Thierry  Perret

Thierry Perret

1662365538

Les Structures De Données Les Plus Couramment Utilisées En Python

Dans tout langage de programmation, nous devons traiter des données. Maintenant, l'une des choses les plus fondamentales dont nous avons besoin pour travailler avec les données est de les stocker, de les gérer et d'y accéder efficacement de manière organisée afin qu'elles puissent être utilisées chaque fois que cela est nécessaire pour nos besoins. Les structures de données sont utilisées pour répondre à tous nos besoins.

Que sont les Structures de Données ?

Les structures de données sont les blocs de construction fondamentaux d'un langage de programmation. Il vise à fournir une approche systématique pour répondre à toutes les exigences mentionnées précédemment dans l'article. Les structures de données en Python sont List, Tuple, Dictionary et Set . Ils sont considérés comme des structures de données implicites ou intégrées dans Python . Nous pouvons utiliser ces structures de données et leur appliquer de nombreuses méthodes pour gérer, relier, manipuler et utiliser nos données.

Nous avons également des structures de données personnalisées définies par l'utilisateur, à savoir Stack , Queue , Tree , Linked List et Graph . Ils permettent aux utilisateurs d'avoir un contrôle total sur leurs fonctionnalités et de les utiliser à des fins de programmation avancées. Cependant, nous nous concentrerons sur les structures de données intégrées pour cet article.

Structures de données implicites Python

Structures de données implicites Python

LISTE

Les listes nous aident à stocker nos données de manière séquentielle avec plusieurs types de données. Ils sont comparables aux tableaux à l'exception qu'ils peuvent stocker différents types de données comme des chaînes et des nombres en même temps. Chaque élément ou élément d'une liste a un index attribué. Étant donné que Python utilise l' indexation basée sur 0 , le premier élément a un index de 0 et le comptage continue. Le dernier élément d'une liste commence par -1 qui peut être utilisé pour accéder aux éléments du dernier au premier. Pour créer une liste, nous devons écrire les éléments à l'intérieur des crochets .

L'une des choses les plus importantes à retenir à propos des listes est qu'elles sont Mutable . Cela signifie simplement que nous pouvons modifier un élément dans une liste en y accédant directement dans le cadre de l'instruction d'affectation à l'aide de l'opérateur d'indexation. Nous pouvons également effectuer des opérations sur notre liste pour obtenir la sortie souhaitée. Passons en revue le code pour mieux comprendre les opérations de liste et de liste.

1. Créer une liste

#creating the list
my_list = ['p', 'r', 'o', 'b', 'e']
print(my_list)

Production

['p', 'r', 'o', 'b', 'e']

2. Accéder aux éléments de la liste

#accessing the list 
 
#accessing the first item of the list
my_list[0]

Production

'p'
#accessing the third item of the list
my_list[2]
'o'

3. Ajouter de nouveaux éléments à la liste

#adding item to the list
my_list + ['k']

Production

['p', 'r', 'o', 'b', 'e', 'k']

4. Suppression d'éléments

#removing item from the list
#Method 1:
 
#Deleting list items
my_list = ['p', 'r', 'o', 'b', 'l', 'e', 'm']
 
# delete one item
del my_list[2]
 
print(my_list)
 
# delete multiple items
del my_list[1:5]
 
print(my_list)

Production

['p', 'r', 'b', 'l', 'e', 'm']
['p', 'm']
#Method 2:
 
#with remove fucntion
my_list = ['p','r','o','k','l','y','m']
my_list.remove('p')
 
 
print(my_list)
 
#Method 3:
 
#with pop function
print(my_list.pop(1))
 
# Output: ['r', 'k', 'l', 'y', 'm']
print(my_list)

Production

['r', 'o', 'k', 'l', 'y', 'm']
o
['r', 'k', 'l', 'y', 'm']

5. Liste de tri

#sorting of list in ascending order
 
my_list.sort()
print(my_list)

Production

['k', 'l', 'm', 'r', 'y']
#sorting of list in descending order
 
my_list.sort(reverse=True)
print(my_list)

Production

['y', 'r', 'm', 'l', 'k']

6. Trouver la longueur d'une liste

#finding the length of list
 
len(my_list)

Production

5

TUPLE

Les tuples sont très similaires aux listes avec une différence clé qu'un tuple est IMMUTABLE , contrairement à une liste. Une fois que nous avons créé un tuple ou que nous avons un tuple, nous ne sommes pas autorisés à modifier les éléments qu'il contient. Cependant, si nous avons un élément à l'intérieur d'un tuple, qui est une liste elle-même, alors seulement nous pouvons accéder ou changer dans cette liste. Pour créer un tuple, nous devons écrire les éléments entre parenthèses . Comme les listes, nous avons des méthodes similaires qui peuvent être utilisées avec des tuples. Passons en revue quelques extraits de code pour comprendre l'utilisation des tuples.

1. Créer un tuple

#creating of tuple
 
my_tuple = ("apple", "banana", "guava")
print(my_tuple)

Production

('apple', 'banana', 'guava')

2. Accéder aux éléments d'un Tuple

#accessing first element in tuple
 
my_tuple[1]

Production

'banana'

3. Longueur d'un tuple

#for finding the lenght of tuple
 
len(my_tuple)

Production

3

4. Conversion d'un tuple en liste

#converting tuple into a list
 
my_tuple_list = list(my_tuple)
type(my_tuple_list)

Production

list

5. Inverser un tuple

#Reversing a tuple
 
tuple(sorted(my_tuple, reverse=True)) 

Production

('guava', 'banana', 'apple')

6. Trier un tuple

#sorting tuple in ascending order
 
tuple(sorted(my_tuple)) 

Production

('apple', 'banana', 'guava')

7. Supprimer des éléments de Tuple

Pour supprimer des éléments du tuple, nous avons d'abord converti le tuple en une liste comme nous l'avons fait dans l'une de nos méthodes ci-dessus (point n ° 4), puis avons suivi le même processus de la liste et avons explicitement supprimé un tuple entier, juste en utilisant le del déclaration .

DICTIONNAIRE

Dictionary est une collection, ce qui signifie simplement qu'il est utilisé pour stocker une valeur avec une clé et extraire la valeur donnée à la clé. Nous pouvons le considérer comme un ensemble de clés : des paires de valeurs et chaque clé d'un dictionnaire est supposée être unique afin que nous puissions accéder aux valeurs correspondantes en conséquence.

Un dictionnaire est indiqué par l'utilisation d' accolades { } contenant les paires clé : valeur. Chacune des paires d'un dictionnaire est séparée par des virgules. Les éléments d'un dictionnaire ne sont pas ordonnés , la séquence n'a pas d'importance pendant que nous y accédons ou que nous les stockons.

Ils sont MUTABLES ce qui signifie que nous pouvons ajouter, supprimer ou mettre à jour des éléments dans un dictionnaire. Voici quelques exemples de code pour mieux comprendre un dictionnaire en python.

Un point important à noter est que nous ne pouvons pas utiliser un objet mutable comme clé dans le dictionnaire. Ainsi, une liste n'est pas autorisée comme clé dans le dictionnaire.

1. Création d'un dictionnaire

#creating a dictionary
 
my_dict = {
    1:'Delhi',
    2:'Patna',
    3:'Bangalore'
}
print(my_dict)

Production

{1: 'Delhi', 2: 'Patna', 3: 'Bangalore'}

Ici, les entiers sont les clés du dictionnaire et le nom de ville associé aux entiers sont les valeurs du dictionnaire.

2. Accéder aux éléments d'un dictionnaire

#access an item
 
print(my_dict[1])

Production

'Delhi'

3. Longueur d'un dictionnaire

#length of the dictionary
 
len(my_dict)

Production

3

4. Trier un dictionnaire

#sorting based on the key 
 
Print(sorted(my_dict.items()))
 
 
#sorting based on the values of dictionary
 
print(sorted(my_dict.values()))

Production

[(1, 'Delhi'), (2, 'Bangalore'), (3, 'Patna')]
 
['Bangalore', 'Delhi', 'Patna']

5. Ajout d'éléments dans le dictionnaire

#adding a new item in dictionary 
 
my_dict[4] = 'Lucknow'
print(my_dict)

Production

{1: 'Delhi', 2: 'Patna', 3: 'Bangalore', 4: 'Lucknow'}

6. Suppression d'éléments du dictionnaire

#for deleting an item from dict using the specific key
 
my_dict.pop(4)
print(my_dict)
 
#for deleting last item from the list
 
my_dict.popitem()
 
#for clearing the dictionary
 
my_dict.clear()
print(my_dict)

Production

{1: 'Delhi', 2: 'Patna', 3: 'Bangalore'}
(3, 'Bangalore')
{}

POSITIONNER

Set est un autre type de données en python qui est une collection non ordonnée sans éléments en double. Les cas d'utilisation courants d'un ensemble consistent à supprimer les valeurs en double et à effectuer des tests d'appartenance. Les accolades ou la set()fonction peuvent être utilisées pour créer des ensembles. Une chose à garder à l'esprit est que lors de la création d'un ensemble vide, nous devons utiliser set(), et . Ce dernier crée un dictionnaire vide. not { }

Voici quelques exemples de code pour mieux comprendre les ensembles en python.

1. Créer un ensemble

#creating set
 
my_set = {"apple", "mango", "strawberry", "apple"}
print(my_set)

Production

{'apple', 'strawberry', 'mango'}

2. Accéder aux éléments d'un ensemble

#to test for an element inside the set
 
"apple" in my_set

Production

True

3. Longueur d'un ensemble

print(len(my_set))

Production

3

4. Trier un ensemble

print(sorted(my_set))

Production

['apple', 'mango', 'strawberry']

5. Ajout d'éléments dans Set

my_set.add("guava")
print(my_set)

Production

{'apple', 'guava', 'mango', 'strawberry'}

6. Suppression d'éléments de Set

my_set.remove("mango")
print(my_set)

Production

{'apple', 'guava', 'strawberry'}

Conclusion

Dans cet article, nous avons passé en revue les structures de données les plus couramment utilisées en python et avons également vu diverses méthodes qui leur sont associées.

Lien : https://www.askpython.com/python/data

#python #datastructures

What is GEEK

Buddha Community

Les Structures De Données Les Plus Couramment Utilisées En Python
Ray  Patel

Ray Patel

1619510796

Lambda, Map, Filter functions in python

Welcome to my Blog, In this article, we will learn python lambda function, Map function, and filter function.

Lambda function in python: Lambda is a one line anonymous function and lambda takes any number of arguments but can only have one expression and python lambda syntax is

Syntax: x = lambda arguments : expression

Now i will show you some python lambda function examples:

#python #anonymous function python #filter function in python #lambda #lambda python 3 #map python #python filter #python filter lambda #python lambda #python lambda examples #python map

Shardul Bhatt

Shardul Bhatt

1626775355

Why use Python for Software Development

No programming language is pretty much as diverse as Python. It enables building cutting edge applications effortlessly. Developers are as yet investigating the full capability of end-to-end Python development services in various areas. 

By areas, we mean FinTech, HealthTech, InsureTech, Cybersecurity, and that's just the beginning. These are New Economy areas, and Python has the ability to serve every one of them. The vast majority of them require massive computational abilities. Python's code is dynamic and powerful - equipped for taking care of the heavy traffic and substantial algorithmic capacities. 

Programming advancement is multidimensional today. Endeavor programming requires an intelligent application with AI and ML capacities. Shopper based applications require information examination to convey a superior client experience. Netflix, Trello, and Amazon are genuine instances of such applications. Python assists with building them effortlessly. 

5 Reasons to Utilize Python for Programming Web Apps 

Python can do such numerous things that developers can't discover enough reasons to admire it. Python application development isn't restricted to web and enterprise applications. It is exceptionally adaptable and superb for a wide range of uses.

Robust frameworks 

Python is known for its tools and frameworks. There's a structure for everything. Django is helpful for building web applications, venture applications, logical applications, and mathematical processing. Flask is another web improvement framework with no conditions. 

Web2Py, CherryPy, and Falcon offer incredible capabilities to customize Python development services. A large portion of them are open-source frameworks that allow quick turn of events. 

Simple to read and compose 

Python has an improved sentence structure - one that is like the English language. New engineers for Python can undoubtedly understand where they stand in the development process. The simplicity of composing allows quick application building. 

The motivation behind building Python, as said by its maker Guido Van Rossum, was to empower even beginner engineers to comprehend the programming language. The simple coding likewise permits developers to roll out speedy improvements without getting confused by pointless subtleties. 

Utilized by the best 

Alright - Python isn't simply one more programming language. It should have something, which is the reason the business giants use it. Furthermore, that too for different purposes. Developers at Google use Python to assemble framework organization systems, parallel information pusher, code audit, testing and QA, and substantially more. Netflix utilizes Python web development services for its recommendation algorithm and media player. 

Massive community support 

Python has a steadily developing community that offers enormous help. From amateurs to specialists, there's everybody. There are a lot of instructional exercises, documentation, and guides accessible for Python web development solutions. 

Today, numerous universities start with Python, adding to the quantity of individuals in the community. Frequently, Python designers team up on various tasks and help each other with algorithmic, utilitarian, and application critical thinking. 

Progressive applications 

Python is the greatest supporter of data science, Machine Learning, and Artificial Intelligence at any enterprise software development company. Its utilization cases in cutting edge applications are the most compelling motivation for its prosperity. Python is the second most well known tool after R for data analytics.

The simplicity of getting sorted out, overseeing, and visualizing information through unique libraries makes it ideal for data based applications. TensorFlow for neural networks and OpenCV for computer vision are two of Python's most well known use cases for Machine learning applications.

Summary

Thinking about the advances in programming and innovation, Python is a YES for an assorted scope of utilizations. Game development, web application development services, GUI advancement, ML and AI improvement, Enterprise and customer applications - every one of them uses Python to its full potential. 

The disadvantages of Python web improvement arrangements are regularly disregarded by developers and organizations because of the advantages it gives. They focus on quality over speed and performance over blunders. That is the reason it's a good idea to utilize Python for building the applications of the future.

#python development services #python development company #python app development #python development #python in web development #python software development

Thierry  Perret

Thierry Perret

1662365538

Les Structures De Données Les Plus Couramment Utilisées En Python

Dans tout langage de programmation, nous devons traiter des données. Maintenant, l'une des choses les plus fondamentales dont nous avons besoin pour travailler avec les données est de les stocker, de les gérer et d'y accéder efficacement de manière organisée afin qu'elles puissent être utilisées chaque fois que cela est nécessaire pour nos besoins. Les structures de données sont utilisées pour répondre à tous nos besoins.

Que sont les Structures de Données ?

Les structures de données sont les blocs de construction fondamentaux d'un langage de programmation. Il vise à fournir une approche systématique pour répondre à toutes les exigences mentionnées précédemment dans l'article. Les structures de données en Python sont List, Tuple, Dictionary et Set . Ils sont considérés comme des structures de données implicites ou intégrées dans Python . Nous pouvons utiliser ces structures de données et leur appliquer de nombreuses méthodes pour gérer, relier, manipuler et utiliser nos données.

Nous avons également des structures de données personnalisées définies par l'utilisateur, à savoir Stack , Queue , Tree , Linked List et Graph . Ils permettent aux utilisateurs d'avoir un contrôle total sur leurs fonctionnalités et de les utiliser à des fins de programmation avancées. Cependant, nous nous concentrerons sur les structures de données intégrées pour cet article.

Structures de données implicites Python

Structures de données implicites Python

LISTE

Les listes nous aident à stocker nos données de manière séquentielle avec plusieurs types de données. Ils sont comparables aux tableaux à l'exception qu'ils peuvent stocker différents types de données comme des chaînes et des nombres en même temps. Chaque élément ou élément d'une liste a un index attribué. Étant donné que Python utilise l' indexation basée sur 0 , le premier élément a un index de 0 et le comptage continue. Le dernier élément d'une liste commence par -1 qui peut être utilisé pour accéder aux éléments du dernier au premier. Pour créer une liste, nous devons écrire les éléments à l'intérieur des crochets .

L'une des choses les plus importantes à retenir à propos des listes est qu'elles sont Mutable . Cela signifie simplement que nous pouvons modifier un élément dans une liste en y accédant directement dans le cadre de l'instruction d'affectation à l'aide de l'opérateur d'indexation. Nous pouvons également effectuer des opérations sur notre liste pour obtenir la sortie souhaitée. Passons en revue le code pour mieux comprendre les opérations de liste et de liste.

1. Créer une liste

#creating the list
my_list = ['p', 'r', 'o', 'b', 'e']
print(my_list)

Production

['p', 'r', 'o', 'b', 'e']

2. Accéder aux éléments de la liste

#accessing the list 
 
#accessing the first item of the list
my_list[0]

Production

'p'
#accessing the third item of the list
my_list[2]
'o'

3. Ajouter de nouveaux éléments à la liste

#adding item to the list
my_list + ['k']

Production

['p', 'r', 'o', 'b', 'e', 'k']

4. Suppression d'éléments

#removing item from the list
#Method 1:
 
#Deleting list items
my_list = ['p', 'r', 'o', 'b', 'l', 'e', 'm']
 
# delete one item
del my_list[2]
 
print(my_list)
 
# delete multiple items
del my_list[1:5]
 
print(my_list)

Production

['p', 'r', 'b', 'l', 'e', 'm']
['p', 'm']
#Method 2:
 
#with remove fucntion
my_list = ['p','r','o','k','l','y','m']
my_list.remove('p')
 
 
print(my_list)
 
#Method 3:
 
#with pop function
print(my_list.pop(1))
 
# Output: ['r', 'k', 'l', 'y', 'm']
print(my_list)

Production

['r', 'o', 'k', 'l', 'y', 'm']
o
['r', 'k', 'l', 'y', 'm']

5. Liste de tri

#sorting of list in ascending order
 
my_list.sort()
print(my_list)

Production

['k', 'l', 'm', 'r', 'y']
#sorting of list in descending order
 
my_list.sort(reverse=True)
print(my_list)

Production

['y', 'r', 'm', 'l', 'k']

6. Trouver la longueur d'une liste

#finding the length of list
 
len(my_list)

Production

5

TUPLE

Les tuples sont très similaires aux listes avec une différence clé qu'un tuple est IMMUTABLE , contrairement à une liste. Une fois que nous avons créé un tuple ou que nous avons un tuple, nous ne sommes pas autorisés à modifier les éléments qu'il contient. Cependant, si nous avons un élément à l'intérieur d'un tuple, qui est une liste elle-même, alors seulement nous pouvons accéder ou changer dans cette liste. Pour créer un tuple, nous devons écrire les éléments entre parenthèses . Comme les listes, nous avons des méthodes similaires qui peuvent être utilisées avec des tuples. Passons en revue quelques extraits de code pour comprendre l'utilisation des tuples.

1. Créer un tuple

#creating of tuple
 
my_tuple = ("apple", "banana", "guava")
print(my_tuple)

Production

('apple', 'banana', 'guava')

2. Accéder aux éléments d'un Tuple

#accessing first element in tuple
 
my_tuple[1]

Production

'banana'

3. Longueur d'un tuple

#for finding the lenght of tuple
 
len(my_tuple)

Production

3

4. Conversion d'un tuple en liste

#converting tuple into a list
 
my_tuple_list = list(my_tuple)
type(my_tuple_list)

Production

list

5. Inverser un tuple

#Reversing a tuple
 
tuple(sorted(my_tuple, reverse=True)) 

Production

('guava', 'banana', 'apple')

6. Trier un tuple

#sorting tuple in ascending order
 
tuple(sorted(my_tuple)) 

Production

('apple', 'banana', 'guava')

7. Supprimer des éléments de Tuple

Pour supprimer des éléments du tuple, nous avons d'abord converti le tuple en une liste comme nous l'avons fait dans l'une de nos méthodes ci-dessus (point n ° 4), puis avons suivi le même processus de la liste et avons explicitement supprimé un tuple entier, juste en utilisant le del déclaration .

DICTIONNAIRE

Dictionary est une collection, ce qui signifie simplement qu'il est utilisé pour stocker une valeur avec une clé et extraire la valeur donnée à la clé. Nous pouvons le considérer comme un ensemble de clés : des paires de valeurs et chaque clé d'un dictionnaire est supposée être unique afin que nous puissions accéder aux valeurs correspondantes en conséquence.

Un dictionnaire est indiqué par l'utilisation d' accolades { } contenant les paires clé : valeur. Chacune des paires d'un dictionnaire est séparée par des virgules. Les éléments d'un dictionnaire ne sont pas ordonnés , la séquence n'a pas d'importance pendant que nous y accédons ou que nous les stockons.

Ils sont MUTABLES ce qui signifie que nous pouvons ajouter, supprimer ou mettre à jour des éléments dans un dictionnaire. Voici quelques exemples de code pour mieux comprendre un dictionnaire en python.

Un point important à noter est que nous ne pouvons pas utiliser un objet mutable comme clé dans le dictionnaire. Ainsi, une liste n'est pas autorisée comme clé dans le dictionnaire.

1. Création d'un dictionnaire

#creating a dictionary
 
my_dict = {
    1:'Delhi',
    2:'Patna',
    3:'Bangalore'
}
print(my_dict)

Production

{1: 'Delhi', 2: 'Patna', 3: 'Bangalore'}

Ici, les entiers sont les clés du dictionnaire et le nom de ville associé aux entiers sont les valeurs du dictionnaire.

2. Accéder aux éléments d'un dictionnaire

#access an item
 
print(my_dict[1])

Production

'Delhi'

3. Longueur d'un dictionnaire

#length of the dictionary
 
len(my_dict)

Production

3

4. Trier un dictionnaire

#sorting based on the key 
 
Print(sorted(my_dict.items()))
 
 
#sorting based on the values of dictionary
 
print(sorted(my_dict.values()))

Production

[(1, 'Delhi'), (2, 'Bangalore'), (3, 'Patna')]
 
['Bangalore', 'Delhi', 'Patna']

5. Ajout d'éléments dans le dictionnaire

#adding a new item in dictionary 
 
my_dict[4] = 'Lucknow'
print(my_dict)

Production

{1: 'Delhi', 2: 'Patna', 3: 'Bangalore', 4: 'Lucknow'}

6. Suppression d'éléments du dictionnaire

#for deleting an item from dict using the specific key
 
my_dict.pop(4)
print(my_dict)
 
#for deleting last item from the list
 
my_dict.popitem()
 
#for clearing the dictionary
 
my_dict.clear()
print(my_dict)

Production

{1: 'Delhi', 2: 'Patna', 3: 'Bangalore'}
(3, 'Bangalore')
{}

POSITIONNER

Set est un autre type de données en python qui est une collection non ordonnée sans éléments en double. Les cas d'utilisation courants d'un ensemble consistent à supprimer les valeurs en double et à effectuer des tests d'appartenance. Les accolades ou la set()fonction peuvent être utilisées pour créer des ensembles. Une chose à garder à l'esprit est que lors de la création d'un ensemble vide, nous devons utiliser set(), et . Ce dernier crée un dictionnaire vide. not { }

Voici quelques exemples de code pour mieux comprendre les ensembles en python.

1. Créer un ensemble

#creating set
 
my_set = {"apple", "mango", "strawberry", "apple"}
print(my_set)

Production

{'apple', 'strawberry', 'mango'}

2. Accéder aux éléments d'un ensemble

#to test for an element inside the set
 
"apple" in my_set

Production

True

3. Longueur d'un ensemble

print(len(my_set))

Production

3

4. Trier un ensemble

print(sorted(my_set))

Production

['apple', 'mango', 'strawberry']

5. Ajout d'éléments dans Set

my_set.add("guava")
print(my_set)

Production

{'apple', 'guava', 'mango', 'strawberry'}

6. Suppression d'éléments de Set

my_set.remove("mango")
print(my_set)

Production

{'apple', 'guava', 'strawberry'}

Conclusion

Dans cet article, nous avons passé en revue les structures de données les plus couramment utilisées en python et avons également vu diverses méthodes qui leur sont associées.

Lien : https://www.askpython.com/python/data

#python #datastructures

Art  Lind

Art Lind

1602968400

Python Tricks Every Developer Should Know

Python is awesome, it’s one of the easiest languages with simple and intuitive syntax but wait, have you ever thought that there might ways to write your python code simpler?

In this tutorial, you’re going to learn a variety of Python tricks that you can use to write your Python code in a more readable and efficient way like a pro.

Let’s get started

Swapping value in Python

Instead of creating a temporary variable to hold the value of the one while swapping, you can do this instead

>>> FirstName = "kalebu"
>>> LastName = "Jordan"
>>> FirstName, LastName = LastName, FirstName 
>>> print(FirstName, LastName)
('Jordan', 'kalebu')

#python #python-programming #python3 #python-tutorials #learn-python #python-tips #python-skills #python-development

Art  Lind

Art Lind

1602666000

How to Remove all Duplicate Files on your Drive via Python

Today you’re going to learn how to use Python programming in a way that can ultimately save a lot of space on your drive by removing all the duplicates.

Intro

In many situations you may find yourself having duplicates files on your disk and but when it comes to tracking and checking them manually it can tedious.

Heres a solution

Instead of tracking throughout your disk to see if there is a duplicate, you can automate the process using coding, by writing a program to recursively track through the disk and remove all the found duplicates and that’s what this article is about.

But How do we do it?

If we were to read the whole file and then compare it to the rest of the files recursively through the given directory it will take a very long time, then how do we do it?

The answer is hashing, with hashing can generate a given string of letters and numbers which act as the identity of a given file and if we find any other file with the same identity we gonna delete it.

There’s a variety of hashing algorithms out there such as

  • md5
  • sha1
  • sha224, sha256, sha384 and sha512

#python-programming #python-tutorials #learn-python #python-project #python3 #python #python-skills #python-tips