What is SuperRare (RARE) | What is RARE token

In this article, we'll discuss information about the SuperRare project  and RARE token. 

A pioneer in the NFT space, SuperRare has grown into the premier NFT art platform, with nearly $90M+ of art collected and $3M+ in artist royalties paid to date.

While highly impactful for thousands of early artists, collectors and community members, SuperRare’s success thus far is minuscule compared to how large the internet art market will become over the next 10 years.

In order to scale up and take advantage of the true power of web3, SuperRare is embarking on a path of progressive decentralization – shifting ownership and governance of the network to our community.

Scaling up requires rethinking our approach to three fundamental areas of the platform:

The tools available to artists, collectors and curators

Where value accrues in the network

Decentralized curation

This paper introduces significant changes in all three of these areas. Collectively, we're calling these changes SuperRare 2.0. The future of art begins today.

Historically, value from fees and commissions on the platform have gone to the core team to fund ongoing operations and continued growth. In SuperRare 2.0, all fees will go directly to a new community treasury controlled by the SuperRare DAO.

On the product side SuperRare 2.0 introduces the concept of Spaces, independently-run gallery storefronts, to foster a diverse ecosystem of curatorial voices and help artists receive as much promotion and sales support as they feel is necessary. SuperRare 2.0 also supports a multi-contract architecture in order to double down on our belief that artists should be sovereign actors in charge of their own destinies.

Curation will begin progressively transitioning to our community of artists, collectors, and curators via a new SuperRare curation token, $RARE. This is the beginning of the SuperRare DAO.

This paper serves as the basis for our thinking around SuperRare 2.0. Certain aspects will be introduced and evolve over time, but we hope these details can provide clear guidance around our commitment to the power of self-organizing communities.

Next-generation NFT Platform

We are proud to have been an early participant in the NFT ecosystem, pioneering a simple yet powerful set of tools – and a product model that would be replicated by many subsequent platforms. In SuperRare 1.0, the core team hand-picked and approved artists to mint their works on a shared smart contract as SuperRare NFTs (SUPR tokens). The artists were then in charge of self-promoting and selling their artworks directly to collectors.

This model was the foundation of the “curated platform era”, which was useful helping bootstrap the early NFT art market. However, as the ecosystem has matured three major shortcomings of the model have become apparent:

Curation and gatekeeping by a single, centralized team isn’t conducive to building a healthy, web-scale art ecosystem. Art is inherently subjective, and a diverse array of curatorial voices is needed.

Artists deserve as much support with promotion and sales as possible. But as the community of artists in the space grows, the less promotion a single team can do for each one.

The broader NFT art ecosystem has turned into a fragmented experience where artists and collectors have artworks arbitrarily segmented across platforms, and there’s no good way to manage one’s whole collection.

SuperRare 2.0 was designed to address these three challenges head on, introducing key changes to several aspects of the platform architecture and broadening the set of tools available to artists, collectors and curators.

The $RARE Token

A curation token to facilitate governance parameters of the SuperRare Network

Web3 has been part of SuperRare’s DNA since day one. Built on open source ERC-721 Ethereum smart contracts, all transactions on SuperRare are on-chain (meaning provenance is transparent) and non-custodial (meaning SuperRare never takes possession of users’ money or art).

We believe web3 is ushering in a new era of the internet. An era in which the users of a platform can be the owners of the platform, helping bring it to life and benefiting from its upside value creation.

In order to scale up and take advantage of the true power of web3, SuperRare is embarking on a path of progressive decentralization – ultimately shifting ownership and curation of the network to the community.

Curation will gradually be vested to our community of artists, collectors, and curators via a new SuperRare curation token, $RARE.

As the network evolves, SuperRare Labs will look to empower community members by offering incentives to actively curate. As a predecessor to full on-chain curation, $RARE will provide the community with governance of certain network parameters including Spaces, commissions and grants.

Token Distribution

Explains the allocation of $RARE tokens to various stakeholders in the network

Genesis Distribution:

 

Retroactive Airdrop - 150,000,000 $RARE (15%)

Distributed to the core community of artists and collectors who have bootstrapped SuperRare into the platform that it is today.

Airdrop tokens are claimable here for the next 90 days, after which unclaimed tokens will be reallocated to the Community Treasury.

The airdrop has been allocated based on a combination of gross market value (GMV) and quantity of art purchased/sold. This factored in the aggregate volume of transactions (measured in ETH) as well as the number of pieces transacted.

A major goal of this distribution was to democratize the $RARE airdrop by taking into account how early members joined the platform and how active they have been since. Using ETH as a metric for distribution favored early adopters while transaction volume provided a factor to benefit those buying and selling work on a recurring basis, regardless of final sale price.

Community Treasury - 400,000,000 $RARE (40%)

Retained by the Community Treasury that will be owned and operated by $RARE holders.

The Community Treasury will initially be custodied by a Governance Council - described in detail elsewhere. $RARE tokens held in the DAO Treasury are eligible to be used in accordance with governance.

25% of the DAO Treasury (100M $RARE) is available at launch while the balance will vest linearly over the course of 4 years.

Team - 255,000,000 $RARE (25.5%)

Granted to the core contributors at SuperRare Labs who have played a vital role in developing the SuperRare platform into what it is today.

This allocation ensures incentives are aligned between the core team and the wider community, providing a mechanism for participation in future governance and helping guarantee the long-term success of the platform.

Team tokens are subject to 3 year vesting with a 6 month cliff.

Investors - 145,000,000 $RARE (14.5%)

Granted to investors who participated in SuperRare’s previous funding rounds.

In March, SuperRare raised a strategic round from leading funds and investors to bridge the gap between crypto and the traditional art world. A full list of these partners can be found here.

This allocation allows our investors to participate in future governance if they so choose.

Investor tokens are subject to 3 year vesting with a 12 month cliff.

Strategic Partners & Future Contributors - 50,000,000 (5%)

Reserved for strategic partners and future contributors to the SuperRare network.

These tokens will be overseen by SuperRare Labs and used as an incentive for onboarding of key contributors and to expand the presence and awareness of SuperRare.

$RARE allocated from this pool will be granted to those who helped bring the SuperRare network to launch and to future employees.

Strategic Partners & Future Contributors are subject to vesting schedules on a case by case basis in accordance with the terms of their respective service agreements, but will have a minimum of 6 months vesting whenever allocated.


Value Capture in the Network

100% of value captured by the network now funds the SuperRare Community Treasury

When the first version of SuperRare launched in early 2018, the intent was to create a radically better market for artists while sending a clear signal that a new kind of art market was possible.

To send this message loud and clear, the genesis SuperRare marketplace smart contracts included zero primary market fees or commissions for the first year, and an industry-first 10% royalty for artists in the secondary market. As the NFT art market started to take root in 2019, marketplace fees and a primary sale commission were added to further support development and growth of the platform.

SuperRare 2.0 ushers in a new era. In a major step toward progressive decentralization of the platform, all fees and commissions will now be allocated to a Community Treasury controlled by the SuperRare DAO. On launch, SuperRare 2.0 now allows all marketplace parameters to be configurable via community governance.

 

100% of the value captured by the network will now be routed to the SuperRare Community Treasury to fund artist grants, network development, and further fuel the growth of the SuperRare ecosystem

 



 



How and Where to Buy RARE token?

RARE token is now live on the ETH mainnet. The token address for RARE is 0xba5BDe662c17e2aDFF1075610382B9B691296350. Be cautious not to purchase any other token with a smart contract different from this one (as this can be easily faked). We strongly advise to be vigilant and stay safe throughout the launch. Don’t let the excitement get the best of you.

Just be sure you have enough ETH in your wallet to cover the transaction fees.

You will have to first buy one of the major cryptocurrencies, usually either Bitcoin (BTC), Ethereum (ETH), Tether (USDT), Binance (BNB)…

We will use Binance Exchange here as it is one of the largest crypto exchanges that accept fiat deposits.

Once you finished the KYC process. You will be asked to add a payment method. Here you can either choose to provide a credit/debit card or use a bank transfer, and buy one of the major cryptocurrencies, usually either Bitcoin (BTC), Ethereum (ETH), Tether (USDT), Binance (BNB)…

☞ SIGN UP ON BINANCE

Step by Step Guide : What is Binance | How to Create an account on Binance (Updated 2021)

Next step

You need a wallet address to Connect to Uniswap Decentralized Exchange, we use Metamask wallet

If you don’t have a Metamask wallet, read this article and follow the steps

What is Metamask wallet | How to Create a wallet and Use

Transfer $ETH to your new Metamask wallet from your existing wallet

Next step

Connect Metamask Wallet to Uniswap Decentralized Exchange and Buy, Swap RARE token

Contract: 0xba5BDe662c17e2aDFF1075610382B9B691296350

Read more: What is Uniswap| Beginner’s Guide on How to Use Uniswap

The top exchange for trading in RARE token is currently: Uniswap (V3), MEXC, Uniswap (V2)

Find more information RARE token:

☞ Website ☞ Explorer  ☞ Social Channel ☞ Social Channel 2 ☞ Social Channel 3  ☞ Coinmarketcap

🔺DISCLAIMER: The Information in the post isn’t financial advice, is intended FOR GENERAL INFORMATION PURPOSES ONLY. Trading Cryptocurrency is VERY risky. Make sure you understand these risks and that you are responsible for what you do with your money.

🔥 If you’re a beginner. I believe the article below will be useful to you ☞ What You Should Know Before Investing in Cryptocurrency - For Beginner

⭐ ⭐ ⭐The project is of interest to the community. Join to Get free ‘GEEK coin’ (GEEKCASH coin)!

☞ **-----https://geekcash.org-----**⭐ ⭐ ⭐

Thank for visiting and reading this article! Please don’t forget to leave a like, comment and share!

#bitcoin #cryptocurrency 

What is GEEK

Buddha Community

What is SuperRare (RARE) | What is RARE token

Words Counted: A Ruby Natural Language Processor.

WordsCounted

We are all in the gutter, but some of us are looking at the stars.

-- Oscar Wilde

WordsCounted is a Ruby NLP (natural language processor). WordsCounted lets you implement powerful tokensation strategies with a very flexible tokeniser class.

Are you using WordsCounted to do something interesting? Please tell me about it.

 

Demo

Visit this website for one example of what you can do with WordsCounted.

Features

  • Out of the box, get the following data from any string or readable file, or URL:
    • Token count and unique token count
    • Token densities, frequencies, and lengths
    • Char count and average chars per token
    • The longest tokens and their lengths
    • The most frequent tokens and their frequencies.
  • A flexible way to exclude tokens from the tokeniser. You can pass a string, regexp, symbol, lambda, or an array of any combination of those types for powerful tokenisation strategies.
  • Pass your own regexp rules to the tokeniser if you prefer. The default regexp filters special characters but keeps hyphens and apostrophes. It also plays nicely with diacritics (UTF and unicode characters): Bayrūt is treated as ["Bayrūt"] and not ["Bayr", "ū", "t"], for example.
  • Opens and reads files. Pass in a file path or a url instead of a string.

Installation

Add this line to your application's Gemfile:

gem 'words_counted'

And then execute:

$ bundle

Or install it yourself as:

$ gem install words_counted

Usage

Pass in a string or a file path, and an optional filter and/or regexp.

counter = WordsCounted.count(
  "We are all in the gutter, but some of us are looking at the stars."
)

# Using a file
counter = WordsCounted.from_file("path/or/url/to/my/file.txt")

.count and .from_file are convenience methods that take an input, tokenise it, and return an instance of WordsCounted::Counter initialized with the tokens. The WordsCounted::Tokeniser and WordsCounted::Counter classes can be used alone, however.

API

WordsCounted

WordsCounted.count(input, options = {})

Tokenises input and initializes a WordsCounted::Counter object with the resulting tokens.

counter = WordsCounted.count("Hello Beirut!")

Accepts two options: exclude and regexp. See Excluding tokens from the analyser and Passing in a custom regexp respectively.

WordsCounted.from_file(path, options = {})

Reads and tokenises a file, and initializes a WordsCounted::Counter object with the resulting tokens.

counter = WordsCounted.from_file("hello_beirut.txt")

Accepts the same options as .count.

Tokeniser

The tokeniser allows you to tokenise text in a variety of ways. You can pass in your own rules for tokenisation, and apply a powerful filter with any combination of rules as long as they can boil down into a lambda.

Out of the box the tokeniser includes only alpha chars. Hyphenated tokens and tokens with apostrophes are considered a single token.

#tokenise([pattern: TOKEN_REGEXP, exclude: nil])

tokeniser = WordsCounted::Tokeniser.new("Hello Beirut!").tokenise

# With `exclude`
tokeniser = WordsCounted::Tokeniser.new("Hello Beirut!").tokenise(exclude: "hello")

# With `pattern`
tokeniser = WordsCounted::Tokeniser.new("I <3 Beirut!").tokenise(pattern: /[a-z]/i)

See Excluding tokens from the analyser and Passing in a custom regexp for more information.

Counter

The WordsCounted::Counter class allows you to collect various statistics from an array of tokens.

#token_count

Returns the token count of a given string.

counter.token_count #=> 15

#token_frequency

Returns a sorted (unstable) two-dimensional array where each element is a token and its frequency. The array is sorted by frequency in descending order.

counter.token_frequency

[
  ["the", 2],
  ["are", 2],
  ["we",  1],
  # ...
  ["all", 1]
]

#most_frequent_tokens

Returns a hash where each key-value pair is a token and its frequency.

counter.most_frequent_tokens

{ "are" => 2, "the" => 2 }

#token_lengths

Returns a sorted (unstable) two-dimentional array where each element contains a token and its length. The array is sorted by length in descending order.

counter.token_lengths

[
  ["looking", 7],
  ["gutter",  6],
  ["stars",   5],
  # ...
  ["in",      2]
]

#longest_tokens

Returns a hash where each key-value pair is a token and its length.

counter.longest_tokens

{ "looking" => 7 }

#token_density([ precision: 2 ])

Returns a sorted (unstable) two-dimentional array where each element contains a token and its density as a float, rounded to a precision of two. The array is sorted by density in descending order. It accepts a precision argument, which must be a float.

counter.token_density

[
  ["are",     0.13],
  ["the",     0.13],
  ["but",     0.07 ],
  # ...
  ["we",      0.07 ]
]

#char_count

Returns the char count of tokens.

counter.char_count #=> 76

#average_chars_per_token([ precision: 2 ])

Returns the average char count per token rounded to two decimal places. Accepts a precision argument which defaults to two. Precision must be a float.

counter.average_chars_per_token #=> 4

#uniq_token_count

Returns the number of unique tokens.

counter.uniq_token_count #=> 13

Excluding tokens from the tokeniser

You can exclude anything you want from the input by passing the exclude option. The exclude option accepts a variety of filters and is extremely flexible.

  1. A space-delimited string. The filter will normalise the string.
  2. A regular expression.
  3. A lambda.
  4. A symbol that names a predicate method. For example :odd?.
  5. An array of any combination of the above.
tokeniser =
  WordsCounted::Tokeniser.new(
    "Magnificent! That was magnificent, Trevor."
  )

# Using a string
tokeniser.tokenise(exclude: "was magnificent")
# => ["that", "trevor"]

# Using a regular expression
tokeniser.tokenise(exclude: /trevor/)
# => ["magnificent", "that", "was", "magnificent"]

# Using a lambda
tokeniser.tokenise(exclude: ->(t) { t.length < 4 })
# => ["magnificent", "that", "magnificent", "trevor"]

# Using symbol
tokeniser = WordsCounted::Tokeniser.new("Hello! محمد")
tokeniser.tokenise(exclude: :ascii_only?)
# => ["محمد"]

# Using an array
tokeniser = WordsCounted::Tokeniser.new(
  "Hello! اسماءنا هي محمد، كارولينا، سامي، وداني"
)
tokeniser.tokenise(
  exclude: [:ascii_only?, /محمد/, ->(t) { t.length > 6}, "و"]
)
# => ["هي", "سامي", "وداني"]

Passing in a custom regexp

The default regexp accounts for letters, hyphenated tokens, and apostrophes. This means twenty-one is treated as one token. So is Mohamad's.

/[\p{Alpha}\-']+/

You can pass your own criteria as a Ruby regular expression to split your string as desired.

For example, if you wanted to include numbers, you can override the regular expression:

counter = WordsCounted.count("Numbers 1, 2, and 3", pattern: /[\p{Alnum}\-']+/)
counter.tokens
#=> ["numbers", "1", "2", "and", "3"]

Opening and reading files

Use the from_file method to open files. from_file accepts the same options as .count. The file path can be a URL.

counter = WordsCounted.from_file("url/or/path/to/file.text")

Gotchas

A hyphen used in leu of an em or en dash will form part of the token. This affects the tokeniser algorithm.

counter = WordsCounted.count("How do you do?-you are well, I see.")
counter.token_frequency

[
  ["do",   2],
  ["how",  1],
  ["you",  1],
  ["-you", 1], # WTF, mate!
  ["are",  1],
  # ...
]

In this example -you and you are separate tokens. Also, the tokeniser does not include numbers by default. Remember that you can pass your own regular expression if the default behaviour does not fit your needs.

A note on case sensitivity

The program will normalise (downcase) all incoming strings for consistency and filters.

Roadmap

Ability to open URLs

def self.from_url
  # open url and send string here after removing html
end

Contributors

See contributors.

Contributing

  1. Fork it
  2. Create your feature branch (git checkout -b my-new-feature)
  3. Commit your changes (git commit -am 'Add some feature')
  4. Push to the branch (git push origin my-new-feature)
  5. Create new Pull Request

Author: abitdodgy
Source code: https://github.com/abitdodgy/words_counted
License: MIT license

#ruby  #ruby-on-rails 

Royce  Reinger

Royce Reinger

1658068560

WordsCounted: A Ruby Natural Language Processor

WordsCounted

We are all in the gutter, but some of us are looking at the stars.

-- Oscar Wilde

WordsCounted is a Ruby NLP (natural language processor). WordsCounted lets you implement powerful tokensation strategies with a very flexible tokeniser class.

Features

  • Out of the box, get the following data from any string or readable file, or URL:
    • Token count and unique token count
    • Token densities, frequencies, and lengths
    • Char count and average chars per token
    • The longest tokens and their lengths
    • The most frequent tokens and their frequencies.
  • A flexible way to exclude tokens from the tokeniser. You can pass a string, regexp, symbol, lambda, or an array of any combination of those types for powerful tokenisation strategies.
  • Pass your own regexp rules to the tokeniser if you prefer. The default regexp filters special characters but keeps hyphens and apostrophes. It also plays nicely with diacritics (UTF and unicode characters): Bayrūt is treated as ["Bayrūt"] and not ["Bayr", "ū", "t"], for example.
  • Opens and reads files. Pass in a file path or a url instead of a string.

Installation

Add this line to your application's Gemfile:

gem 'words_counted'

And then execute:

$ bundle

Or install it yourself as:

$ gem install words_counted

Usage

Pass in a string or a file path, and an optional filter and/or regexp.

counter = WordsCounted.count(
  "We are all in the gutter, but some of us are looking at the stars."
)

# Using a file
counter = WordsCounted.from_file("path/or/url/to/my/file.txt")

.count and .from_file are convenience methods that take an input, tokenise it, and return an instance of WordsCounted::Counter initialized with the tokens. The WordsCounted::Tokeniser and WordsCounted::Counter classes can be used alone, however.

API

WordsCounted

WordsCounted.count(input, options = {})

Tokenises input and initializes a WordsCounted::Counter object with the resulting tokens.

counter = WordsCounted.count("Hello Beirut!")

Accepts two options: exclude and regexp. See Excluding tokens from the analyser and Passing in a custom regexp respectively.

WordsCounted.from_file(path, options = {})

Reads and tokenises a file, and initializes a WordsCounted::Counter object with the resulting tokens.

counter = WordsCounted.from_file("hello_beirut.txt")

Accepts the same options as .count.

Tokeniser

The tokeniser allows you to tokenise text in a variety of ways. You can pass in your own rules for tokenisation, and apply a powerful filter with any combination of rules as long as they can boil down into a lambda.

Out of the box the tokeniser includes only alpha chars. Hyphenated tokens and tokens with apostrophes are considered a single token.

#tokenise([pattern: TOKEN_REGEXP, exclude: nil])

tokeniser = WordsCounted::Tokeniser.new("Hello Beirut!").tokenise

# With `exclude`
tokeniser = WordsCounted::Tokeniser.new("Hello Beirut!").tokenise(exclude: "hello")

# With `pattern`
tokeniser = WordsCounted::Tokeniser.new("I <3 Beirut!").tokenise(pattern: /[a-z]/i)

See Excluding tokens from the analyser and Passing in a custom regexp for more information.

Counter

The WordsCounted::Counter class allows you to collect various statistics from an array of tokens.

#token_count

Returns the token count of a given string.

counter.token_count #=> 15

#token_frequency

Returns a sorted (unstable) two-dimensional array where each element is a token and its frequency. The array is sorted by frequency in descending order.

counter.token_frequency

[
  ["the", 2],
  ["are", 2],
  ["we",  1],
  # ...
  ["all", 1]
]

#most_frequent_tokens

Returns a hash where each key-value pair is a token and its frequency.

counter.most_frequent_tokens

{ "are" => 2, "the" => 2 }

#token_lengths

Returns a sorted (unstable) two-dimentional array where each element contains a token and its length. The array is sorted by length in descending order.

counter.token_lengths

[
  ["looking", 7],
  ["gutter",  6],
  ["stars",   5],
  # ...
  ["in",      2]
]

#longest_tokens

Returns a hash where each key-value pair is a token and its length.

counter.longest_tokens

{ "looking" => 7 }

#token_density([ precision: 2 ])

Returns a sorted (unstable) two-dimentional array where each element contains a token and its density as a float, rounded to a precision of two. The array is sorted by density in descending order. It accepts a precision argument, which must be a float.

counter.token_density

[
  ["are",     0.13],
  ["the",     0.13],
  ["but",     0.07 ],
  # ...
  ["we",      0.07 ]
]

#char_count

Returns the char count of tokens.

counter.char_count #=> 76

#average_chars_per_token([ precision: 2 ])

Returns the average char count per token rounded to two decimal places. Accepts a precision argument which defaults to two. Precision must be a float.

counter.average_chars_per_token #=> 4

#uniq_token_count

Returns the number of unique tokens.

counter.uniq_token_count #=> 13

Excluding tokens from the tokeniser

You can exclude anything you want from the input by passing the exclude option. The exclude option accepts a variety of filters and is extremely flexible.

  1. A space-delimited string. The filter will normalise the string.
  2. A regular expression.
  3. A lambda.
  4. A symbol that names a predicate method. For example :odd?.
  5. An array of any combination of the above.
tokeniser =
  WordsCounted::Tokeniser.new(
    "Magnificent! That was magnificent, Trevor."
  )

# Using a string
tokeniser.tokenise(exclude: "was magnificent")
# => ["that", "trevor"]

# Using a regular expression
tokeniser.tokenise(exclude: /trevor/)
# => ["magnificent", "that", "was", "magnificent"]

# Using a lambda
tokeniser.tokenise(exclude: ->(t) { t.length < 4 })
# => ["magnificent", "that", "magnificent", "trevor"]

# Using symbol
tokeniser = WordsCounted::Tokeniser.new("Hello! محمد")
tokeniser.tokenise(exclude: :ascii_only?)
# => ["محمد"]

# Using an array
tokeniser = WordsCounted::Tokeniser.new(
  "Hello! اسماءنا هي محمد، كارولينا، سامي، وداني"
)
tokeniser.tokenise(
  exclude: [:ascii_only?, /محمد/, ->(t) { t.length > 6}, "و"]
)
# => ["هي", "سامي", "وداني"]

Passing in a custom regexp

The default regexp accounts for letters, hyphenated tokens, and apostrophes. This means twenty-one is treated as one token. So is Mohamad's.

/[\p{Alpha}\-']+/

You can pass your own criteria as a Ruby regular expression to split your string as desired.

For example, if you wanted to include numbers, you can override the regular expression:

counter = WordsCounted.count("Numbers 1, 2, and 3", pattern: /[\p{Alnum}\-']+/)
counter.tokens
#=> ["numbers", "1", "2", "and", "3"]

Opening and reading files

Use the from_file method to open files. from_file accepts the same options as .count. The file path can be a URL.

counter = WordsCounted.from_file("url/or/path/to/file.text")

Gotchas

A hyphen used in leu of an em or en dash will form part of the token. This affects the tokeniser algorithm.

counter = WordsCounted.count("How do you do?-you are well, I see.")
counter.token_frequency

[
  ["do",   2],
  ["how",  1],
  ["you",  1],
  ["-you", 1], # WTF, mate!
  ["are",  1],
  # ...
]

In this example -you and you are separate tokens. Also, the tokeniser does not include numbers by default. Remember that you can pass your own regular expression if the default behaviour does not fit your needs.

A note on case sensitivity

The program will normalise (downcase) all incoming strings for consistency and filters.

Roadmap

Ability to open URLs

def self.from_url
  # open url and send string here after removing html
end

Are you using WordsCounted to do something interesting? Please tell me about it.

Gem Version 

RubyDoc documentation.

Demo

Visit this website for one example of what you can do with WordsCounted.


Contributors

See contributors.

Contributing

  1. Fork it
  2. Create your feature branch (git checkout -b my-new-feature)
  3. Commit your changes (git commit -am 'Add some feature')
  4. Push to the branch (git push origin my-new-feature)
  5. Create new Pull Request

Author: Abitdodgy
Source Code: https://github.com/abitdodgy/words_counted 
License: MIT license

#ruby #nlp 

aaron silva

aaron silva

1622197808

SafeMoon Clone | Create A DeFi Token Like SafeMoon | DeFi token like SafeMoon

SafeMoon is a decentralized finance (DeFi) token. This token consists of RFI tokenomics and auto-liquidity generating protocol. A DeFi token like SafeMoon has reached the mainstream standards under the Binance Smart Chain. Its success and popularity have been immense, thus, making the majority of the business firms adopt this style of cryptocurrency as an alternative.

A DeFi token like SafeMoon is almost similar to the other crypto-token, but the only difference being that it charges a 10% transaction fee from the users who sell their tokens, in which 5% of the fee is distributed to the remaining SafeMoon owners. This feature rewards the owners for holding onto their tokens.

Read More @ https://bit.ly/3oFbJoJ

#create a defi token like safemoon #defi token like safemoon #safemoon token #safemoon token clone #defi token

aaron silva

aaron silva

1621844791

SafeMoon Clone | SafeMoon Token Clone | SafeMoon Token Clone Development

The SafeMoon Token Clone Development is the new trendsetter in the digital world that brought significant changes to benefit the growth of investors’ business in a short period. The SafeMoon token clone is the most widely discussed topic among global users for its value soaring high in the marketplace. The SafeMoon token development is a combination of RFI tokenomics and the auto-liquidity generating process. The SafeMoon token is a replica of decentralized finance (DeFi) tokens that are highly scalable and implemented with tamper-proof security.

The SafeMoon tokens execute efficient functionalities like RFI Static Rewards, Automated Liquidity Provisions, and Automatic Token Burns. The SafeMoon token is considered the most advanced stable coin in the crypto market. It gained global audience attention for managing the stability of asset value without any fluctuations in the marketplace. The SafeMoon token clone is completely decentralized that eliminates the need for intermediaries and benefits the users with less transaction fee and wait time to overtake the traditional banking process.

Reasons to invest in SafeMoon Token Clone :

  • The SafeMoon token clone benefits the investors with Automated Liquidity Pool as a unique feature since it adds more revenue for their business growth in less time. The traders can experience instant trade round the clock for reaping profits with less investment towards the SafeMoon token.
  • It is integrated with high-end security protocols like two-factor authentication and signature process to prevent various hacks and vulnerable activities. The Smart Contract system in SafeMoon token development manages the overall operation of transactions without any delay,
  • The users can obtain a reward amount based on the volume of SafeMoon tokens traded in the marketplace. The efficient trading mechanism allows the users to trade the SafeMoon tokens at the best price for farming. The user can earn higher rewards based on the staking volume of tokens by users in the trade market.
  • It allows the token holders to gain complete ownership over their SafeMoon tokens after purchasing from DeFi exchanges. The SafeMoon community governs the token distribution, price fluctuations, staking, and every other token activity. The community boosts the value of SafeMoon tokens.
  • The Automated Burning tokens result in the community no longer having control over the SafeMoon tokens. Instead, the community can control the burn of the tokens efficiently for promoting its value in the marketplace. The transaction of SafeMoon tokens on the blockchain platform is fast, safe, and secure.

The SafeMoon Token Clone Development is a promising future for upcoming investors and startups to increase their business revenue in less time. The SafeMoon token clone has great demand in the real world among millions of users for its value in the market. Investors can contact leading Infinite Block Tech to gain proper assistance in developing a world-class SafeMoon token clone that increases the business growth in less time.

#safemoon token #safemoon token clone #safemoon token clone development #defi token

Angelina roda

Angelina roda

1624230000

How to Buy FEG Token - The EASIEST Method 2021. JUST IN A FEW MINUTES!!!

How to Buy FEG Token - The EASIEST Method 2021
In today’s video, I will be showing you guys how to buy the FEG token/coin using Trust Wallet and Pancakeswap. This will work for both iOS and Android devices!
📺 The video in this post was made by More LimSanity
The origin of the article: https://www.youtube.com/watch?v=LAVwpiEN6bg
🔺 DISCLAIMER: The article is for information sharing. The content of this video is solely the opinions of the speaker who is not a licensed financial advisor or registered investment advisor. Not investment advice or legal advice.
Cryptocurrency trading is VERY risky. Make sure you understand these risks and that you are responsible for what you do with your money
🔥 If you’re a beginner. I believe the article below will be useful to you ☞ What You Should Know Before Investing in Cryptocurrency - For Beginner
⭐ ⭐ ⭐The project is of interest to the community. Join to Get free ‘GEEK coin’ (GEEKCASH coin)!
☞ **-----CLICK HERE-----**⭐ ⭐ ⭐
Thanks for visiting and watching! Please don’t forget to leave a like, comment and share!

#bitcoin #blockchain #feg token #token #how to buy feg token #how to buy feg token - the easiest method 2021