Brook  Hudson

Brook Hudson

1659074160

Kashmir: A Ruby DSL That Makes Serializing and Caching Objects A Snap

Kashmir is a Ruby DSL that makes serializing and caching objects a snap.

Kashmir allows you to describe representations of Ruby objects. It will generate hashes from these Ruby objects using the representation and dependency tree that you specify.

Kashmir::ActiveRecord will also optimize and try to balance ActiveRecord queries so your application hits the database as little as possible.

Kashmir::Caching builds a dependency tree for complex object representations and caches each level of this tree separately. Kashmir will do so by creating cache views of each level as well as caching a complete tree. The caching engine is smart enough to fill holes in the cache tree with fresh data from your data store.

Combine Kashmir::Caching + Kashmir::ActiveRecord for extra awesomeness.

Example:

For example, a Person with name and age attributes:

  class Person
    include Kashmir
    
    def initialize(name, age)
      @name = name
      @age = age
    end
    
    representations do
      rep :name
      rep :age
    end
  end

could be represented as:

{ name: 'Netto Farah', age: 26 }

Representing an object is as simple as:

  1. Add include Kashmir to the target class.
  2. Whitelist all the fields you want to include in a representation.
# Add fields and methods you want to be visible to Kashmir
representations do
  rep(:name)
  rep(:age)
end
  1. Instantiate an object and #represent it.
# Pass in an array with all the fields you want included
Person.new('Netto Farah', 26).represent([:name, :age]) 
 => {:name=>"Netto Farah", :age=>"26"} 

Installation

Add this line to your application's Gemfile:

gem 'kashmir'

And then execute:

$ bundle

Usage

Kashmir is better described with examples.

Basic Representations

Describing an Object

Only whitelisted fields can be represented by Kashmir. This is done so sensitive fields (like passwords) cannot be accidentally exposed to clients.

class Recipe < OpenStruct
  include Kashmir

  representations do
    rep(:title)
    rep(:preparation_time)
  end
end

Instantiate a Recipe:

recipe = Recipe.new(title: 'Beef Stew', preparation_time: 60)

Kashmir automatically adds a #represent method to every instance of Recipe. #represent takes an Array with all the fields you want as part of your representation.

recipe.represent([:title, :preparation_time])
=> { title: 'Beef Stew', preparation_time: 60 }

Calculated Fields

You can represent any instance variable or method (basically anything that returns true for respond_to?).

class Recipe < OpenStruct
  include Kashmir

  representations do
    rep(:title)
    rep(:num_steps)
  end
  
  def num_steps
    steps.size
  end
end
Recipe.new(title: 'Beef Stew', steps: ['chop', 'cook']).represent([:title, :num_steps])
=> { title: 'Beef Stew', num_steps: 2 }

Nested Representations

You can nest Kashmir objects to represent complex relationships between your objects.

class Recipe < OpenStruct
  include Kashmir

  representations do
    rep(:title)
    rep(:chef)
  end
end

class Chef < OpenStruct
  include Kashmir

  representations do
    base([:name])
  end
end

When you create a representation, nest hashes to create nested representations.

netto = Chef.new(name: 'Netto Farah')
beef_stew = Recipe.new(title: 'Beef Stew', chef: netto)

beef_stew.represent([:title, { :chef => [ :name ] }])
=> {
  :title => "Beef Stew",
  :chef => {
    :name => 'Netto Farah'
  }
}

Not happy with this syntax? Check out Kashmir::DSL or Kashmir::InlineDSL for prettier code.

Base Representations

Are you tired of repeating the same fields over and over? You can create a base representation of your objects, so Kashmir returns basic fields automatically.

class Recipe
  include Kashmir
  
  representations do
    base [:title, :preparation_time]
    rep :num_steps
    rep :chef
  end
end

base(...) takes an array with the fields you want to return on every representation of a given class.

brisket = Recipe.new(title: 'BBQ Brisket', preparation_time: 'a long time')
brisket.represent()
=> { :title => 'BBQ Brisket', :preparation_time => 'a long time' }

Complex Representations

You can nest as many Kashmir objects as you want.

class Recipe < OpenStruct
  include Kashmir

  representations do
    base [:title]
    rep :chef
  end
end

class Chef < OpenStruct
  include Kashmir

  representations do
    base :name
    rep :restaurant
  end
end

class Restaurant < OpenStruct
  include Kashmir

  representations do
    base [:name]
    rep :rating
  end
end
bbq_joint = Restaurant.new(name: "Netto's BBQ Joint", rating: '5 Stars')
netto = Chef.new(name: 'Netto', restaurant: bbq_joint)
brisket = Recipe.new(title: 'BBQ Brisket', chef: netto)

brisket.represent([
  :chef => [
    { :restaurant => [ :rating ] }
  ]
])

=> {
  title: 'BBQ Brisket',
  chef: {
    name: 'Netto',
    restaurant: {
      name: "Netto's BBQ Joint",
      rating: '5 Stars'
    }
  }
}

Collections

Arrays of Kashmir objects work the same way as any other Kashmir representations. Kashmir will augment Array with #represent that will represent every item in the array.

class Ingredient < OpenStruct
  include Kashmir

  representations do
    rep(:name)
    rep(:quantity)
  end
end

class ClassyRecipe < OpenStruct
  include Kashmir

  representations do
    rep(:title)
    rep(:ingredients)
  end
end
omelette = ClassyRecipe.new(title: 'Omelette Du Fromage')
omelette.ingredients = [
  Ingredient.new(name: 'Egg', quantity: 2),
  Ingredient.new(name: 'Cheese', quantity: 'a lot!')
]

Just describe your Array representations like any regular nested representation.

omelette.represent([:title, { 
    :ingredients => [ :name, :quantity ]
  }
])
=> {
  title: 'Omelette Du Fromage',
  ingredients: [
    { name: 'Egg', quantity: 2 },
    { name: 'Cheese', quantity: 'a lot!' }
  ]
}

Kashmir::Dsl

Passing arrays and hashes around can be very tedious and lead to duplication. Kashmir::Dsl allows you to create your own representers/decorators so you can keep your logic in one place and make way more expressive.

class Recipe < OpenStruct
  include Kashmir

  representations do
    rep(:title)
    rep(:num_steps)
  end
end

class RecipeRepresenter
  include Kashmir::Dsl

  prop :title
  prop :num_steps
end

All you need to do is include Kashmir::Dsl in any ruby class. Every call to prop(field_name) will translate directly into just adding an extra field in the representation array.

In this case, RecipeRepresenter will translate directly to [:title, :num_steps].

brisket = Recipe.new(title: 'BBQ Brisket', num_steps: 2)
brisket.represent(RecipePresenter)

=>  { title: 'BBQ Brisket', num_steps: 2 }

Embedded Representers

It is also possible to define nested representers with embed(:property_name, RepresenterClass).

class RecipeWithChefRepresenter
  include Kashmir::Dsl

  prop :title
  embed :chef, ChefRepresenter
end

class ChefRepresenter
  include Kashmir::Dsl
  
  prop :full_name
end

Kashmir will inline these classes and return a raw Kashmir description.

RecipeWithChefRepresenter.definitions == [ :title, { :chef => [ :full_name ] }]
=> true

Representing the objects will work just as before.

chef = Chef.new(first_name: 'Netto', last_name: 'Farah')
brisket = Recipe.new(title: 'BBQ Brisket', chef: chef)

brisket.represent(RecipeWithChefRepresenter)
 
=> {
  title: 'BBQ Brisket',
  chef: {
    full_name: 'Netto Farah'
  }
}

Inline Representers

You don't necessarily need to define a class for every nested representation.

class RecipeWithInlineChefRepresenter
  include Kashmir::Dsl

  prop :title

  inline :chef do
    prop :full_name
  end
end

Using inline(:property_name, &block) will work the same way as embed. Except that you can now define short representations using ruby blocks. Leading us to our next topic.

Kashmir::InlineDsl

Kashmir::InlineDsl sits right in between raw representations and Representers. It reads much better than arrays of hashes and provides the expressiveness of Kashmir::Dsl without all the ceremony.

It works with every feature from Kashmir::Dsl and allows you to define quick inline descriptions for your Kashmir objects.

class Recipe < OpenStruct
  include Kashmir

  representations do
    rep(:title)
    rep(:num_steps)
  end
end

Just call #represent_with(&block) on any Kashmir object and use the Kashmir::Dsl syntax.

brisket = Recipe.new(title: 'BBQ Brisket', num_steps: 2)

brisket.represent_with do
  prop :title
  prop :num_steps
end

=> { title: 'BBQ Brisket', num_steps: 2 }

Nested Inline Representations

You can nest inline representations using inline(:field, &block) the same way we did with Kashmir::Dsl.

class Ingredient < OpenStruct
  include Kashmir

  representations do
    rep(:name)
    rep(:quantity)
  end
end

class ClassyRecipe < OpenStruct
  include Kashmir

  representations do
    rep(:title)
    rep(:ingredients)
  end
end
omelette = ClassyRecipe.new(title: 'Omelette Du Fromage')
omelette.ingredients = [
  Ingredient.new(name: 'Egg', quantity: 2),
  Ingredient.new(name: 'Cheese', quantity: 'a lot!')
]

Just call #represent_with(&block) and start nesting other inline representations.

omelette.represent_with do
  prop :title
  inline :ingredients do
    prop :name
    prop :quantity
  end
end

=> {
  title: 'Omelette Du Fromage',
  ingredients: [
    { name: 'Egg', quantity: 2 },
    { name: 'Cheese', quantity: 'a lot!' }
  ]
}

Inline representations can become lengthy and confusing over time. If you find yourself nesting more than two levels or including more than 3 or 4 fields per level consider creating Representers with Kashmir::Dsl.

Kashmir::ActiveRecord

Kashmir works just as well with ActiveRecord. ActiveRecord::Relations can be used as Kashmir representations just as any other classes.

Kashmir will attempt to preload every ActiveRecord::Relation defined as representations automatically by using ActiveRecord::Associations::Preloader. This will guarantee that you don't run into N+1 queries while representing collections and dependent objects.

Here's an example of how Kashmir will attempt to optimize database queries:

ActiveRecord::Schema.define do
  create_table :recipes, force: true do |t|
    t.column :title, :string
    t.column :num_steps, :integer
    t.column :chef_id, :integer
  end
  
  create_table :chefs, force: true do |t|
    t.column :name, :string
  end
end
module AR
  class Recipe < ActiveRecord::Base
    include Kashmir

    belongs_to :chef

    representations do
      rep :title
      rep :chef
    end
  end

  class Chef < ActiveRecord::Base
    include Kashmir

    has_many :recipes

    representations do
      rep :name
      rep :recipes
    end
  end
end
AR::Chef.all.each do |chef|
  chef.recipes.to_a
end

will generate

SELECT * FROM chefs
SELECT "recipes".* FROM "recipes" WHERE "recipes"."chef_id" = ?
SELECT "recipes".* FROM "recipes" WHERE "recipes"."chef_id" = ?

With Kashmir:

AR::Chef.all.represent([:recipes])
SELECT "chefs".* FROM "chefs"
SELECT "recipes".* FROM "recipes" WHERE "recipes"."chef_id" IN (1, 2)

For more examples, check out: https://github.com/IFTTT/kashmir/blob/master/test/activerecord_tricks_test.rb

Kashmir::Caching (Experimental)

Caching is the best feature in Kashmir. The Kashmir::Caching module will cache every level of the dependency tree Kashmir generates when representing an object.

Dependency Tree

As you can see in the image above, Kashmir will build a dependency tree of the representation. If you have Caching on, Kashmir will:

  • Build a cache key for each individual object (green)
  • Wrap complex dependencies into their on cache key (blue and pink)
  • Wrap the whole representation into one unique cache key (red)

Each layer gets its own cache keys which can be expired at different times. Kashmir will also be able to fill in blanks in the dependency tree and fetch missing objects individually.

Caching is turned off by default, but you can use one of the two available implementations.

You can also build your own custom caching engine by following the NullCaching protocol available at: https://github.com/IFTTT/kashmir/blob/master/lib/kashmir/plugins/null_caching.rb

Enabling Kashmir::Caching

In Memory

Kashmir.init(
  cache_client: Kashmir::Caching::Memory.new
)

With Memcached

require 'kashmir/plugins/memcached_caching'

client = Dalli::Client.new(url, namespace: 'kashmir', compress: true)
default_ttl = 5.minutes

Kashmir.init(
  cache_client: Kashmir::Caching::Memcached.new(client, default_ttl)
)

For more advanced examples, check out: https://github.com/IFTTT/kashmir/blob/master/test/caching_test.rb

Contributing

  1. Fork it ( https://github.com/[my-github-username]/kashmir/fork )
  2. Create your feature branch (git checkout -b my-new-feature)
  3. Commit your changes (git commit -am 'Add some feature')
  4. Push to the branch (git push origin my-new-feature)
  5. Create a new Pull Request

Author: IFTTT
Source code: https://github.com/IFTTT/kashmir
License: MIT license

#ruby  #ruby-on-rails 

What is GEEK

Buddha Community

Kashmir: A Ruby DSL That Makes Serializing and Caching Objects A Snap
Sasha  Lee

Sasha Lee

1650636000

Dl4clj: Clojure Wrapper for Deeplearning4j.

dl4clj

Port of deeplearning4j to clojure

Contact info

If you have any questions,

  • my email is will@yetanalytics.com
  • I'm will_hoyt in the clojurians slack
  • twitter is @FeLungz (don't check very often)

TODO

  • update examples dir
  • finish README
    • add in examples using Transfer Learning
  • finish tests
    • eval is missing regression tests, roc tests
    • nn-test is missing regression tests
    • spark tests need to be redone
    • need dl4clj.core tests
  • revist spark for updates
  • write specs for user facing functions
    • this is very important, match isnt strict for maps
    • provides 100% certianty of the input -> output flow
    • check the args as they come in, dispatch once I know its safe, test the pure output
  • collapse overlapping api namespaces
  • add to core use case flows

Features

Stable Features with tests

  • Neural Networks DSL
  • Early Stopping Training
  • Transfer Learning
  • Evaluation
  • Data import

Features being worked on for 0.1.0

  • Clustering (testing in progress)
  • Spark (currently being refactored)
  • Front End (maybe current release, maybe future release. Not sure yet)
  • Version of dl4j is 0.0.8 in this project. Current dl4j version is 0.0.9
  • Parallelism
  • Kafka support
  • Other items mentioned in TODO

Features being worked on for future releases

  • NLP
  • Computational Graphs
  • Reinforement Learning
  • Arbiter

Artifacts

NOT YET RELEASED TO CLOJARS

  • fork or clone to try it out

If using Maven add the following repository definition to your pom.xml:

<repository>
  <id>clojars.org</id>
  <url>http://clojars.org/repo</url>
</repository>

Latest release

With Leiningen:

n/a

With Maven:

n/a

<dependency>
  <groupId>_</groupId>
  <artifactId>_</artifactId>
  <version>_</version>
</dependency>

Usage

Things you need to know

All functions for creating dl4j objects return code by default

  • All of these functions have an option to return the dl4j object
    • :as-code? = false
  • This because all builders require the code representation of dl4j objects
    • this requirement is not going to change
  • INDarray creation fns default to objects, this is for convenience
    • :as-code? is still respected

API functions return code when all args are provided as code

API functions return the value of calling the wrapped method when args are provided as a mixture of objects and code or just objects

The tests are there to help clarify behavior, if you are unsure of how to use a fn, search the tests

  • for questions about spark, refer to the spark section bellow

Example of obj/code duality

(ns my.ns
  (:require [dl4clj.nn.conf.builders.layers :as l]))

;; as code (the default)

(l/dense-layer-builder
 :activation-fn :relu
 :learning-rate 0.006
 :weight-init :xavier
 :layer-name "example layer"
 :n-in 10
 :n-out 1)

;; =>

(doto
 (org.deeplearning4j.nn.conf.layers.DenseLayer$Builder.)
 (.nOut 1)
 (.activation (dl4clj.constants/value-of {:activation-fn :relu}))
 (.weightInit (dl4clj.constants/value-of {:weight-init :xavier}))
 (.nIn 10)
 (.name "example layer")
 (.learningRate 0.006))

;; as an object

(l/dense-layer-builder
 :activation-fn :relu
 :learning-rate 0.006
 :weight-init :xavier
 :layer-name "example layer"
 :n-in 10
 :n-out 1
 :as-code? false)

;; =>

#object[org.deeplearning4j.nn.conf.layers.DenseLayer 0x69d7d160 "DenseLayer(super=FeedForwardLayer(super=Layer(layerName=example layer, activationFn=relu, weightInit=XAVIER, biasInit=NaN, dist=null, learningRate=0.006, biasLearningRate=NaN, learningRateSchedule=null, momentum=NaN, momentumSchedule=null, l1=NaN, l2=NaN, l1Bias=NaN, l2Bias=NaN, dropOut=NaN, updater=null, rho=NaN, epsilon=NaN, rmsDecay=NaN, adamMeanDecay=NaN, adamVarDecay=NaN, gradientNormalization=null, gradientNormalizationThreshold=NaN), nIn=10, nOut=1))"]

General usage examples

Importing data

Loading data from a file (here its a csv)


(ns my.ns
 (:require [dl4clj.datasets.input-splits :as s]
           [dl4clj.datasets.record-readers :as rr]
           [dl4clj.datasets.api.record-readers :refer :all]
           [dl4clj.datasets.iterators :as ds-iter]
           [dl4clj.datasets.api.iterators :refer :all]
           [dl4clj.helpers :refer [data-from-iter]]))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; file splits (convert the data to records)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(def poker-path "resources/poker-hand-training.csv")
;; this is not a complete dataset, it is just here to sever as an example

(def file-split (s/new-filesplit :path poker-path))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; record readers, (read the records created by the file split)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(def csv-rr (initialize-rr! :rr (rr/new-csv-record-reader :skip-n-lines 0 :delimiter ",")
                                 :input-split file-split))

;; lets look at some data
(println (next-record! :rr csv-rr :as-code? false))
;; => #object[java.util.ArrayList 0x2473e02d [1, 10, 1, 11, 1, 13, 1, 12, 1, 1, 9]]
;; this is our first line from the csv


;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; record readers dataset iterators (turn our writables into a dataset)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(def rr-ds-iter (ds-iter/new-record-reader-dataset-iterator
                 :record-reader csv-rr
                 :batch-size 1
                 :label-idx 10
                 :n-possible-labels 10))

;; we use our record reader created above
;; we want to see one example per dataset obj returned (:batch-size = 1)
;; we know our label is at the last index, so :label-idx = 10
;; there are 10 possible types of poker hands so :n-possible-labels = 10
;; you can also set :label-idx to -1 to use the last index no matter the size of the seq

(def other-rr-ds-iter (ds-iter/new-record-reader-dataset-iterator
                       :record-reader csv-rr
                       :batch-size 1
                       :label-idx -1
                       :n-possible-labels 10))

(str (next-example! :iter rr-ds-iter :as-code? false))
;; =>
;;===========INPUT===================
;;[1.00, 10.00, 1.00, 11.00, 1.00, 13.00, 1.00, 12.00, 1.00, 1.00]
;;=================OUTPUT==================
;;[0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00]


;; and to show that :label-idx = -1 gives us the same output

(= (next-example! :iter rr-ds-iter :as-code? false)
   (next-example! :iter other-rr-ds-iter :as-code? false)) ;; => true

INDArrays and Datasets from clojure data structures


(ns my.ns
  (:require [nd4clj.linalg.factory.nd4j :refer [vec->indarray matrix->indarray
                                                indarray-of-zeros indarray-of-ones
                                                indarray-of-rand vec-or-matrix->indarray]]
            [dl4clj.datasets.new-datasets :refer [new-ds]]
            [dl4clj.datasets.api.datasets :refer [as-list]]
            [dl4clj.datasets.iterators :refer [new-existing-dataset-iterator]]
            [dl4clj.datasets.api.iterators :refer :all]
            [dl4clj.datasets.pre-processors :as ds-pp]
            [dl4clj.datasets.api.pre-processors :refer :all]
            [dl4clj.core :as c]))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; INDArray creation
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;TODO: consider defaulting to code

;; can create from a vector

(vec->indarray [1 2 3 4])
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0x269df212 [1.00, 2.00, 3.00, 4.00]]

;; or from a matrix

(matrix->indarray [[1 2 3 4] [2 4 6 8]])
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0x20aa7fe1
;; [[1.00, 2.00, 3.00, 4.00], [2.00, 4.00, 6.00, 8.00]]]


;; will fill in spareness with zeros

(matrix->indarray [[1 2 3 4] [2 4 6 8] [10 12]])
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0x8b7796c
;;[[1.00, 2.00, 3.00, 4.00],
;; [2.00, 4.00, 6.00, 8.00],
;; [10.00, 12.00, 0.00, 0.00]]]

;; can create an indarray of all zeros with specified shape
;; defaults to :rows = 1 :columns = 1

(indarray-of-zeros :rows 3 :columns 2)
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0x6f586a7e
;;[[0.00, 0.00],
;; [0.00, 0.00],
;; [0.00, 0.00]]]

(indarray-of-zeros) ;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0xe59ffec 0.00]

;; and if only one is supplied, will get a vector of specified length

(indarray-of-zeros :rows 2)
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0x2899d974 [0.00, 0.00]]

(indarray-of-zeros :columns 2)
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0xa5b9782 [0.00, 0.00]]

;; same considerations/defaults for indarray-of-ones and indarray-of-rand

(indarray-of-ones :rows 2 :columns 3)
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0x54f08662 [[1.00, 1.00, 1.00], [1.00, 1.00, 1.00]]]

(indarray-of-rand :rows 2 :columns 3)
;; all values are greater than 0 but less than 1
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0x2f20293b [[0.85, 0.86, 0.13], [0.94, 0.04, 0.36]]]



;; vec-or-matrix->indarray is built into all functions which require INDArrays
;; so that you can use clojure data structures
;; but you still have the option of passing existing INDArrays

(def example-array (vec-or-matrix->indarray [1 2 3 4]))
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0x5c44c71f [1.00, 2.00, 3.00, 4.00]]

(vec-or-matrix->indarray example-array)
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0x607b03b0 [1.00, 2.00, 3.00, 4.00]]

(vec-or-matrix->indarray (indarray-of-rand :rows 2))
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0x49143b08 [0.76, 0.92]]

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; data-set creation
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(def ds-with-single-example (new-ds :input [1 2 3 4]
                                    :output [0.0 1.0 0.0]))

(as-list :ds ds-with-single-example :as-code? false)
;; =>
;; #object[java.util.ArrayList 0x5d703d12
;;[===========INPUT===================
;;[1.00, 2.00, 3.00, 4.00]
;;=================OUTPUT==================
;;[0.00, 1.00, 0.00]]]

(def ds-with-multiple-examples (new-ds
                                :input [[1 2 3 4] [2 4 6 8]]
                                :output [[0.0 1.0 0.0] [0.0 0.0 1.0]]))

(as-list :ds ds-with-multiple-examples :as-code? false)
;; =>
;;#object[java.util.ArrayList 0x29c7a9e2
;;[===========INPUT===================
;;[1.00, 2.00, 3.00, 4.00]
;;=================OUTPUT==================
;;[0.00, 1.00, 0.00],
;;===========INPUT===================
;;[2.00, 4.00, 6.00, 8.00]
;;=================OUTPUT==================
;;[0.00, 0.00, 1.00]]]

;; we can create a dataset iterator from the code which creates datasets
;; and set the labels for our outputs (optional)

(def ds-with-multiple-examples
  (new-ds
   :input [[1 2 3 4] [2 4 6 8]]
   :output [[0.0 1.0 0.0] [0.0 0.0 1.0]]))

;; iterator
(def training-rr-ds-iter
  (new-existing-dataset-iterator
   :dataset ds-with-multiple-examples
   :labels ["foo" "baz" "foobaz"]))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; data-set normalization
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; this gathers statistics on the dataset and normalizes the data
;; and applies the transformation to all dataset objects in the iterator
(def train-iter-normalized
  (c/normalize-iter! :iter training-rr-ds-iter
                     :normalizer (ds-pp/new-standardize-normalization-ds-preprocessor)
                     :as-code? false))

;; above returns the normalized iterator
;; to get fit normalizer

(def the-normalizer
  (get-pre-processor train-iter-normalized))

Model configuration

Creating a neural network configuration with singe and multiple layers

(ns my.ns
  (:require [dl4clj.nn.conf.builders.layers :as l]
            [dl4clj.nn.conf.builders.nn :as nn]
            [dl4clj.nn.conf.distributions :as dist]
            [dl4clj.nn.conf.input-pre-processor :as pp]
            [dl4clj.nn.conf.step-fns :as s-fn]))

;; nn/builder has 3 types of args
;; 1) args which set network configuration params
;; 2) args which set default values for layers
;; 3) args which set multi layer network configuration params

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; single layer nn configuration
;; here we are setting network configuration
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(nn/builder :optimization-algo :stochastic-gradient-descent
            :seed 123
            :iterations 1
            :minimize? true
            :use-drop-connect? false
            :lr-score-based-decay-rate 0.002
            :regularization? false
            :step-fn :default-step-fn
            :layers {:dense-layer {:activation-fn :relu
                                   :updater :adam
                                   :adam-mean-decay 0.2
                                   :adam-var-decay 0.1
                                   :learning-rate 0.006
                                   :weight-init :xavier
                                   :layer-name "single layer model example"
                                   :n-in 10
                                   :n-out 20}})

;; there are several options within a nn-conf map which can be configuration maps
;; or calls to fns
;; It doesn't matter which option you choose and you don't have to stay consistent
;; the list of params which can be passed as config maps or fn calls will
;; be enumerated at a later date

(nn/builder :optimization-algo :stochastic-gradient-descent
            :seed 123
            :iterations 1
            :minimize? true
            :use-drop-connect? false
            :lr-score-based-decay-rate 0.002
            :regularization? false
            :step-fn (s-fn/new-default-step-fn)
            :build? true
            ;; dont need to specify layer order, theres only one
            :layers (l/dense-layer-builder
                    :activation-fn :relu
                    :updater :adam
                    :adam-mean-decay 0.2
                    :adam-var-decay 0.1
                    :dist (dist/new-normal-distribution :mean 0 :std 1)
                    :learning-rate 0.006
                    :weight-init :xavier
                    :layer-name "single layer model example"
                    :n-in 10
                    :n-out 20))

;; these configurations are the same

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; multi-layer configuration
;; here we are also setting layer defaults
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; defaults will apply to layers which do not specify those value in their config

(nn/builder
 :optimization-algo :stochastic-gradient-descent
 :seed 123
 :iterations 1
 :minimize? true
 :use-drop-connect? false
 :lr-score-based-decay-rate 0.002
 :regularization? false
 :default-activation-fn :sigmoid
 :default-weight-init :uniform

 ;; we need to specify the layer order
 :layers {0 (l/activation-layer-builder
             :activation-fn :relu
             :updater :adam
             :adam-mean-decay 0.2
             :adam-var-decay 0.1
             :learning-rate 0.006
             :weight-init :xavier
             :layer-name "example first layer"
             :n-in 10
             :n-out 20)
          1 {:output-layer {:n-in 20
                            :n-out 2
                            :loss-fn :mse
                            :layer-name "example output layer"}}})

;; specifying multi-layer config params

(nn/builder
 ;; network args
 :optimization-algo :stochastic-gradient-descent
 :seed 123
 :iterations 1
 :minimize? true
 :use-drop-connect? false
 :lr-score-based-decay-rate 0.002
 :regularization? false

 ;; layer defaults
 :default-activation-fn :sigmoid
 :default-weight-init :uniform

 ;; the layers
 :layers {0 (l/activation-layer-builder
             :activation-fn :relu
             :updater :adam
             :adam-mean-decay 0.2
             :adam-var-decay 0.1
             :learning-rate 0.006
             :weight-init :xavier
             :layer-name "example first layer"
             :n-in 10
             :n-out 20)
          1 {:output-layer {:n-in 20
                            :n-out 2
                            :loss-fn :mse
                            :layer-name "example output layer"}}}
 ;; multi layer network args
 :backprop? true
 :backprop-type :standard
 :pretrain? false
 :input-pre-processors {0 (pp/new-zero-mean-pre-pre-processor)
                        1 {:unit-variance-processor {}}})

Configuration to Trained models

Multi Layer models

(ns my.ns
  (:require [dl4clj.datasets.iterators :as iter]
            [dl4clj.datasets.input-splits :as split]
            [dl4clj.datasets.record-readers :as rr]
            [dl4clj.optimize.listeners :as listener]
            [dl4clj.nn.conf.builders.nn :as nn]
            [dl4clj.nn.multilayer.multi-layer-network :as mln]
            [dl4clj.nn.api.model :refer [init! set-listeners!]]
            [dl4clj.nn.api.multi-layer-network :refer [evaluate-classification]]
            [dl4clj.datasets.api.record-readers :refer [initialize-rr!]]
            [dl4clj.eval.api.eval :refer [get-stats get-accuracy]]
            [dl4clj.core :as c]))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; nn-conf -> multi-layer-network
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(def nn-conf
  (nn/builder
   ;; network args
   :optimization-algo :stochastic-gradient-descent
   :seed 123 :iterations 1 :regularization? true

   ;; setting layer defaults
   :default-activation-fn :relu :default-l2 7.5e-6
   :default-weight-init :xavier :default-learning-rate 0.0015
   :default-updater :nesterovs :default-momentum 0.98

   ;; setting layer configuration
   :layers {0 {:dense-layer
               {:layer-name "example first layer"
                :n-in 784 :n-out 500}}
            1 {:dense-layer
               {:layer-name "example second layer"
                :n-in 500 :n-out 100}}
            2 {:output-layer
               {:n-in 100 :n-out 10
                ;; layer specific params
                :loss-fn :negativeloglikelihood
                :activation-fn :softmax
                :layer-name "example output layer"}}}

   ;; multi layer args
   :backprop? true
   :pretrain? false))

(def multi-layer-network (c/model-from-conf nn-conf))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; local cpu training with dl4j pre-built iterators
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; lets use the pre-built Mnist data set iterator

(def train-mnist-iter
  (iter/new-mnist-data-set-iterator
   :batch-size 64
   :train? true
   :seed 123))

(def test-mnist-iter
  (iter/new-mnist-data-set-iterator
   :batch-size 64
   :train? false
   :seed 123))

;; and lets set a listener so we can know how training is going

(def score-listener (listener/new-score-iteration-listener :print-every-n 5))

;; and attach it to our model

;; TODO: listeners are broken, look into log4j warnning
(def mln-with-listener (set-listeners! :model multi-layer-network
                                       :listeners [score-listener]))

(def trained-mln (mln/train-mln-with-ds-iter! :mln mln-with-listener
                                              :iter train-mnist-iter
                                              :n-epochs 15
                                              :as-code? false))

;; training happens because :as-code? = false
;; if it was true, we would still just have a data structure
;; we now have a trained model that has seen the training dataset 15 times
;; time to evaluate our model

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;Create an evaluation object
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(def eval-obj (evaluate-classification :mln trained-mln
                                       :iter test-mnist-iter))

;; always remember that these objects are stateful, dont use the same eval-obj
;; to eval two different networks
;; we trained the model on a training dataset.  We evaluate on a test set

(println (get-stats :evaler eval-obj))
;; this will print the stats to standard out for each feature/label pair

;;Examples labeled as 0 classified by model as 0: 968 times
;;Examples labeled as 0 classified by model as 1: 1 times
;;Examples labeled as 0 classified by model as 2: 1 times
;;Examples labeled as 0 classified by model as 3: 1 times
;;Examples labeled as 0 classified by model as 5: 1 times
;;Examples labeled as 0 classified by model as 6: 3 times
;;Examples labeled as 0 classified by model as 7: 1 times
;;Examples labeled as 0 classified by model as 8: 2 times
;;Examples labeled as 0 classified by model as 9: 2 times
;;Examples labeled as 1 classified by model as 1: 1126 times
;;Examples labeled as 1 classified by model as 2: 2 times
;;Examples labeled as 1 classified by model as 3: 1 times
;;Examples labeled as 1 classified by model as 5: 1 times
;;Examples labeled as 1 classified by model as 6: 2 times
;;Examples labeled as 1 classified by model as 7: 1 times
;;Examples labeled as 1 classified by model as 8: 2 times
;;Examples labeled as 2 classified by model as 0: 3 times
;;Examples labeled as 2 classified by model as 1: 2 times
;;Examples labeled as 2 classified by model as 2: 1006 times
;;Examples labeled as 2 classified by model as 3: 2 times
;;Examples labeled as 2 classified by model as 4: 3 times
;;Examples labeled as 2 classified by model as 6: 3 times
;;Examples labeled as 2 classified by model as 7: 7 times
;;Examples labeled as 2 classified by model as 8: 6 times
;;Examples labeled as 3 classified by model as 2: 4 times
;;Examples labeled as 3 classified by model as 3: 990 times
;;Examples labeled as 3 classified by model as 5: 3 times
;;Examples labeled as 3 classified by model as 7: 3 times
;;Examples labeled as 3 classified by model as 8: 3 times
;;Examples labeled as 3 classified by model as 9: 7 times
;;Examples labeled as 4 classified by model as 2: 2 times
;;Examples labeled as 4 classified by model as 3: 1 times
;;Examples labeled as 4 classified by model as 4: 967 times
;;Examples labeled as 4 classified by model as 6: 4 times
;;Examples labeled as 4 classified by model as 7: 1 times
;;Examples labeled as 4 classified by model as 9: 7 times
;;Examples labeled as 5 classified by model as 0: 2 times
;;Examples labeled as 5 classified by model as 3: 6 times
;;Examples labeled as 5 classified by model as 4: 1 times
;;Examples labeled as 5 classified by model as 5: 874 times
;;Examples labeled as 5 classified by model as 6: 3 times
;;Examples labeled as 5 classified by model as 7: 1 times
;;Examples labeled as 5 classified by model as 8: 3 times
;;Examples labeled as 5 classified by model as 9: 2 times
;;Examples labeled as 6 classified by model as 0: 4 times
;;Examples labeled as 6 classified by model as 1: 3 times
;;Examples labeled as 6 classified by model as 3: 2 times
;;Examples labeled as 6 classified by model as 4: 4 times
;;Examples labeled as 6 classified by model as 5: 4 times
;;Examples labeled as 6 classified by model as 6: 939 times
;;Examples labeled as 6 classified by model as 7: 1 times
;;Examples labeled as 6 classified by model as 8: 1 times
;;Examples labeled as 7 classified by model as 1: 7 times
;;Examples labeled as 7 classified by model as 2: 4 times
;;Examples labeled as 7 classified by model as 3: 3 times
;;Examples labeled as 7 classified by model as 7: 1005 times
;;Examples labeled as 7 classified by model as 8: 2 times
;;Examples labeled as 7 classified by model as 9: 7 times
;;Examples labeled as 8 classified by model as 0: 3 times
;;Examples labeled as 8 classified by model as 2: 3 times
;;Examples labeled as 8 classified by model as 3: 2 times
;;Examples labeled as 8 classified by model as 4: 4 times
;;Examples labeled as 8 classified by model as 5: 3 times
;;Examples labeled as 8 classified by model as 6: 2 times
;;Examples labeled as 8 classified by model as 7: 4 times
;;Examples labeled as 8 classified by model as 8: 947 times
;;Examples labeled as 8 classified by model as 9: 6 times
;;Examples labeled as 9 classified by model as 0: 2 times
;;Examples labeled as 9 classified by model as 1: 2 times
;;Examples labeled as 9 classified by model as 3: 4 times
;;Examples labeled as 9 classified by model as 4: 8 times
;;Examples labeled as 9 classified by model as 6: 1 times
;;Examples labeled as 9 classified by model as 7: 4 times
;;Examples labeled as 9 classified by model as 8: 2 times
;;Examples labeled as 9 classified by model as 9: 986 times

;;==========================Scores========================================
;; Accuracy:        0.9808
;; Precision:       0.9808
;; Recall:          0.9807
;; F1 Score:        0.9807
;;========================================================================

;; can get the stats that are printed via fns in the evaluation namespace
;; after running eval-model-whole-ds

(get-accuracy :evaler evaler-with-stats) ;; => 0.9808

Model Tuning

Early Stopping (controlling training)

it is recommened you start here when designing models

using dl4clj.core


(ns my.ns
  (:require [dl4clj.earlystopping.termination-conditions :refer :all]
            [dl4clj.earlystopping.model-saver :refer [new-in-memory-saver]]
            [dl4clj.nn.api.multi-layer-network :refer [evaluate-classification]]
            [dl4clj.eval.api.eval :refer [get-stats]]
            [dl4clj.nn.conf.builders.nn :as nn]
            [dl4clj.datasets.iterators :as iter]
            [dl4clj.core :as c]))

(def nn-conf
  (nn/builder
   ;; network args
   :optimization-algo :stochastic-gradient-descent
   :seed 123
   :iterations 1
   :regularization? true

   ;; setting layer defaults
   :default-activation-fn :relu
   :default-l2 7.5e-6
   :default-weight-init :xavier
   :default-learning-rate 0.0015
   :default-updater :nesterovs
   :default-momentum 0.98

   ;; setting layer configuration
   :layers {0 {:dense-layer
               {:layer-name "example first layer"
                :n-in 784 :n-out 500}}
            1 {:dense-layer
               {:layer-name "example second layer"
                :n-in 500 :n-out 100}}
            2 {:output-layer
               {:n-in 100 :n-out 10
                ;; layer specific params
                :loss-fn :negativeloglikelihood
                :activation-fn :softmax
                :layer-name "example output layer"}}}

   ;; multi layer args
   :backprop? true
   :pretrain? false))

(def train-iter
  (iter/new-mnist-data-set-iterator
   :batch-size 64
   :train? true
   :seed 123))

(def test-iter
  (iter/new-mnist-data-set-iterator
   :batch-size 64
   :train? false
   :seed 123))

(def invalid-score-condition (new-invalid-score-iteration-termination-condition))

(def max-score-condition (new-max-score-iteration-termination-condition
                          :max-score 20.0))

(def max-time-condition (new-max-time-iteration-termination-condition
                         :max-time-val 10
                         :max-time-unit :minutes))

(def score-doesnt-improve-condition (new-score-improvement-epoch-termination-condition
                                     :max-n-epoch-no-improve 5))

(def target-score-condition (new-best-score-epoch-termination-condition
                             :best-expected-score 0.009))

(def max-number-epochs-condition (new-max-epochs-termination-condition :max-n 20))

(def in-mem-saver (new-in-memory-saver))

(def trained-mln
;; defaults to returning the model
  (c/train-with-early-stopping
   :nn-conf nn-conf
   :training-iter train-mnist-iter
   :testing-iter test-mnist-iter
   :eval-every-n-epochs 1
   :iteration-termination-conditions [invalid-score-condition
                                      max-score-condition
                                      max-time-condition]
   :epoch-termination-conditions [score-doesnt-improve-condition
                                  target-score-condition
                                  max-number-epochs-condition]
   :save-last-model? true
   :model-saver in-mem-saver
   :as-code? false))

(def model-evaler
  (evaluate-classification :mln trained-mln :iter test-mnist-iter))

(println (get-stats :evaler model-evaler))
  • explicit, step by step way of doing this
(ns my.ns
  (:require [dl4clj.earlystopping.early-stopping-config :refer [new-early-stopping-config]]
            [dl4clj.earlystopping.termination-conditions :refer :all]
            [dl4clj.earlystopping.model-saver :refer [new-in-memory-saver new-local-file-model-saver]]
            [dl4clj.earlystopping.score-calc :refer [new-ds-loss-calculator]]
            [dl4clj.earlystopping.early-stopping-trainer :refer [new-early-stopping-trainer]]
            [dl4clj.earlystopping.api.early-stopping-trainer :refer [fit-trainer!]]
            [dl4clj.nn.conf.builders.nn :as nn]
            [dl4clj.nn.multilayer.multi-layer-network :as mln]
            [dl4clj.utils :refer [load-model!]]
            [dl4clj.datasets.iterators :as iter]
            [dl4clj.core :as c]))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; start with our network config
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(def nn-conf
  (nn/builder
   ;; network args
   :optimization-algo :stochastic-gradient-descent
   :seed 123 :iterations 1 :regularization? true
   ;; setting layer defaults
   :default-activation-fn :relu :default-l2 7.5e-6
   :default-weight-init :xavier :default-learning-rate 0.0015
   :default-updater :nesterovs :default-momentum 0.98
   ;; setting layer configuration
   :layers {0 {:dense-layer
               {:layer-name "example first layer"
                :n-in 784 :n-out 500}}
            1 {:dense-layer
               {:layer-name "example second layer"
                :n-in 500 :n-out 100}}
            2 {:output-layer
               {:n-in 100 :n-out 10
                ;; layer specific params
                :loss-fn :negativeloglikelihood
                :activation-fn :softmax
                :layer-name "example output layer"}}}
   ;; multi layer args
   :backprop? true
   :pretrain? false))

(def mln (c/model-from-conf nn-conf))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; the training/testing data
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(def train-iter
  (iter/new-mnist-data-set-iterator
   :batch-size 64
   :train? true
   :seed 123))

(def test-iter
  (iter/new-mnist-data-set-iterator
   :batch-size 64
   :train? false
   :seed 123))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; we are going to need termination conditions
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; these allow us to control when we exit training

;; this can be based off of iterations or epochs

;; iteration termination conditions

(def invalid-score-condition (new-invalid-score-iteration-termination-condition))

(def max-score-condition (new-max-score-iteration-termination-condition
                          :max-score 20.0))

(def max-time-condition (new-max-time-iteration-termination-condition
                         :max-time-val 10
                         :max-time-unit :minutes))

;; epoch termination conditions

(def score-doesnt-improve-condition (new-score-improvement-epoch-termination-condition
                                     :max-n-epoch-no-improve 5))

(def target-score-condition (new-best-score-epoch-termination-condition :best-expected-score 0.009))

(def max-number-epochs-condition (new-max-epochs-termination-condition :max-n 20))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; we also need a way to save our model
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; can be in memory or to a local directory

(def in-mem-saver (new-in-memory-saver))

(def local-file-saver (new-local-file-model-saver :directory "resources/tmp/readme/"))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; set up your score calculator
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(def score-calcer (new-ds-loss-calculator :iter test-iter
                                          :average? true))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; create an early stopping configuration
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; termination conditions
;; a way to save our model
;; a way to calculate the score of our model on the dataset

(def early-stopping-conf
  (new-early-stopping-config
   :epoch-termination-conditions [score-doesnt-improve-condition
                                  target-score-condition
                                  max-number-epochs-condition]
   :iteration-termination-conditions [invalid-score-condition
                                      max-score-condition
                                      max-time-condition]
   :eval-every-n-epochs 5
   :model-saver local-file-saver
   :save-last-model? true
   :score-calculator score-calcer))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; create an early stopping trainer from our data, model and early stopping conf
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(def es-trainer (new-early-stopping-trainer :early-stopping-conf early-stopping-conf
                                            :mln mln
                                            :iter train-iter))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; fit and use our early stopping trainer
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(def es-trainer-fitted (fit-trainer! es-trainer :as-code? false))

;; when the trainer terminates, you will see something like this
;;[nREPL-worker-24] BaseEarlyStoppingTrainer INFO  Completed training epoch 14
;;[nREPL-worker-24] BaseEarlyStoppingTrainer INFO  New best model: score = 0.005225599372851298,
;;                                                   epoch = 14 (previous: score = 0.018243224899038346, epoch = 7)
;;[nREPL-worker-24] BaseEarlyStoppingTrainer INFO Hit epoch termination condition at epoch 14.
;;                                           Details: BestScoreEpochTerminationCondition(0.009)

;; and if we look at the es-trainer-fitted object we see

;;#object[org.deeplearning4j.earlystopping.EarlyStoppingResult 0x5ab74f27 EarlyStoppingResult
;;(terminationReason=EpochTerminationCondition,details=BestScoreEpochTerminationCondition(0.009),
;; bestModelEpoch=14,bestModelScore=0.005225599372851298,totalEpochs=15)]

;; and our model has been saved to /resources/tmp/readme/bestModel.bin
;; there we have our model config, model params and our updater state

;; we can then load this model to use it or continue refining it

(def loaded-model (load-model! :path "resources/tmp/readme/bestModel.bin"
                               :load-updater? true))

Transfer Learning (freezing layers)


;; TODO: need to write up examples

Spark Training

dl4j Spark usage

How it is done in dl4clj

  • Uses dl4clj.core
    • This example uses a fn which takes care of most steps for you
      • allows you to pass args as code bc the fn accounts for the multiple spark contexts issue encountered when everything is just a data structure

(ns my.ns
  (:require [dl4clj.nn.conf.builders.layers :as l]
            [dl4clj.nn.conf.builders.nn :as nn]
            [dl4clj.datasets.iterators :refer [new-iris-data-set-iterator]]
            [dl4clj.eval.api.eval :refer [get-stats]]
            [dl4clj.spark.masters.param-avg :as master]
            [dl4clj.spark.data.java-rdd :refer [new-java-spark-context
                                                java-rdd-from-iter]]
            [dl4clj.spark.api.dl4j-multi-layer :refer [eval-classification-spark-mln
                                                       get-spark-context]]
            [dl4clj.core :as c]))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 1, create your model config
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(def mln-conf
  (nn/builder
   :optimization-algo :stochastic-gradient-descent
   :default-learning-rate 0.006
   :layers {0 (l/dense-layer-builder :n-in 4 :n-out 2 :activation-fn :relu)
            1 {:output-layer
               {:loss-fn :negativeloglikelihood
                :n-in 2 :n-out 3
                :activation-fn :soft-max
                :weight-init :xavier}}}
   :backprop? true
   :backprop-type :standard))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 2, training master
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(def training-master
  (master/new-parameter-averaging-training-master
   :build? true
   :rdd-n-examples 10
   :n-workers 4
   :averaging-freq 10
   :batch-size-per-worker 2
   :export-dir "resources/spark/master/"
   :rdd-training-approach :direct
   :repartition-data :always
   :repartition-strategy :balanced
   :seed 1234
   :save-updater? true
   :storage-level :none))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 3, spark context
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(def your-spark-context
  (new-java-spark-context :app-name "example app"))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 4, training data
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(def iris-iter
  (new-iris-data-set-iterator
   :batch-size 1
   :n-examples 5))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 5, spark mln
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(def fitted-spark-mln
  (c/train-with-spark :spark-context your-spark-context
                      :mln-conf mln-conf
                      :training-master training-master
                      :iter iris-iter
                      :n-epochs 1
                      :as-code? false))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 5, use spark context from spark-mln to create rdd
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; TODO: eliminate this step

(def our-rdd
  (let [sc (get-spark-context fitted-spark-mln :as-code? false)]
    (java-rdd-from-iter :spark-context sc
                        :iter iris-iter)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 6, evaluation model and print stats (poor performance of model expected)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(def eval-obj
  (eval-classification-spark-mln
   :spark-mln fitted-spark-mln
   :rdd our-rdd))

(println (get-stats :evaler eval-obj))

  • this example demonstrates the dl4j workflow
    • NOTE: unlike the previous example, this one requires dl4j objects to be used
      • this is becaues spark only wants you to have one spark context at a time
(ns my.ns
  (:require [dl4clj.nn.conf.builders.layers :as l]
            [dl4clj.nn.conf.builders.nn :as nn]
            [dl4clj.datasets.iterators :refer [new-iris-data-set-iterator]]
            [dl4clj.eval.api.eval :refer [get-stats]]
            [dl4clj.spark.masters.param-avg :as master]
            [dl4clj.spark.data.java-rdd :refer [new-java-spark-context java-rdd-from-iter]]
            [dl4clj.spark.dl4j-multi-layer :as spark-mln]
            [dl4clj.spark.api.dl4j-multi-layer :refer [fit-spark-mln!
                                                       eval-classification-spark-mln]]))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 1, create your model
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(def mln-conf
  (nn/builder
   :optimization-algo :stochastic-gradient-descent
   :default-learning-rate 0.006
   :layers {0 (l/dense-layer-builder :n-in 4 :n-out 2 :activation-fn :relu)
            1 {:output-layer
               {:loss-fn :negativeloglikelihood
                :n-in 2 :n-out 3
                :activation-fn :soft-max
                :weight-init :xavier}}}
   :backprop? true
   :as-code? false
   :backprop-type :standard))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 2, create a training master
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; not all options specified, but most are

(def training-master
  (master/new-parameter-averaging-training-master
   :build? true
   :rdd-n-examples 10
   :n-workers 4
   :averaging-freq 10
   :batch-size-per-worker 2
   :export-dir "resources/spark/master/"
   :rdd-training-approach :direct
   :repartition-data :always
   :repartition-strategy :balanced
   :seed 1234
   :as-code? false
   :save-updater? true
   :storage-level :none))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 3, create a Spark Multi Layer Network
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(def your-spark-context
  (new-java-spark-context :app-name "example app" :as-code? false))

;; new-java-spark-context will turn an existing spark-configuration into a java spark context
;; or create a new java spark context with master set to "local[*]" and the app name
;; set to :app-name


(def spark-mln
  (spark-mln/new-spark-multi-layer-network
   :spark-context your-spark-context
   :mln mln-conf
   :training-master training-master
   :as-code? false))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 4, load your data
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; one way is via a dataset-iterator
;; can make one directly from a dataset (iterator data-set)
;; see: nd4clj.linalg.dataset.api.data-set and nd4clj.linalg.dataset.data-set
;; we are going to use a pre-built one

(def iris-iter
  (new-iris-data-set-iterator
   :batch-size 1
   :n-examples 5
   :as-code? false))

;; now lets convert the data into a javaRDD

(def our-rdd
  (java-rdd-from-iter :spark-context your-spark-context
                      :iter iris-iter))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 5, fit and evaluate the model
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(def fitted-spark-mln
  (fit-spark-mln!
   :spark-mln spark-mln
   :rdd our-rdd
   :n-epochs 1))
;; this fn also has the option to supply :path-to-data instead of :rdd
;; that path should point to a directory containing a number of dataset objects

(def eval-obj
  (eval-classification-spark-mln
   :spark-mln fitted-spark-mln
   :rdd our-rdd))
;; we would want to have different testing and training rdd's but here we are using
;; the data we trained on

;; lets get the stats for how our model performed

(println (get-stats :evaler eval-obj))

Terminology

Coming soon

Packages to come back to:

Implement ComputationGraphs and the classes which use them

NLP

Parallelism

TSNE

UI


Author: yetanalytics
Source Code: https://github.com/yetanalytics/dl4clj
License: BSD-2-Clause License

#machine-learning #deep-learning 

Arvel  Parker

Arvel Parker

1591611780

How to Find Ulimit For user on Linux

How can I find the correct ulimit values for a user account or process on Linux systems?

For proper operation, we must ensure that the correct ulimit values set after installing various software. The Linux system provides means of restricting the number of resources that can be used. Limits set for each Linux user account. However, system limits are applied separately to each process that is running for that user too. For example, if certain thresholds are too low, the system might not be able to server web pages using Nginx/Apache or PHP/Python app. System resource limits viewed or set with the NA command. Let us see how to use the ulimit that provides control over the resources available to the shell and processes.

#[object object] #[object object] #[object object] #[object object] #[object object] #[object object] #[object object] #[object object] #[object object] #[object object]

MEAN Stack Tutorial MongoDB ExpressJS AngularJS NodeJS

We are going to build a full stack Todo App using the MEAN (MongoDB, ExpressJS, AngularJS and NodeJS). This is the last part of three-post series tutorial.

MEAN Stack tutorial series:

AngularJS tutorial for beginners (Part I)
Creating RESTful APIs with NodeJS and MongoDB Tutorial (Part II)
MEAN Stack Tutorial: MongoDB, ExpressJS, AngularJS and NodeJS (Part III) 👈 you are here
Before completing the app, let’s cover some background about the this stack. If you rather jump to the hands-on part click here to get started.

#[object object] #[object object] #[object object] #[object object] #[object object] #[object object] #[object object] #[object object]

Yoshiko  Jones

Yoshiko Jones

1598195340

How to configure AWS SES with Postfix MTA

How do I configure Amazon SES With Postfix mail server to send email under a CentOS/RHEL/Fedora/Ubuntu/Debian Linux server?

Amazon Simple Email Service (SES) is a hosted email service for you to send and receive email using your email addresses and domains. Typically SES used for sending bulk email or routing emails without hosting MTA. We can use Perl/Python/PHP APIs to send an email via SES. Another option is to configure Linux or Unix box running Postfix to route all outgoing emails via SES.

  • » Remove sendmail
  • » Install postfix
  • » Configuring postfix for SES
  • » Test postfix

Procedure to configure AWS SES with Postfix

Before getting started with Amazon SES and Postfix, you need to sign up for AWS, including SES. You need to verify your email address and other settings. Make sure you create a user for SES access and download credentials too.

Step 1 – Uninstall Sendmail if installed

If sendmail installed remove it. Debian/Ubuntu Linux user type the following apt command/apt-get command:

$`` sudo apt --purge remove sendmail

CentOS/RHEL user type the following yum command or dnf command on Fedora/CentOS/RHEL 8.x:

$`` sudo yum remove sendmail

$`` sudo dnf remove sendmail

Sample outputs from CentOS 8 server:

Dependencies resolved.
===============================================================================
 Package           Architecture  Version               Repository         Size
===============================================================================
Removing:
 sendmail          x86_64        8.15.2-32.el8         @AppStream        2.4 M
Removing unused dependencies:
 cyrus-sasl        x86_64        2.1.27-1.el8          @BaseOS           160 k
 procmail          x86_64        3.22-47.el8           @AppStream        369 k

Transaction Summary
===============================================================================
Remove  3 Packages

Freed space: 2.9 M
Is this ok [y/N]: y

#[object object] #[object object] #[object object] #[object object] #[object object] #[object object] #[object object]

Creating RESTful APIs with NodeJS and MongoDB Tutorial

Welcome to this tutorial about RESTful API using Node.js (Express.js) and MongoDB (mongoose)! We are going to learn how to install and use each component individually and then proceed to create a RESTful API.

MEAN Stack tutorial series:

AngularJS tutorial for beginners (Part I)
Creating RESTful APIs with NodeJS and MongoDB Tutorial (Part II) 👈 you are here
MEAN Stack Tutorial: MongoDB, ExpressJS, AngularJS and NodeJS (Part III)

#[object object] #[object object] #[object object] #[object object] #[object object] #[object object] #[object object]