendInterpolation(localized key: String, _ args: CVarArg...) {
        let localized = String(format: NSLocalizedString(key, comment: ""), arguments: args)
        appendLiteral(localized)
    }
}


/*
 Let's assume that this is the content of our Localizable.strings:
 
 "welcome.screen.greetings" = "Hello %@!";
 */

let userName = "John"
print("\(localized: "welcome.screen.greetings", userName)") // Hello John!

Implementing pseudo-inheritance between structs

If you’ve always wanted to use some kind of inheritance mechanism for your structs, Swift 5.1 is going to make you very happy!

Using the new KeyPath-based dynamic member lookup, you can implement some pseudo-inheritance, where a type inherits the API of another one 🎉

(However, be careful, I’m definitely not advocating inheritance as a go-to solution 🙃)

import Foundation

protocol Inherits {
    associatedtype SuperType
    
    var `super`: SuperType { get }
}

extension Inherits {
    subscript<T>(dynamicMember keyPath: KeyPath<SuperType, T>) -> T {
        return self.`super`[keyPath: keyPath]
    }
}

struct Person {
    let name: String
}

@dynamicMemberLookup
struct User: Inherits {
    let `super`: Person
    
    let login: String
    let password: String
}

let user = User(super: Person(name: "John Appleseed"), login: "Johnny", password: "1234")

user.name // "John Appleseed"
user.login // "Johnny"

Composing NSAttributedString through a Function Builder

Swift 5.1 introduced Function Builders: a great tool for building custom DSL syntaxes, like SwiftUI. However, one doesn't need to be building a full-fledged DSL in order to leverage them.

For example, it's possible to write a simple Function Builder, whose job will be to compose together individual instances of NSAttributedString through a nicer syntax than the standard API.

import UIKit

@_functionBuilder
class NSAttributedStringBuilder {
    static func buildBlock(_ components: NSAttributedString...) -> NSAttributedString {
        let result = NSMutableAttributedString(string: "")
        
        return components.reduce(into: result) { (result, current) in result.append(current) }
    }
}

extension NSAttributedString {
    class func composing(@NSAttributedStringBuilder _ parts: () -> NSAttributedString) -> NSAttributedString {
        return parts()
    }
}

let result = NSAttributedString.composing {
    NSAttributedString(string: "Hello",
                       attributes: [.font: UIFont.systemFont(ofSize: 24),
                                    .foregroundColor: UIColor.red])
    NSAttributedString(string: " world!",
                       attributes: [.font: UIFont.systemFont(ofSize: 20),
                                    .foregroundColor: UIColor.orange])
}

Using switch and if as expressions

Contrary to other languages, like Kotlin, Swift does not allow switch and if to be used as expressions. Meaning that the following code is not valid Swift:

let constant = if condition {
                  someValue
               } else {
                  someOtherValue
               }

A common solution to this problem is to wrap the if or switch statement within a closure, that will then be immediately called. While this approach does manage to achieve the desired goal, it makes for a rather poor syntax.

To avoid the ugly trailing () and improve on the readability, you can define a resultOf function, that will serve the exact same purpose, in a more elegant way.

import Foundation

func resultOf<T>(_ code: () -> T) -> T {
    return code()
}

let randomInt = Int.random(in: 0...3)

let spelledOut: String = resultOf {
    switch randomInt {
    case 0:
        return "Zero"
    case 1:
        return "One"
    case 2:
        return "Two"
    case 3:
        return "Three"
    default:
        return "Out of range"
    }
}

print(spelledOut)

Avoiding double negatives within guard statements

A guard statement is a very convenient way for the developer to assert that a condition is met, in order for the execution of the program to keep going.

However, since the body of a guard statement is meant to be executed when the condition evaluates to false, the use of the negation (!) operator within the condition of a guard statement can make the code hard to read, as it becomes a double negative.

A nice trick to avoid such double negatives is to encapsulate the use of the ! operator within a new property or function, whose name does not include a negative.

import Foundation

extension Collection {
    var hasElements: Bool {
        return !isEmpty
    }
}

let array = Bool.random() ? [1, 2, 3] : []

guard array.hasElements else { fatalError("array was empty") }

print(array)

Defining a custom init without loosing the compiler-generated one

It's common knowledge for Swift developers that, when you define a struct, the compiler is going to automatically generate a memberwise init for you. That is, unless you also define an init of your own. Because then, the compiler won't generate any memberwise init.

Yet, there are many instances where we might enjoy the opportunity to get both. As it turns out, this goal is quite easy to achieve: you just need to define your own init in an extension rather than inside the type definition itself.

import Foundation

struct Point {
    let x: Int
    let y: Int
}

extension Point {
    init() {
        x = 0
        y = 0
    }
}

let usingDefaultInit = Point(x: 4, y: 3)
let usingCustomInit = Point()

Implementing a namespace through an empty enum

Swift does not really have an out-of-the-box support of namespaces. One could argue that a Swift module can be seen as a namespace, but creating a dedicated Framework for this sole purpose can legitimately be regarded as overkill.

Some developers have taken the habit to use a struct which only contains static fields to implement a namespace. While this does the job, it requires us to remember to implement an empty private init(), because it wouldn't make sense for such a struct to be instantiated.

It's actually possible to take this approach one step further, by replacing the struct with an enum. While it might seem weird to have an enum with no case, it's actually a very idiomatic way to declare a type that cannot be instantiated.

import Foundation

enum NumberFormatterProvider {
    static var currencyFormatter: NumberFormatter {
        let formatter = NumberFormatter()
        formatter.numberStyle = .currency
        formatter.roundingIncrement = 0.01
        return formatter
    }
    
    static var decimalFormatter: NumberFormatter {
        let formatter = NumberFormatter()
        formatter.numberStyle = .decimal
        formatter.decimalSeparator = ","
        return formatter
    }
}

NumberFormatterProvider() // ❌ impossible to instantiate by mistake

NumberFormatterProvider.currencyFormatter.string(from: 2.456) // $2.46
NumberFormatterProvider.decimalFormatter.string(from: 2.456) // 2,456

Using Never to represent impossible code paths

Never is quite a peculiar type in the Swift Standard Library: it is defined as an empty enum enum Never { }.

While this might seem odd at first glance, it actually yields a very interesting property: it makes it a type that cannot be constructed (i.e. it possesses no instances).

This way, Never can be used as a generic parameter to let the compiler know that a particular feature will not be used.

import Foundation

enum Result<Value, Error> {
    case success(value: Value)
    case failure(error: Error)
}

func willAlwaysSucceed(_ completion: @escaping ((Result<String, Never>) -> Void)) {
    completion(.success(value: "Call was successful"))
}

willAlwaysSucceed( { result in
    switch result {
    case .success(let value):
        print(value)
    // the compiler knows that the `failure` case cannot happen
    // so it doesn't require us to handle it.
    }
})

Providing a default value to a Decodable enum

Swift's Codable framework does a great job at seamlessly decoding entities from a JSON stream. However, when we integrate web-services, we are sometimes left to deal with JSONs that require behaviors that Codable does not provide out-of-the-box.

For instance, we might have a string-based or integer-based enum, and be required to set it to a default value when the data found in the JSON does not match any of its cases.

We might be tempted to implement this via an extensive switch statement over all the possible cases, but there is a much shorter alternative through the initializer init?(rawValue:):

import Foundation

enum State: String, Decodable {
    case active
    case inactive
    case undefined
    
    init(from decoder: Decoder) throws {
        let container = try decoder.singleValueContainer()
        let decodedString = try container.decode(String.self)
        
        self = State(rawValue: decodedString) ?? .undefined
    }
}

let data = """
["active", "inactive", "foo"]
""".data(using: .utf8)!

let decoded = try! JSONDecoder().decode([State].self, from: data)

print(decoded) // [State.active, State.inactive, State.undefined]

Another lightweight dependency injection through default values for function parameters

Dependency injection boils down to a simple idea: when an object requires a dependency, it shouldn't create it by itself, but instead it should be given a function that does it for him.

Now the great thing with Swift is that, not only can a function take another function as a parameter, but that parameter can also be given a default value.

When you combine both those features, you can end up with a dependency injection pattern that is both lightweight on boilerplate, but also type safe.

import Foundation

protocol Service {
    func call() -> String
}

class ProductionService: Service {
    func call() -> String {
        return "This is the production"
    }
}

class MockService: Service {
    func call() -> String {
        return "This is a mock"
    }
}

typealias Provider<T> = () -> T

class Controller {
    
    let service: Service
    
    init(serviceProvider: Provider<Service> = { return ProductionService() }) {
        self.service = serviceProvider()
    }
    
    func work() {
        print(service.call())
    }
}

let productionController = Controller()
productionController.work() // prints "This is the production"

let mockedController = Controller(serviceProvider: { return MockService() })
mockedController.work() // prints "This is a mock"

Lightweight dependency injection through protocol-oriented programming

Singletons are pretty bad. They make your architecture rigid and tightly coupled, which then results in your code being hard to test and refactor. Instead of using singletons, your code should rely on dependency injection, which is a much more architecturally sound approach.

But singletons are so easy to use, and dependency injection requires us to do extra-work. So maybe, for simple situations, we could find an in-between solution?

One possible solution is to rely on one of Swift's most know features: protocol-oriented programming. Using a protocol, we declare and access our dependency. We then store it in a private singleton, and perform the injection through an extension of said protocol.

This way, our code will indeed be decoupled from its dependency, while at the same time keeping the boilerplate to a minimum.

import Foundation

protocol Formatting {
    var formatter: NumberFormatter { get }
}

private let sharedFormatter: NumberFormatter = {
    let sharedFormatter = NumberFormatter()
    sharedFormatter.numberStyle = .currency
    return sharedFormatter
}()

extension Formatting {
    var formatter: NumberFormatter { return sharedFormatter }
}

class ViewModel: Formatting {
    var displayableAmount: String?
    
    func updateDisplay(to amount: Double) {
        displayableAmount = formatter.string(for: amount)
    }
}

let viewModel = ViewModel()

viewModel.updateDisplay(to: 42000.45)
viewModel.displayableAmount // "$42,000.45"

Getting rid of overabundant [weak self] and guard

Callbacks are a part of almost all iOS apps, and as frameworks such as RxSwift keep gaining in popularity, they become ever more present in our codebase.

Seasoned Swift developers are aware of the potential memory leaks that @escaping callbacks can produce, so they make real sure to always use [weak self], whenever they need to use self inside such a context. And when they need to have self be non-optional, they then add a guard statement along.

Consequently, this syntax of a [weak self] followed by a guard rapidly tends to appear everywhere in the codebase. The good thing is that, through a little protocol-oriented trick, it's actually possible to get rid of this tedious syntax, without loosing any of its benefits!

import Foundation
import PlaygroundSupport

PlaygroundPage.current.needsIndefiniteExecution = true

protocol Weakifiable: class { }

extension Weakifiable {
    func weakify(_ code: @escaping (Self) -> Void) -> () -> Void {
        return { [weak self] in
            guard let self = self else { return }
            
            code(self)
        }
    }
    
    func weakify<T>(_ code: @escaping (T, Self) -> Void) -> (T) -> Void {
        return { [weak self] arg in
            guard let self = self else { return }
            
            code(arg, self)
        }
    }
}

extension NSObject: Weakifiable { }

class Producer: NSObject {
    
    deinit {
        print("deinit Producer")
    }
    
    private var handler: (Int) -> Void = { _ in }
    
    func register(handler: @escaping (Int) -> Void) {
        self.handler = handler
        
        DispatchQueue.main.asyncAfter(deadline: .now() + 1.0, execute: { self.handler(42) })
    }
}

class Consumer: NSObject {
    
    deinit {
        print("deinit Consumer")
    }
    
    let producer = Producer()
    
    func consume() {
        producer.register(handler: weakify { result, strongSelf in
            strongSelf.handle(result)
        })
    }
    
    private func handle(_ result: Int) {
        print("🎉 \(result)")
    }
}

var consumer: Consumer? = Consumer()

consumer?.consume()

DispatchQueue.main.asyncAfter(deadline: .now() + 2.0, execute: { consumer = nil })

// This code prints:
// 🎉 42
// deinit Consumer
// deinit Producer

Solving callback hell with function composition

Asynchronous functions are a big part of iOS APIs, and most developers are familiar with the challenge they pose when one needs to sequentially call several asynchronous APIs.

This often results in callbacks being nested into one another, a predicament often referred to as callback hell.

Many third-party frameworks are able to tackle this issue, for instance RxSwift or PromiseKit. Yet, for simple instances of the problem, there is no need to use such big guns, as it can actually be solved with simple function composition.

import Foundation

typealias CompletionHandler<Result> = (Result?, Error?) -> Void

infix operator ~>: MultiplicationPrecedence

func ~> <T, U>(_ first: @escaping (CompletionHandler<T>) -> Void, _ second: @escaping (T, CompletionHandler<U>) -> Void) -> (CompletionHandler<U>) -> Void {
    return { completion in
        first({ firstResult, error in
            guard let firstResult = firstResult else { completion(nil, error); return }
            
            second(firstResult, { (secondResult, error) in
                completion(secondResult, error)
            })
        })
    }
}

func ~> <T, U>(_ first: @escaping (CompletionHandler<T>) -> Void, _ transform: @escaping (T) -> U) -> (CompletionHandler<U>) -> Void {
    return { completion in
        first({ result, error in
            guard let result = result else { completion(nil, error); return }
            
            completion(transform(result), nil)
        })
    }
}

func service1(_ completionHandler: CompletionHandler<Int>) {
    completionHandler(42, nil)
}

func service2(arg: String, _ completionHandler: CompletionHandler<String>) {
    completionHandler("🎉 \(arg)", nil)
}

let chainedServices = service1
    ~> { int in return String(int / 2) }
    ~> service2

chainedServices({ result, _ in
    guard let result = result else { return }
    
    print(result) // Prints: 🎉 21
})

Transform an asynchronous function into a synchronous one

Asynchronous functions are a great way to deal with future events without blocking a thread. Yet, there are times where we would like them to behave in exactly such a blocking way.

Think about writing unit tests and using mocked network calls. You will need to add complexity to your test in order to deal with asynchronous functions, whereas synchronous ones would be much easier to manage.

Thanks to Swift proficiency in the functional paradigm, it is possible to write a function whose job is to take an asynchronous function and transform it into a synchronous one.

import Foundation

func makeSynchrone<A, B>(_ asyncFunction: @escaping (A, (B) -> Void) -> Void) -> (A) -> B {
    return { arg in
        let lock = NSRecursiveLock()
        
        var result: B? = nil
        
        asyncFunction(arg) {
            result = $0
            lock.unlock()
        }
        
        lock.lock()
        
        return result!
    }
}

func myAsyncFunction(arg: Int, completionHandler: (String) -> Void) {
    completionHandler("🎉 \(arg)")
}

let syncFunction = makeSynchrone(myAsyncFunction)

print(syncFunction(42)) // prints 🎉 42

Using KeyPaths instead of closures

Closures are a great way to interact with generic APIs, for instance APIs that allow to manipulate data structures through the use of generic functions, such as filter() or sorted().

The annoying part is that closures tend to clutter your code with many instances of {, } and $0, which can quickly undermine its readably.

A nice alternative for a cleaner syntax is to use a KeyPath instead of a closure, along with an operator that will deal with transforming the provided KeyPath in a closure.

import Foundation

prefix operator ^

prefix func ^ <Element, Attribute>(_ keyPath: KeyPath<Element, Attribute>) -> (Element) -> Attribute {
    return { element in element[keyPath: keyPath] }
}

struct MyData {
    let int: Int
    let string: String
}

let data = [MyData(int: 2, string: "Foo"), MyData(int: 4, string: "Bar")]

data.map(^\.int) // [2, 4]
data.map(^\.string) // ["Foo", "Bar"]

Bringing some type-safety to a userInfo Dictionary

Many iOS APIs still rely on a userInfo Dictionary to handle use-case specific data. This Dictionary usually stores untyped values, and is declared as follows: [String: Any] (or sometimes [AnyHashable: Any].

Retrieving data from such a structure will involve some conditional casting (via the as? operator), which is prone to both errors and repetitions. Yet, by introducing a custom subscript, it's possible to encapsulate all the tedious logic, and end-up with an easier and more robust API.

import Foundation

typealias TypedUserInfoKey<T> = (key: String, type: T.Type)

extension Dictionary where Key == String, Value == Any {
    subscript<T>(_ typedKey: TypedUserInfoKey<T>) -> T? {
        return self[typedKey.key] as? T
    }
}

let userInfo: [String : Any] = ["Foo": 4, "Bar": "forty-two"]

let integerTypedKey = TypedUserInfoKey(key: "Foo", type: Int.self)
let intValue = userInfo[integerTypedKey] // returns 4
type(of: intValue) // returns Int?

let stringTypedKey = TypedUserInfoKey(key: "Bar", type: String.self)
let stringValue = userInfo[stringTypedKey] // returns "forty-two"
type(of: stringValue) // returns String?

Lightweight data-binding for an MVVM implementation

MVVM is a great pattern to separate business logic from presentation logic. The main challenge to make it work, is to define a mechanism for the presentation layer to be notified of model updates.

RxSwift is a perfect choice to solve such a problem. Yet, some developers don't feel confortable with leveraging a third-party library for such a central part of their architecture.

For those situation, it's possible to define a lightweight Variable type, that will make the MVVM pattern very easy to use!

import Foundation

class Variable<Value> {
    var value: Value {
        didSet {
            onUpdate?(value)
        }
    }
    
    var onUpdate: ((Value) -> Void)? {
        didSet {
            onUpdate?(value)
        }
    }
    
    init(_ value: Value, _ onUpdate: ((Value) -> Void)? = nil) {
        self.value = value
        self.onUpdate = onUpdate
        self.onUpdate?(value)
    }
}

let variable: Variable<String?> = Variable(nil)

variable.onUpdate = { data in
    if let data = data {
        print(data)
    }
}

variable.value = "Foo"
variable.value = "Bar"

// prints:
// Foo
// Bar

Using typealias to its fullest

The keyword typealias allows developers to give a new name to an already existing type. For instance, Swift defines Void as a typealias of (), the empty tuple.

But a less known feature of this mechanism is that it allows to assign concrete types for generic parameters, or to rename them. This can help make the semantics of generic types much clearer, when used in specific use cases.

import Foundation

enum Either<Left, Right> {
    case left(Left)
    case right(Right)
}

typealias Result<Value> = Either<Value, Error>

typealias IntOrString = Either<Int, String>

Writing an interruptible overload of forEach

Iterating through objects via the forEach(_:) method is a great alternative to the classic for loop, as it allows our code to be completely oblivious of the iteration logic. One limitation, however, is that forEach(_:) does not allow to stop the iteration midway.

Taking inspiration from the Objective-C implementation, we can write an overload that will allow the developer to stop the iteration, if needed.

import Foundation

extension Sequence {
    func forEach(_ body: (Element, _ stop: inout Bool) throws -> Void) rethrows {
        var stop = false
        for element in self {
            try body(element, &stop)
            
            if stop {
                return
            }
        }
    }
}

["Foo", "Bar", "FooBar"].forEach { element, stop in
    print(element)
    stop = (element == "Bar")
}

// Prints:
// Foo
// Bar

Optimizing the use of reduce()

Functional programing is a great way to simplify a codebase. For instance, reduce is an alternative to the classic for loop, without most the boilerplate. Unfortunately, simplicity often comes at the price of performance.

Consider that you want to remove duplicate values from a Sequence. While reduce() is a perfectly fine way to express this computation, the performance will be sub optimal, because of all the unnecessary Array copying that will happen every time its closure gets called.

That's when reduce(into:_:) comes into play. This version of reduce leverages the capacities of copy-on-write type (such as Array or Dictionnary) in order to avoid unnecessary copying, which results in a great performance boost.

import Foundation

func time(averagedExecutions: Int = 1, _ code: () -> Void) {
    let start = Date()
    for _ in 0..<averagedExecutions { code() }
    let end = Date()
    
    let duration = end.timeIntervalSince(start) / Double(averagedExecutions)
    
    print("time: \(duration)")
}

let data = (1...1_000).map { _ in Int(arc4random_uniform(256)) }


// runs in 0.63s
time {
    let noDuplicates: [Int] = data.reduce([], { $0.contains($1) ? $0 : $0 + [$1] })
}

// runs in 0.15s
time {
    let noDuplicates: [Int] = data.reduce(into: [], { if !$0.contains($1) { $0.append($1) } } )
}

Avoiding hardcoded reuse identifiers

UI components such as UITableView and UICollectionView rely on reuse identifiers in order to efficiently recycle the views they display. Often, those reuse identifiers take the form of a static hardcoded String, that will be used for every instance of their class.

Through protocol-oriented programing, it's possible to avoid those hardcoded values, and instead use the name of the type as a reuse identifier.

import Foundation
import UIKit

protocol Reusable {
    static var reuseIdentifier: String { get }
}

extension Reusable {
    static var reuseIdentifier: String {
        return String(describing: self)
    }
}

extension UITableViewCell: Reusable { }

extension UITableView {
    func register<T: UITableViewCell>(_ class: T.Type) {
        register(`class`, forCellReuseIdentifier: T.reuseIdentifier)
    }
    func dequeueReusableCell<T: UITableViewCell>(for indexPath: IndexPath) -> T {
        return dequeueReusableCell(withIdentifier: T.reuseIdentifier, for: indexPath) as! T
    }
}

class MyCell: UITableViewCell { }

let tableView = UITableView()

tableView.register(MyCell.self)
let myCell: MyCell = tableView.dequeueReusableCell(for: [0, 0])

Defining a union type

The C language has a construct called union, that allows a single variable to hold values from different types. While Swift does not provide such a construct, it provides enums with associated values, which allows us to define a type called Either that implements a union of two types.

import Foundation

enum Either<A, B> {
    case left(A)
    case right(B)
    
    func either(ifLeft: ((A) -> Void)? = nil, ifRight: ((B) -> Void)? = nil) {
        switch self {
        case let .left(a):
            ifLeft?(a)
        case let .right(b):
            ifRight?(b)
        }
    }
}

extension Bool { static func random() -> Bool { return arc4random_uniform(2) == 0 } }

var intOrString: Either<Int, String> = Bool.random() ? .left(2) : .right("Foo")

intOrString.either(ifLeft: { print($0 + 1) }, ifRight: { print($0 + "Bar") })

If you're interested by this kind of data structure, I strongly recommend that you learn more about Algebraic Data Types.

Asserting that classes have associated NIBs and vice-versa

Most of the time, when we create a .xib file, we give it the same name as its associated class. From that, if we later refactor our code and rename such a class, we run the risk of forgetting to rename the associated .xib.

While the error will often be easy to catch, if the .xib is used in a remote section of its app, it might go unnoticed for sometime. Fortunately it's possible to build custom test predicates that will assert that 1) for a given class, there exists a .nib with the same name in a given Bundle, 2) for all the .nib in a given Bundle, there exists a class with the same name.

import XCTest

public func XCTAssertClassHasNib(_ class: AnyClass, bundle: Bundle, file: StaticString = #file, line: UInt = #line) {
    let associatedNibURL = bundle.url(forResource: String(describing: `class`), withExtension: "nib")
    
    XCTAssertNotNil(associatedNibURL, "Class \"\(`class`)\" has no associated nib file", file: file, line: line)
}

public func XCTAssertNibHaveClasses(_ bundle: Bundle, file: StaticString = #file, line: UInt = #line) {
    guard let bundleName = bundle.infoDictionary?["CFBundleName"] as? String,
        let basePath = bundle.resourcePath,
        let enumerator = FileManager.default.enumerator(at: URL(fileURLWithPath: basePath),
                                                    includingPropertiesForKeys: nil,
                                                    options: [.skipsHiddenFiles, .skipsSubdirectoryDescendants]) else { return }
    
    var nibFilesURLs = [URL]()
    
    for case let fileURL as URL in enumerator {
        if fileURL.pathExtension.uppercased() == "NIB" {
            nibFilesURLs.append(fileURL)
        }
    }
    
    nibFilesURLs.map { $0.lastPathComponent }
        .compactMap { $0.split(separator: ".").first }
        .map { String($0) }
        .forEach {
            let associatedClass: AnyClass? = bundle.classNamed("\(bundleName).\($0)")
            
            XCTAssertNotNil(associatedClass, "File \"\($0).nib\" has no associated class", file: file, line: line)
        }
}

XCTAssertClassHasNib(MyFirstTableViewCell.self, bundle: Bundle(for: AppDelegate.self))
XCTAssertClassHasNib(MySecondTableViewCell.self, bundle: Bundle(for: AppDelegate.self))
        
XCTAssertNibHaveClasses(Bundle(for: AppDelegate.self))

Many thanks Benjamin Lavialle for coming up with the idea behind the second test predicate.

Small footprint type-erasing with functions

Seasoned Swift developers know it: a protocol with associated type (PAT) "can only be used as a generic constraint because it has Self or associated type requirements". When we really need to use a PAT to type a variable, the goto workaround is to use a type-erased wrapper.

While this solution works perfectly, it requires a fair amount of boilerplate code. In instances where we are only interested in exposing one particular function of the PAT, a shorter approach using function types is possible.

import Foundation
import UIKit

protocol Configurable {
    associatedtype Model
    
    func configure(with model: Model)
}

typealias Configurator<Model> = (Model) -> ()

extension UILabel: Configurable {
    func configure(with model: String) {
        self.text = model
    }
}

let label = UILabel()
let configurator: Configurator<String> = label.configure

configurator("Foo")

label.text // "Foo"

Performing animations sequentially

UIKit exposes a very powerful and simple API to perform view animations. However, this API can become a little bit quirky to use when we want to perform animations sequentially, because it involves nesting closure within one another, which produces notoriously hard to maintain code.

Nonetheless, it's possible to define a rather simple class, that will expose a really nicer API for this particular use case 👌

import Foundation
import UIKit

class AnimationSequence {
    typealias Animations = () -> Void
    
    private let current: Animations
    private let duration: TimeInterval
    private var next: AnimationSequence? = nil
    
    init(animations: @escaping Animations, duration: TimeInterval) {
        self.current = animations
        self.duration = duration
    }
    
    @discardableResult func append(animations: @escaping Animations, duration: TimeInterval) -> AnimationSequence {
        var lastAnimation = self
        while let nextAnimation = lastAnimation.next {
            lastAnimation = nextAnimation
        }
        lastAnimation.next = AnimationSequence(animations: animations, duration: duration)
        return self
    }
    
    func run() {
        UIView.animate(withDuration: duration, animations: current, completion: { finished in
            if finished, let next = self.next {
                next.run()
            }
        })
    }
}

var firstView = UIView()
var secondView = UIView()

firstView.alpha = 0
secondView.alpha = 0

AnimationSequence(animations: { firstView.alpha = 1.0 }, duration: 1)
            .append(animations: { secondView.alpha = 1.0 }, duration: 0.5)
            .append(animations: { firstView.alpha = 0.0 }, duration: 2.0)
            .run()

Debouncing a function call

Debouncing is a very useful tool when dealing with UI inputs. Consider a search bar, whose content is used to query an API. It wouldn't make sense to perform a request for every character the user is typing, because as soon as a new character is entered, the result of the previous request has become irrelevant.

Instead, our code will perform much better if we "debounce" the API call, meaning that we will wait until some delay has passed, without the input being modified, before actually performing the call.

import Foundation

func debounced(delay: TimeInterval, queue: DispatchQueue = .main, action: @escaping (() -> Void)) -> () -> Void {
    var workItem: DispatchWorkItem?
    
    return {
        workItem?.cancel()
        workItem = DispatchWorkItem(block: action)
        queue.asyncAfter(deadline: .now() + delay, execute: workItem!)
    }
}

let debouncedPrint = debounced(delay: 1.0) { print("Action performed!") }

debouncedPrint()
debouncedPrint()
debouncedPrint()

// After a 1 second delay, this gets
// printed only once to the console:

// Action performed!

Providing useful operators for Optional booleans

When we need to apply the standard boolean operators to Optional booleans, we often end up with a syntax unnecessarily crowded with unwrapping operations. By taking a cue from the world of three-valued logics, we can define a couple operators that make working with Bool? values much nicer.

import Foundation

func && (lhs: Bool?, rhs: Bool?) -> Bool? {
    switch (lhs, rhs) {
    case (false, _), (_, false):
        return false
    case let (unwrapLhs?, unwrapRhs?):
        return unwrapLhs && unwrapRhs
    default:
        return nil
    }
}

func || (lhs: Bool?, rhs: Bool?) -> Bool? {
    switch (lhs, rhs) {
    case (true, _), (_, true):
        return true
    case let (unwrapLhs?, unwrapRhs?):
        return unwrapLhs || unwrapRhs
    default:
        return nil
    }
}

false && nil // false
true && nil // nil
[true, nil, false].reduce(true, &&) // false

nil || true // true
nil || false // nil
[true, nil, false].reduce(false, ||) // true

Removing duplicate values from a Sequence

Transforming a Sequence in order to remove all the duplicate values it contains is a classic use case. To implement it, one could be tempted to transform the Sequence into a Set, then back to an Array. The downside with this approach is that it will not preserve the order of the sequence, which can definitely be a dealbreaker. Using reduce() it is possible to provide a concise implementation that preserves ordering:

import Foundation

extension Sequence where Element: Equatable {
    func duplicatesRemoved() -> [Element] {
        return reduce([], { $0.contains($1) ? $0 : $0 + [$1] })
    }
}

let data = [2, 5, 2, 3, 6, 5, 2]

data.duplicatesRemoved() // [2, 5, 3, 6]

Shorter syntax to deal with optional strings

Optional strings are very common in Swift code, for instance many objects from UIKit expose the text they display as a String?. Many times you will need to manipulate this data as an unwrapped String, with a default value set to the empty string for nil cases.

While the nil-coalescing operator (e.g. ??) is a perfectly fine way to a achieve this goal, defining a computed variable like orEmpty can help a lot in cleaning the syntax.

import Foundation
import UIKit

extension Optional where Wrapped == String {
    var orEmpty: String {
        switch self {
        case .some(let value):
            return value
        case .none:
            return ""
        }
    }
}

func doesNotWorkWithOptionalString(_ param: String) {
    // do something with `param`
}

let label = UILabel()
label.text = "This is some text."

doesNotWorkWithOptionalString(label.text.orEmpty)

Encapsulating background computation and UI update

Every seasoned iOS developers knows it: objects from UIKit can only be accessed from the main thread. Any attempt to access them from a background thread is a guaranteed crash.

Still, running a costly computation on the background, and then using it to update the UI can be a common pattern.

In such cases you can rely on asyncUI to encapsulate all the boilerplate code.

import Foundation
import UIKit

func asyncUI<T>(_ computation: @autoclosure @escaping () -> T, qos: DispatchQoS.QoSClass = .userInitiated, _ completion: @escaping (T) -> Void) {
    DispatchQueue.global(qos: qos).async {
        let value = computation()
        DispatchQueue.main.async {
            completion(value)
        }
    }
}

let label = UILabel()

func costlyComputation() -> Int { return (0..<10_000).reduce(0, +) }

asyncUI(costlyComputation()) { value in
    label.text = "\(value)"
}

Retrieving all the necessary data to build a debug view

A debug view, from which any controller of an app can be instantiated and pushed on the navigation stack, has the potential to bring some real value to a development process. A requirement to build such a view is to have a list of all the classes from a given Bundle that inherit from UIViewController. With the following extension, retrieving this list becomes a piece of cake 🍰

import Foundation
import UIKit
import ObjectiveC

extension Bundle {
    func viewControllerTypes() -> [UIViewController.Type] {
        guard let bundlePath = self.executablePath else { return [] }
        
        var size: UInt32 = 0
        var rawClassNames: UnsafeMutablePointer<UnsafePointer<Int8>>!
        var parsedClassNames = [String]()
        
        rawClassNames = objc_copyClassNamesForImage(bundlePath, &size)
        
        for index in 0..<size {
            let className = rawClassNames[Int(index)]
            
            if let name = NSString.init(utf8String:className) as String?,
                NSClassFromString(name) is UIViewController.Type {
                parsedClassNames.append(name)
            }
        }
        
        return parsedClassNames
            .sorted()
            .compactMap { NSClassFromString($0) as? UIViewController.Type }
    }
}

// Fetch all view controller types in UIKit
Bundle(for: UIViewController.self).viewControllerTypes()

I share the credit for this tip with Benoît Caron.

Defining a function to map over dictionaries

Update As it turns out, map is actually a really bad name for this function, because it does not preserve composition of transformations, a property that is required to fit the definition of a real map function.

Surprisingly enough, the standard library doesn't define a map() function for dictionaries that allows to map both keys and values into a new Dictionary. Nevertheless, such a function can be helpful, for instance when converting data across different frameworks.

import Foundation

extension Dictionary {
    func map<T: Hashable, U>(_ transform: (Key, Value) throws -> (T, U)) rethrows -> [T: U] {
        var result: [T: U] = [:]
        
        for (key, value) in self {
            let (transformedKey, transformedValue) = try transform(key, value)
            result[transformedKey] = transformedValue
        }
        
        return result
    }
}

let data = [0: 5, 1: 6, 2: 7]
data.map { ("\($0)", $1 * $1) } // ["2": 49, "0": 25, "1": 36]

A shorter syntax to remove nil values

Swift provides the function compactMap(), that can be used to remove nil values from a Sequence of optionals when calling it with an argument that just returns its parameter (i.e. compactMap { $0 }). Still, for such use cases it would be nice to get rid of the trailing closure.

The implementation isn't as straightforward as your usual extension, but once it has been written, the call site definitely gets cleaner 👌

import Foundation

protocol OptionalConvertible {
    associatedtype Wrapped
    func asOptional() -> Wrapped?
}

extension Optional: OptionalConvertible {
    func asOptional() -> Wrapped? {
        return self
    }
}

extension Sequence where Element: OptionalConvertible {
    func compacted() -> [Element.Wrapped] {
        return compactMap { $0.asOptional() }
    }
}

let data = [nil, 1, 2, nil, 3, 5, nil, 8, nil]
data.compacted() // [1, 2, 3, 5, 8]

Dealing with expirable values

It might happen that your code has to deal with values that come with an expiration date. In a game, it could be a score multiplier that will only last for 30 seconds. Or it could be an authentication token for an API, with a 15 minutes lifespan. In both instances you can rely on the type Expirable to encapsulate the expiration logic.

import Foundation

struct Expirable<T> {
    private var innerValue: T
    private(set) var expirationDate: Date
    
    var value: T? {
        return hasExpired() ? nil : innerValue
    }
    
    init(value: T, expirationDate: Date) {
        self.innerValue = value
        self.expirationDate = expirationDate
    }
    
    init(value: T, duration: Double) {
        self.innerValue = value
        self.expirationDate = Date().addingTimeInterval(duration)
    }
    
    func hasExpired() -> Bool {
        return expirationDate < Date()
    }
}

let expirable = Expirable(value: 42, duration: 3)

sleep(2)
expirable.value // 42
sleep(2)
expirable.value // nil

I share the credit for this tip with Benoît Caron.

Using parallelism to speed-up map()

Almost all Apple devices able to run Swift code are powered by a multi-core CPU, consequently making a good use of parallelism is a great way to improve code performance. map() is a perfect candidate for such an optimization, because it is almost trivial to define a parallel implementation.

import Foundation

extension Array {
    func parallelMap<T>(_ transform: (Element) -> T) -> [T] {
        let res = UnsafeMutablePointer<T>.allocate(capacity: count)
        
        DispatchQueue.concurrentPerform(iterations: count) { i in
            res[i] = transform(self[i])
        }
        
        let finalResult = Array<T>(UnsafeBufferPointer(start: res, count: count))
        res.deallocate(capacity: count)
        
        return finalResult
    }
}

let array = (0..<1_000).map { $0 }

func work(_ n: Int) -> Int {
    return (0..<n).reduce(0, +)
}

array.parallelMap { work($0) }

🚨 Make sure to only use parallelMap() when the transform function actually performs some costly computations. Otherwise performances will be systematically slower than using map(), because of the multithreading overhead.

Measuring execution time with minimum boilerplate

During development of a feature that performs some heavy computations, it can be helpful to measure just how much time a chunk of code takes to run. The time() function is a nice tool for this purpose, because of how simple it is to add and then to remove when it is no longer needed.

import Foundation

func time(averagedExecutions: Int = 1, _ code: () -> Void) {
    let start = Date()
    for _ in 0..<averagedExecutions { code() }
    let end = Date()
    
    let duration = end.timeIntervalSince(start) / Double(averagedExecutions)
    
    print("time: \(duration)")
}

time {
    (0...10_000).map { $0 * $0 }
}
// time: 0.183973908424377

Running two pieces of code in parallel

Concurrency is definitely one of those topics were the right encapsulation bears the potential to make your life so much easier. For instance, with this piece of code you can easily launch two computations in parallel, and have the results returned in a tuple.

import Foundation

func parallel<T, U>(_ left: @autoclosure () -> T, _ right: @autoclosure () -> U) -> (T, U) {
    var leftRes: T?
    var rightRes: U?
    
    DispatchQueue.concurrentPerform(iterations: 2, execute: { id in
        if id == 0 {
            leftRes = left()
        } else {
            rightRes = right()
        }
    })
    
    return (leftRes!, rightRes!)
}

let values = (1...100_000).map { $0 }

let results = parallel(values.map { $0 * $0 }, values.reduce(0, +))

Making good use of #file, #line and #function

Swift exposes three special variables #file, #line and #function, that are respectively set to the name of the current file, line and function. Those variables become very useful when writing custom logging functions or test predicates.

import Foundation

func log(_ message: String, _ file: String = #file, _ line: Int = #line, _ function: String = #function) {
    print("[\(file):\(line)] \(function) - \(message)")
}

func foo() {
    log("Hello world!")
}

foo() // [MyPlayground.playground:8] foo() - Hello world!

Comparing Optionals through Conditional Conformance

Swift 4.1 has introduced a new feature called Conditional Conformance, which allows a type to implement a protocol only when its generic type also does.

With this addition it becomes easy to let Optional implement Comparable only when Wrapped also implements Comparable:

import Foundation

extension Optional: Comparable where Wrapped: Comparable {
    public static func < (lhs: Optional, rhs: Optional) -> Bool {
        switch (lhs, rhs) {
        case let (lhs?, rhs?):
            return lhs < rhs
        case (nil, _?):
            return true // anything is greater than nil
        case (_?, nil):
            return false // nil in smaller than anything
        case (nil, nil):
            return true // nil is not smaller than itself
        }
    }
}

let data: [Int?] = [8, 4, 3, nil, 12, 4, 2, nil, -5]
data.sorted() // [nil, nil, Optional(-5), Optional(2), Optional(3), Optional(4), Optional(4), Optional(8), Optional(12)]

Safely subscripting a Collection

Any attempt to access an Array beyond its bounds will result in a crash. While it's possible to write conditions such as if index < array.count { array[index] } in order to prevent such crashes, this approach will rapidly become cumbersome.

A great thing is that this condition can be encapsulated in a custom subscript that will work on any Collection:

import Foundation

extension Collection {
    subscript (safe index: Index) -> Element? {
        return indices.contains(index) ? self[index] : nil
    }
}

let data = [1, 3, 4]

data[safe: 1] // Optional(3)
data[safe: 10] // nil

Easier String slicing using ranges

Subscripting a string with a range can be very cumbersome in Swift 4. Let's face it, no one wants to write lines like someString[index(startIndex, offsetBy: 0)..<index(startIndex, offsetBy: 10)] on a regular basis.

Luckily, with the addition of one clever extension, strings can be sliced as easily as arrays 🎉

import Foundation

extension String {
    public subscript(value: CountableClosedRange<Int>) -> Substring {
        get {
            return self[index(startIndex, offsetBy: value.lowerBound)...index(startIndex, offsetBy: value.upperBound)]
        }
    }
    
    public subscript(value: CountableRange<Int>) -> Substring {
        get {
            return self[index(startIndex, offsetBy: value.lowerBound)..<index(startIndex, offsetBy: value.upperBound)]
        }
    }
    
    public subscript(value: PartialRangeUpTo<Int>) -> Substring {
        get {
            return self[..<index(startIndex, offsetBy: value.upperBound)]
        }
    }
    
    public subscript(value: PartialRangeThrough<Int>) -> Substring {
        get {
            return self[...index(startIndex, offsetBy: value.upperBound)]
        }
    }
    
    public subscript(value: PartialRangeFrom<Int>) -> Substring {
        get {
            return self[index(startIndex, offsetBy: value.lowerBound)...]
        }
    }
}

let data = "This is a string!"

data[..<4]  // "This"
data[5..<9] // "is a"
data[10...] // "string!"

Concise syntax for sorting using a KeyPath

By using a KeyPath along with a generic type, a very clean and concise syntax for sorting data can be implemented:

import Foundation

extension Sequence {
    func sorted<T: Comparable>(by attribute: KeyPath<Element, T>) -> [Element] {
        return sorted(by: { $0[keyPath: attribute] < $1[keyPath: attribute] })
    }
}

let data = ["Some", "words", "of", "different", "lengths"]

data.sorted(by: \.count) // ["of", "Some", "words", "lengths", "different"]

If you like this syntax, make sure to checkout KeyPathKit!

Manufacturing cache-efficient versions of pure functions

By capturing a local variable in a returned closure, it is possible to manufacture cache-efficient versions of pure functions. Be careful though, this trick only works with non-recursive function!

import Foundation

func cached<In: Hashable, Out>(_ f: @escaping (In) -> Out) -> (In) -> Out {
    var cache = [In: Out]()
    
    return { (input: In) -> Out in
        if let cachedValue = cache[input] {
            return cachedValue
        } else {
            let result = f(input)
            cache[input] = result
            return result
        }
    }
}

let cachedCos = cached { (x: Double) in cos(x) }

cachedCos(.pi * 2) // value of cos for 2π is now cached

Simplifying complex conditions with pattern matching

When distinguishing between complex boolean conditions, using a switch statement along with pattern matching can be more readable than the classic series of if {} else if {}.

import Foundation

let expr1: Bool
let expr2: Bool
let expr3: Bool

if expr1 && !expr3 {
    functionA()
} else if !expr2 && expr3 {
    functionB()
} else if expr1 && !expr2 && expr3 {
    functionC()
}

switch (expr1, expr2, expr3) {
    
case (true, _, false):
    functionA()
case (_, false, true):
    functionB()
case (true, false, true):
    functionC()
default:
    break
}

Easily generating arrays of data

Using map() on a range makes it easy to generate an array of data.

import Foundation

func randomInt() -> Int { return Int(arc4random()) }

let randomArray = (1...10).map { _ in randomInt() }

Using @autoclosure for cleaner call sites

Using @autoclosure enables the compiler to automatically wrap an argument within a closure, thus allowing for a very clean syntax at call sites.

import UIKit

extension UIView {
    class func animate(withDuration duration: TimeInterval, _ animations: @escaping @autoclosure () -> Void) {
        UIView.animate(withDuration: duration, animations: animations)
    }
}

let view = UIView()

UIView.animate(withDuration: 0.3, view.backgroundColor = .orange)

Observing new and old value with RxSwift

When working with RxSwift, it's very easy to observe both the current and previous value of an observable sequence by simply introducing a shift using skip().

import RxSwift

let values = Observable.of(4, 8, 15, 16, 23, 42)

let newAndOld = Observable.zip(values, values.skip(1)) { (previous: $0, current: $1) }
    .subscribe(onNext: { pair in
        print("current: \(pair.current) - previous: \(pair.previous)")
    })

//current: 8 - previous: 4
//current: 15 - previous: 8
//current: 16 - previous: 15
//current: 23 - previous: 16
//current: 42 - previous: 23

Implicit initialization from literal values

Using protocols such as ExpressibleByStringLiteral it is possible to provide an init that will be automatically when a literal value is provided, allowing for nice and short syntax. This can be very helpful when writing mock or test data.

import Foundation

extension URL: ExpressibleByStringLiteral {
    public init(stringLiteral value: String) {
        self.init(string: value)!
    }
}

let url: URL = "http://www.google.fr"

NSURLConnection.canHandle(URLRequest(url: "http://www.google.fr"))

Achieving systematic validation of data

Through some clever use of Swift private visibility it is possible to define a container that holds any untrusted value (such as a user input) from which the only way to retrieve the value is by making it successfully pass a validation test.

import Foundation

struct Untrusted<T> {
    private(set) var value: T
}

protocol Validator {
    associatedtype T
    static func validation(value: T) -> Bool
}

extension Validator {
    static func validate(untrusted: Untrusted<T>) -> T? {
        if self.validation(value: untrusted.value) {
            return untrusted.value
        } else {
            return nil
        }
    }
}

struct FrenchPhoneNumberValidator: Validator {
    static func validation(value: String) -> Bool {
       return (value.count) == 10 && CharacterSet(charactersIn: value).isSubset(of: CharacterSet.decimalDigits)
    }
}

let validInput = Untrusted(value: "0122334455")
let invalidInput = Untrusted(value: "0123")

FrenchPhoneNumberValidator.validate(untrusted: validInput) // returns "0122334455"
FrenchPhoneNumberValidator.validate(untrusted: invalidInput) // returns nil

Implementing the builder pattern with keypaths

With the addition of keypaths in Swift 4, it is now possible to easily implement the builder pattern, that allows the developer to clearly separate the code that initializes a value from the code that uses it, without the burden of defining a factory method.

import UIKit

protocol With {}

extension With where Self: AnyObject {
    @discardableResult
    func with<T>(_ property: ReferenceWritableKeyPath<Self, T>, setTo value: T) -> Self {
        self[keyPath: property] = value
        return self
    }
}

extension UIView: With {}

let view = UIView()

let label = UILabel()
    .with(\.textColor, setTo: .red)
    .with(\.text, setTo: "Foo")
    .with(\.textAlignment, setTo: .right)
    .with(\.layer.cornerRadius, setTo: 5)

view.addSubview(label)

🚨 The Swift compiler does not perform OS availability checks on properties referenced by keypaths. Any attempt to use a KeyPath for an unavailable property will result in a runtime crash.

I share the credit for this tip with Marion Curtil.

Storing functions rather than values

When a type stores values for the sole purpose of parametrizing its functions, it’s then possible to not store the values but directly the function, with no discernable difference at the call site.

import Foundation

struct MaxValidator {
    let max: Int
    let strictComparison: Bool
    
    func isValid(_ value: Int) -> Bool {
        return self.strictComparison ? value < self.max : value <= self.max
    }
}

struct MaxValidator2 {
    var isValid: (_ value: Int) -> Bool
    
    init(max: Int, strictComparison: Bool) {
        self.isValid = strictComparison ? { $0 < max } : { $0 <= max }
    }
}

MaxValidator(max: 5, strictComparison: true).isValid(5) // false
MaxValidator2(max: 5, strictComparison: false).isValid(5) // true

Defining operators on function types

Functions are first-class citizen types in Swift, so it is perfectly legal to define operators for them.

import Foundation

let firstRange = { (0...3).contains($0) }
let secondRange = { (5...6).contains($0) }

func ||(_ lhs: @escaping (Int) -> Bool, _ rhs: @escaping (Int) -> Bool) -> (Int) -> Bool {
    return { value in
        return lhs(value) || rhs(value)
    }
}

(firstRange || secondRange)(2) // true
(firstRange || secondRange)(4) // false
(firstRange || secondRange)(6) // true

Typealiases for functions

Typealiases are great to express function signatures in a more comprehensive manner, which then enables us to easily define functions that operate on them, resulting in a nice way to write and use some powerful API.

import Foundation

typealias RangeSet = (Int) -> Bool

func union(_ left: @escaping RangeSet, _ right: @escaping RangeSet) -> RangeSet {
    return { left($0) || right($0) }
}

let firstRange = { (0...3).contains($0) }
let secondRange = { (5...6).contains($0) }

let unionRange = union(firstRange, secondRange)

unionRange(2) // true
unionRange(4) // false

Encapsulating state within a function

By returning a closure that captures a local variable, it's possible to encapsulate a mutable state within a function.

import Foundation

func counterFactory() -> () -> Int {
    var counter = 0
    
    return {
        counter += 1
        return counter
    }
}

let counter = counterFactory()

counter() // returns 1
counter() // returns 2

Generating all cases for an Enum

⚠️ Since Swift 4.2, allCases can now be synthesized at compile-time by simply conforming to the protocol CaseIterable. The implementation below should no longer be used in production code.

Through some clever leveraging of how enums are stored in memory, it is possible to generate an array that contains all the possible cases of an enum. This can prove particularly useful when writing unit tests that consume random data.

import Foundation

enum MyEnum { case first; case second; case third; case fourth }

protocol EnumCollection: Hashable {
    static var allCases: [Self] { get }
}

extension EnumCollection {
    public static var allCases: [Self] {
        var i = 0
        return Array(AnyIterator {
            let next = withUnsafePointer(to: &i) {
                $0.withMemoryRebound(to: Self.self, capacity: 1) { $0.pointee }
            }
            if next.hashValue != i { return nil }
            i += 1
            return next
        })
    }
}

extension MyEnum: EnumCollection { }

MyEnum.allCases // [.first, .second, .third, .fourth]

Using map on optional values

The if-let syntax is a great way to deal with optional values in a safe manner, but at times it can prove to be just a little bit to cumbersome. In such cases, using the Optional.map() function is a nice way to achieve a shorter code while retaining safeness and readability.

import UIKit

let date: Date? = Date() // or could be nil, doesn't matter
let formatter = DateFormatter()
let label = UILabel()

if let safeDate = date {
    label.text = formatter.string(from: safeDate)
}

label.text = date.map { return formatter.string(from: $0) }

label.text = date.map(formatter.string(from:)) // even shorter, tough less readable

📣 NEW 📣 Swift Tips are now available on YouTube 👇

Summary

Tips


Download Details:

Author: vincent-pradeilles
Source code: https://github.com/vincent-pradeilles/swift-tips

License: MIT license
#swift 

Ahebwe  Oscar

Ahebwe Oscar

1620185280

How model queries work in Django

How model queries work in Django

Welcome to my blog, hey everyone in this article we are going to be working with queries in Django so for any web app that you build your going to want to write a query so you can retrieve information from your database so in this article I’ll be showing you all the different ways that you can write queries and it should cover about 90% of the cases that you’ll have when you’re writing your code the other 10% depend on your specific use case you may have to get more complicated but for the most part what I cover in this article should be able to help you so let’s start with the model that I have I’ve already created it.

**Read More : **How to make Chatbot in Python.

Read More : Django Admin Full Customization step by step

let’s just get into this diagram that I made so in here:

django queries aboutDescribe each parameter in Django querset

we’re making a simple query for the myModel table so we want to pull out all the information in the database so we have this variable which is gonna hold a return value and we have our myModel models so this is simply the myModel model name so whatever you named your model just make sure you specify that and we’re gonna access the objects attribute once we get that object’s attribute we can simply use the all method and this will return all the information in the database so we’re gonna start with all and then we will go into getting single items filtering that data and go to our command prompt.

Here and we’ll actually start making our queries from here to do this let’s just go ahead and run** Python manage.py shell** and I am in my project file so make sure you’re in there when you start and what this does is it gives us an interactive shell to actually start working with our data so this is a lot like the Python shell but because we did manage.py it allows us to do things a Django way and actually query our database now open up the command prompt and let’s go ahead and start making our first queries.

#django #django model queries #django orm #django queries #django query #model django query #model query #query with django

Muhammad  Price

Muhammad Price

1659548340

Sym: A Command Line Utility and A Ruby API for Coding

Sym — Symmetric Encryption for Humans

NotePlease checkout the following post — Dead Simple Encryption with Sym — that announced the initial release of this library, and provides further in-depth discussion. Your donation of absolutely any amount is much appreciated but never required.

Donate

NoteYou can read this README in the properly rendered for print format, by downloading the PDF.

Introduction

NoteSYM is an open source command line utility and a Ruby library, which makes it _trivial to encrypt your application secrets with mathematically proven models and ciphers offered in a much larger project — Open SSL.

Unlike many existing encryption tools, sym focuses on narrowing the gap between convenience and security, by offering enhanced usability and a streamlined ruby API and a CLI. The primary goal of the library is to make encryption very easy and transparent.
 

sym uses the Symmetric Encryption algorithm. This means that the same key is used to encrypt and decrypt data. In addition to the key, the encryption uses a randomized IV vector, which is automatically generated per each encryption and serialized with the data. Result of encryption is zlib-compressed, and base64 encoded, to be suitable for storage as string. The generated keys are also base64-encoded for convenience.
 

Finally, the library offers encryption using any regular password, and in particular supports password-protected encryption keys. Automatic key detection algorithm attempts to resolve a provided key as a filename, an environment variable name, an OS-X Keychain password entry name, a key itself, or a default key file.
 

NoteSym uses Ruby’s Marshall.dump to serialize it’s data, and therefore it is not currently possible or easy to deserialize the data in languages other than Ruby.

Quick Demo of the CLI in Action

asciicast

Help Screens, Examples and Symit Bash Wrapper

This may be a good time to take a look at the full help message for the sym tool, shown naturally with a -h or --help option. Examples can be shown with -E/--examples flag.

Additionally, Sym comes with a helpful BASH wrapper symit.

Help screens for sym and symit are shown in full on another page — Sym Help Screens and Symit. Please refer to it for complete help screens and the examples.

Supported Ruby Versions

NoteRuby 3.0.0 is only supported by Sym version 3.0.1 and later.

Sym currently builds and runs on the following ruby versions on Travis CI:

Table 1. Ruby Version Compatibility

MRI RubyJRuby
2.3.8jruby-9.1.17.0
2.4.10jruby-9.2.13.0
2.5.8 
2.6.6 
2.7.1 

Motivation

The main goal when writing this tool was to streamline and simplify handling of sensitive data in a trasparent and easy to use way without sacrificing security.

Most common use-cases include:

Encrypting/decrypting of application secrets files, so that the encrypted secrets can be safely checked into the git repository and distributed, and yet without much of the added headache that this often requires

Secure message transfer between any number of receipients

General purpose encryption/decryption with a 256-bit encryption key, optionally itself re-encrypted with a password.

General purpose encryption/decryption with an arbitrary password.

Sym is a layer built on top of the OpenSSL library, and, hopefully, makes encryption more accessible to every-day developers, QA, and dev-ops folks, engaged in deploying applications.

What’s Included

This gem includes two primary components:

Rich command line interface CLI with many features to streamline encryption/decryption, and to be integrated into the deployment flow.
 

Ruby APIs:

Key Generation, Encryption & Decryption API

is activated by including Sym module in a class, it adds easy to use encr/decr methods.

Application API to shadow the CLI usage

You can instantiate Sym::Application class with a hash representing CLI arguments, and then call it’s #execute method to mimic CLI execution.

Sym::MagicFile API

This is a convenience class allowing you to encrypt/decrypt files in your ruby code with just couple of lines of code.

Sym::Configuration

Use this class to override the default cipher, and configure other parameters such as compression, password caching, and more.

Massive Time Savers

Sym tries very hard to get out of your way, to make it feel as if your encrypted files are as easy to work with as the unencrypted files. It accomplishes this transparency with the following features:

By using Mac OS-X Keychain, sym offers a simple yet secure way of storing the key on a local machine, much more secure then storing it on a file system.

By using a password cache (-c) via an in-memory provider such as memcached, sym invocations take advantage of password cache, and only ask for a password once per a configurable time period.

By using SYM_ARGS environment variable you can save common flags and they will be applied whenever -A flag is activated.

By reading a key from the default key source file ~/.sym.key which requires no flags at all.

By utilizing the --negate option to quickly encrypt a regular file, or decrypt an encrypted file with extension .enc.

By using the -t file (edit) mode, that opens an encrypted file in your $EDITOR, and replaces the encrypted version upon save & exit.

As you can see, we really tried to build a tool that provides good security for application secrets, including password-based encryption, but does not annoyingly ask for password every time. With --edit option, and --negate options you can treat encrypted files like regular files.

Encrypting application secrets had never been easier! ---

— Socrates (LOL)

Using Sym

Installation

If you plan on using the library in your Ruby project with Bundler managing its dependencies, just include the following line in your Gemfile:

gem 'sym'

And then run bundle.

Or install it into the global namespace with gem install command:

$ gem install sym
$ sym -h
$ sym -E # see examples

BASH Completion

Optionally, after gem installation, you can also install bash-completion of gem’s command line options, but running the following command (and feel free to use any of the "dot" files you prefer):

sym -B ~/.bashrc

Should you choose to install it (this part is optional), you will be able to use "tab-tab" after typing sym, and you’ll be able to choose from all of the supported flags.

Typical Use-Case Scenario

You generate a new encryption key, that will be used to both encrypt and decrypt the data. The key is 256 bits, or 32 bytes, or 45 bytes when base64-encoded, and can be generated with sym -g. The key must be saved somewhere for later retrieval. The key should not be easily accessible to an attacker. Note, that while generating the key, you can:

optionally password protect the key with sym -gp

save the key into a file with sym -gpo key-file

save it into the OS-X Keychain, with sym -gpx keychain-name

cache the password, with sym -gpcx keychain-name

Normally, sym will print the resulting key to STDOUT

You can prevent the key from being printed to STDOUT with -q/--quiet.

Next, let’s assume you have a file or a string that you want to encrypt. We call this data.

In order to encrypt the data, we must supply an encryption key. Flag -k automatically retrieves the key, by trying to read it in several distinct ways, such as:

a file with a pathname specified by the argument (eg, -k ~/.key)

or environment variable (eg -k ENC_KEY)

or OS-X Keychain entry

verbatum string argument (not recommended)

alternatively, you can paste the key interactively with -i or save the default key in ~/.sym.key file.

Finally, we are ready to encrypt. The data to be encrypted can be read from a file with -f filename, or it can be read from STDIN, or a passed on the command line with -s string. For example, sym -e -k ~/.key -f /etc/passwd will encrypt the file and print the encrypted contents to STDOUT.

Instead of printing to STDOUT, the output can be saved to a file with -o <file> or a simple redirect or a pipe.

Encrypted file can later be decrypted with sym -d ... assuming the same key it was encrypted with.

Encrypted file with extension .enc can be automatically decrypted with -n/--negate file option; if the file does not end with .enc, it is encrypted and .enc extension added to the resulting file.

With -t/--edit file flag you can edit an encrypted file in VIM (or $EDITOR) any encrypted file and edit it. Once you save it, the file gets re-encrypted and replaces the previous version. A backup can be created with -b option. See the section on inline editing

A sample session that uses Mac OS-X Keychain to store the password-protected key.

# Gen a new key, password-encrypt it, cache the password, save
# result in the key chain entry 'my-new-key' (but don't print it '-q')
❯ sym -gpqcx my-new-key
New Password     :  •••••••••
Confirm Password :  •••••••••

❯ sym -eck my-new-key -s 'My secret data' -o secret.enc
Password: •••••••••

❯ cat secret.enc
BAhTOh1TeW06OkRhdGE6OldyYXBFefDFFD.....

❯ sym -dck my-new-key -f secret.enc
My secret data

# Now, let's save our keychain key in the default key file:
❯ sym -ck my-new-key -o ~/.sym.key

# Now we can decrypt/encrypt with this key at will
❯ sym -n secret.enc
# created a decrypted file `secret`

# Lets now save common flags in the SYM_ARGS bash variable:
❯ export SYM_ARGS="-ck my-new-key"
# To have sym parse the SYM_ARGS variable, we must activate this feature with -A
❯ sym -Adf secret.enc
My secret data

Note that password caching is off by default, but is enabled with -c flag. In the example above, the decryption step fetched the password from the cache, and so the user was not required to re-enter the password.

 

Inline Editing of Encrypted Files

The sym CLI tool supports one particularly interesting mode, that streamlines handling of encrypted files. The mode is called edit mode, and is activated with the -t flag.

Instead of decrypting data anytime you need to change it into a new file and then manually re-encrypting the result, you can use the shortcut flag -t (for "edit"), which decrypts your data into a temporary file, automatically opening it with an $EDITOR.

sym -t config/application/secrets.yml.enc -k ~/.key

This is one of those time-saving features that can make a difference in making encryption feel easy and transparent.

Notethis mode does not seem to work with GUI editors such as Atom or TextMate. Since sym waits for the editor process to complete, GUI editors "complete" immediately upon starting a windowed application.

In this mode several flags are of importance:

-b (--backup)   – will create a backup of the original file
-v (--verbose) - will show additional info about file sizes

Here is a full command that opens a file specified by -f | --file, using the key specified in -k | --keyfile, in the editor defined by the $EDITOR environment variable (or if not set — defaults to /bin/vi)".

Example: here we edit an encrypted file in vim, while using interactive mode to paste the key (-i | --interactive), and then creating a backup file (-b | --backup) upon save:

sym -ibt data.enc
# => Private Key: ••••••••••••••••••••••••••••••••••••••••••••
#
# => Diff:
# 3c3
# # (c) 2015 Konstantin Gredeskoul.  All rights reserved.
# ---
# # (c) 2016 Konstantin Gredeskoul.  All rights reserved.

Note the diff shown after save.

CLI Help Reference

Sym Help

 

Ruby API

Including Sym module

Low-level encryption routines can be imported by including Sym module into your class or a module. Such class will be decorated with new class methods #private_key and #create_private_key, as well as instance methods #encr, and #decr.

Class Method #create_private_key()

This method will generate a new key each time it’s called.

Class Method #private_key(value = nil)

This method will either assign an existing key (if a value is passed) or generate and save a new key in the class instance variable. Therefore each class including Sym will (by default) use a unique key (unless the key is passed in as an argument).

The following example illustrates this point:

require 'sym'

class TestClass
  include Sym
end

@key = TestClass.create_private_key
@key.eql?(TestClass.private_key)  # => false
# A new key was created and saved in #private_key accessor.

class SomeClass
  include Sym
  private_key TestClass.private_key
end

@key.eql?(SomeClass.private_key)  # => true (it was assigned)

Encrypting and Decrypting

So how would we use this library from another Ruby project to encrypt and decrypt values?

After including the Sym module, two instance methods are added:

#encr(value, private_key) and

#decr(value, private_key).

Therefore you could write something like this below, protecting a sensitive string using a class-level secret.

require 'sym'
class TestClass
  include Sym
  private_key ENV['SECRET']

  def sensitive_value=(value)
    @sensitive_value = encr(value, self.class.private_key)
  end
  def sensitive_value
    decr(@sensitive_value, self.class.private_key)
  end
end

Encrypting the Key Itself

You can encrypt the private key using a custom password. This is highly recommended, because without the password the key is the only piece that stands between an attacker and decrypting your sensitive data.

For this purpose, two more instance methods exist:

#encr_password(data, password, iv = nil)

#decr_password(encrypted_data, password, iv = nil)

They can be used independently of encr and decr to encrypt/decrypt any data with a password.

 

Using Sym::MagicFile API for Reading/Writing Encrypted/Decrypted data

This is probably the easiest way to leverage Sym-encrypted files in your application — by loading them into memory with Sym::MagicFile. This class provides a very simple API while supporting all of the convenience features of the rich application API (see below).

You instantiate Sym::MagicFile with just two parameters: a pathname to a file (encrypted or not), and the key identifier. The identifier can either be a filename, or OS-X Keychain entry, or environment variable name, etc — basically it is resolve like any other -k <value> CLI flag.

The following methods are available:

#encrypt — returns an encrypted string representing the encrypted contents ofa file specified by the pathname.

#decrypt — returns a decrypted string representing the decrypted contents of a file specified by the pathname.

#encrypt_to(filename) — encrypts the contents of a file specified by the pathname, and writes the result to a filename.

#decrypt_to(filename) — decrypts the contents of a file specified by the pathname, and writes the result to a filename.

Example: Using Sym::MagicFile with the RailsConfig (or Settings) gem

In this example, we assume that the environment variable $PRIVATE_KEY contain the key to be used in decryption.

require 'sym/magic_file'
require 'yaml'
secrets = Sym::MagicFile.new('/usr/local/etc/secrets.yml.enc', 'PRIVATE_KEY')
hash = YAML.load(secrets.decrypt)

Let’s say that you are using RailsConfig gem for managing your Rails application setings. Since the gem allows appending settings from a hash, you can simply do the following in your settings_initializer.rb, and after all of the unencrypted settings are loaded:

require 'config'
require 'sym/magic_file'
require 'yaml'
Settings.add_source!(
    YAML.load(
        Sym::MagicFile.new(
            '/usr/local/etc/secrets.yml.enc',
            'PRIVATE_KEY'
        ).decrypt)
    )
Settings.reload!

 

Using Sym::Application API

Since the command line interface offers much more than just encryption/decryption of data with a key, majority of these features are available through Sym::Application instance.

The class is instantiated with a hash that would be otherwise generated by parsing CLI arguments, typical options. For example, to generate the key, pass generate: true — essentially any flag in it’s long form can be converted into a hash member.

Here is an example:

require 'sym/application'

key  = Sym::Application.new(generate: true).execute
# => '75ngenJpB6zL47/8Wo7Ne6JN1pnOsqNEcIqblItpfg4='

Ruby API Conclusion

Using Sym's rich ruby API you can perform both low-level encryption/decryption, as well as high-level management of encrypted files. By using Sym::MagicFile and/or Sym::Application classes you can access the entire set of functionality expressed vi the CLI, described in details below.

 

Using sym with the Command Line

Encryption Keys

The private key is the cornerstone of the symmetric encryption. Using sym, the key can be:

generated and printed to STDOUT, or saved to Mac OS-X KeyChain or a file

fetched from the Keychain in subsequent operations

password-protected during generation (or import) with the -p flag.

password can be cached using a locally running memcached, assuming the -c flag is provided.

must be kept very well protected and secure from attackers.

The unencrypted private key will be in the form of a base64-encoded string, 45 characters long.

Encrypted (with password) private key will be considerably longer, perhaps 200-300 characters long.

Generating the Key — Examples

# Let's generate a new key, and copy it to the clipboard (using `pbcopy` command on Mac OS-X):
$ sym -g | pbcopy

# Or save a new key into a bash variable
$ KEY=$(sym -g)

# Or save it to a file:
$ sym -go ~/.key

# Or create a password-protected key (`-p`), and save it to a file (`-o`),
# cache the password (`-c`), and don't print the new key to STDOUT (`-q` for quiet)
$ sym -gpcqo ~/.secret
New Password:     ••••••••••
Confirm Password: ••••••••••
$

Resolving the -k Argument

You can use the generated private key by passing an argument to the -k flag.

Sym attempts to automatically resolve the key source by trying each of the following options, and then moving on to the next until the key is found, or error is shown:

the -k value flag, where the value is one of:

a file path, eg (-k ~/.key)

an environment variable name (-k MY_KEY)

an actual base64-encoded key (not recommended for security reasons)

a keychain name (-k keychain-entry-name)

pasting or typing the key with the -i (interactive) flag

if exists, a default key file, located in your home folder: ~/.sym.key is used only when no other key-specifying flags were passed in.

Encryption and Decryption

 

Inline Editing

The sym CLI tool supports one particularly interesting mode, that streamlines handling of encrypted files. The mode is called edit mode, and is activated with the -t file flag.

In this mode sym will automaticaly decrypt the encrypted file into a temporary file, and then open it in $EDITOR. Once you quit the editor, sym will automatically diff the new and old content, and if it is different, sym will re-encrypt the new contents and overwrite the original file. You can create an optional backup by adding -b flag.

Notethis mode does not seem to work with GUI editors such as Atom or TextMate. Since sym waits for the editor process to complete, GUI editors "complete" immediately upon starting a windowed application. In this mode several flags are of importance:
-b (--backup)   – will create a backup of the original file
-v (--verbose) - will show additional info about file sizes

Here is a full command that opens a file specified by -t | --edit file, using the key specified in -k | --keyfile, in the editor defined by the $EDITOR environment variable (or if not set — defaults to /bin/vi)".

To edit an encrypted file in $EDITOR, while asking to paste the key (-i | --interactive), while creating a backup file (-b | --backup):

 sym -tibf data.enc
 # => Private Key: ••••••••••••••••••••••••••••••••••••••••••••
 #
 # => Diff:
 # 3c3
 # # (c) 2015 Konstantin Gredeskoul.  All rights reserved.
 # ---
 # # (c) 2016 Konstantin Gredeskoul.  All rights reserved.

Using KeyChain Access on Mac OS-X

KeyChain storage is a huge time saver. It allows you to securely store the key the keychain, meaning the key can not be easily extracted by an attacker without a login to your account. Just having access to the disk is not enough.

Apple had released a security command line tool, which this library uses to securely store a key/value pair of the key name and the actual private key in your OS-X KeyChain. The advantages of this method are numerous:

The private key won’t be lying around your file system unencrypted, so if your Mac is ever stolen, you don’t need to worry about the keys running wild.

If you sync your keychain with the iCloud you will have access to it on other machines

As mentioned previously, to add the key to the KeyChain on the Mac, use -x <key-name> flag with -g flag when generating a key. The key name is what you call this particular key, based on how you plan to use it. For example, you may call it staging, etc.

The following command generates the private key and immediately stores it in the KeyChain access under the name provided:

sym -gx staging   # the key is passwordless
sym -gpcx staging # this key is password protected, with the password cached

Next, whenever you need to use this key, you can specify the key with -k staging.

Finally, you can delete a key from KeyChain access by running:

keychain <name> delete

Below we describe the purpose of the executable keychain shipped with sym.

KeyChain Key Management

keychain is an additional executable installed with the gem, which can be used to read (find), update (add), and delete keychain entries used by sym.

It’s help message is self-explanatory:

Usage: keychain <name> [ add <contents> | find | delete ]

Moving a Key to the Keychain

You can easily move an existing key from a file or a string to a keychain by combining -k or -k to read the key, with -x to write it.

sym -k $keysource -x mykey

Adding Password to Existing Key

You can add a password to a key by combining one of the key description flags (-k, -i) and then also -p. Use -q to hide new key from the STDOUT, and c to cache the password.

sym -k $mykey -pqcx moo

The above example will take an unencrypted key passed in $mykey, ask for a password and save password protected key into the keychain with name "moo."

Password Caching

Nobody likes to re-type passwords over and over again, and for this reason Sym supports password caching via a locally running memcached instance (using the default port 11211, if available).

Multiple Providers

Cache is written using the Provider design pattern (a.k.a. plugin architecture), and so it’s easy to add a new Cache Provider that uses a custom backend. The supplied production-ready provider only works with a memcached daemon running (ideally) locally.

For customization of memcached location, we refer you to the Configuration class for an example of how to configure MemCached provider — shown below in the Ruby API section.

In order to control password caching, the following flags are available:

-c turns on caching

-u seconds sets the expiration for cached passwords

-r memcached controls which of the providers is used. Without this flag, sym auto-detects caching provider by first checking for memcached

Saving Common Flags in an Environment Variable

You can optionally store frequently used flags for sym in the SYM_ARGS environment variable. For example, to always cache passwords, and to always use the same encryption key from the keychain named "production", set the following in your ~/.bashrc:

export SYM_ARGS="-cx production"

This will be automatically appended to the command line if the -A/--sym-args flag is provided, and so to encrypt/decrypt anything with password caching enabled and using that particular key, you would simply type:

# -cx production are added from SYM_ARGS
sym -Aef file -o file.enc

# And to decrypt:
sym -Adf file.enc -o file.original

# Or edit the encrypted file:
sym -Atf file.enc

Fine Tuning

 

Configuration

The library contains a Sym::Configuration singleton class, which can be used to tweak some of the internals of the gem. Its meant for advanced users who know what they are doing. The code snippet shown below is an actual default configuration. You can override the defaults by including a similar snipped in your application initialization, right after the require 'sym'. The Configuration class is a Singleton, so changes to it will propagate to any subsequent calls to the gem.

require 'zlib'
require 'sym'
Sym::Configuration.configure do |config|
  config.password_cipher          = 'AES-128-CBC'
  config.data_cipher              = 'AES-256-CBC'
  config.private_key_cipher       = config.data_cipher
  config.compression_enabled      = true
  config.compression_level        = Zlib::BEST_COMPRESSION
  config.encrypted_file_extension = 'enc'
  config.default_key_file         = "#{ENV['HOME']}/.sym.key"

  config.password_cache_timeout          = 300

  # When nil is selected, providers are auto-detected.
  config.password_cache_default_provider = nil
  config.password_cache_arguments        = {
    # In-memory password cache configuration:
    # Memcached Provider – local is the default, but can be changed.
    memcached: {
      args: %w(127.0.0.1:11211),
      opts: { namespace:  'sym',
              compress:   true,
              expires_in: config.password_cache_timeout
      }
    }
  }
end

As you can see, it’s possible to change the default cipher type, although not all ciphers will be code-compatible with the current algorithm, and may require additional code changes.

Encryption Features & Cipher

The sym executable as well as the Ruby API provide:

Symmetric data encryption with:

the Cipher AES-256-cBC used by the US Government

256-bit private key, that

can be generated and is a base64-encoded string about 45 characters long. The decoded key is always 32 characters (or 256 bytes) long.

can be optionally password-encrypted using the 128-bit key, and then be automatically detected (and password requested) when the key is used

can optionally have its password cached for 15 minutes locally on the machine using memcached

Rich command line interface with some innovative features, such as inline editing of an encrypted file, using your favorite $EDITOR.

Data handling:

Automatic compression of the data upon encryption

Automatic base64 encryption to make all encrypted strings fit onto a single line.

This makes the format suitable for YAML or JSON configuration files, where only the values are encrypted.

Rich Ruby API

(OS-X Only): Ability to create, add and delete generic password entries from the Mac OS-X KeyChain, and to leverage the KeyChain to store sensitive private keys.

Development

After checking out the repo, run bin/setup to install dependencies. Then, run rake spec to run the tests. You can also run bin/console for an interactive prompt that will allow you to experiment.

To install this gem onto your local machine, run bundle exec rake install.

To release a new version, update the version number in version.rb, and then run bundle exec rake release, which will create a git tag for the version, push git commits and tags, and push the .gem file to rubygems.org.

Contributing

Bug reports and pull requests are welcome on GitHub at https://github.com/kigster/sym.

UML

Here are a couple of UML diagrams depicting the current, and possibly future state of the codebase.


Current Design

UML Vertical


Future Design

UML Refactor

License

Sym library is © 2016-2020 Konstantin Gredeskoul and Contributors.

The gem is available as open source under the terms of the MIT License. The library is designed to be a layer on top of OpenSSL, distributed under the Apache Style license.

Acknowledgements

The blog post (Symmetric) Encryption With Ruby (and Rails) provided the inspiration for this gem.

We’d like to thank Spike Ilacqua, the author of the strongbox gem, for providing very easy-to-read code examples of symmetric encryption.

We’d like to thank Wissam Jarjoui for support and inspiration, as well as testing of the early versions of this gem.

Contributors:

Contributions of any kind are very much welcome from anyone.

Any pull requests will be reviewed promptly.

Please submit feature requests, bugs, or donations :)

Konstantin Gredeskoul (primary developer)

Wissam Jarjoui (testing, inspiration)

Barry Anderson (sanity checking, review)

Justin Nazari (bug fixes)


Author: kigster
Source code: https://github.com/kigster/sym
License: View license

#ruby   #ruby-on-rails