A Deep Dive Into the Transformer Architecture — The Development of Transformer Models

Transformers for Natural Language Processing

It may seem like a long time since the world of natural language processing (NLP) was transformed by the seminal “Attention is All You Need” paper by Vaswani et al., but in fact that was less than 3 years ago. The relative recency of the introduction of transformer architectures and the ubiquity with which they have upended language tasks speaks to the rapid rate of progress in machine learning and artificial intelligence. There’s no better time than now to gain a deep understanding of the inner workings of transformer architectures, especially with transformer models making big inroads into diverse new applications like predicting chemical reactions and reinforcement learning.

Whether you’re an old hand or you’re only paying attention to transformer style architecture for the first time, this article should offer something for you. First, we’ll dive deep into the fundamental concepts used to build the original 2017 Transformer. Then we’ll touch on some of the developments implemented in subsequent transformer models. Where appropriate we’ll point out some limitations and how modern models inheriting ideas from the original Transformer are trying to overcome various shortcomings or improve performance.

What do Transformers do?

Transformers are the current state-of-the-art type of model for dealing with sequences. Perhaps the most prominent application of these models is in text processing tasks, and the most prominent of these is machine translation. In fact, transformers and their conceptual progeny have infiltrated just about every benchmark leaderboard in natural language processing (NLP), from question answering to grammar correction. In many ways transformer architectures are undergoing a surge in development similar to what we saw with convolutional neural networks following the 2012 ImageNet competition, for better and for worse.

Image for post

#architecture #natural-language-process #transformers #deep-learning

What is GEEK

Buddha Community

A Deep Dive Into the Transformer Architecture — The Development of Transformer Models
Chelsie  Towne

Chelsie Towne

1596716340

A Deep Dive Into the Transformer Architecture – The Transformer Models

Transformers for Natural Language Processing

It may seem like a long time since the world of natural language processing (NLP) was transformed by the seminal “Attention is All You Need” paper by Vaswani et al., but in fact that was less than 3 years ago. The relative recency of the introduction of transformer architectures and the ubiquity with which they have upended language tasks speaks to the rapid rate of progress in machine learning and artificial intelligence. There’s no better time than now to gain a deep understanding of the inner workings of transformer architectures, especially with transformer models making big inroads into diverse new applications like predicting chemical reactions and reinforcement learning.

Whether you’re an old hand or you’re only paying attention to transformer style architecture for the first time, this article should offer something for you. First, we’ll dive deep into the fundamental concepts used to build the original 2017 Transformer. Then we’ll touch on some of the developments implemented in subsequent transformer models. Where appropriate we’ll point out some limitations and how modern models inheriting ideas from the original Transformer are trying to overcome various shortcomings or improve performance.

What Do Transformers Do?

Transformers are the current state-of-the-art type of model for dealing with sequences. Perhaps the most prominent application of these models is in text processing tasks, and the most prominent of these is machine translation. In fact, transformers and their conceptual progeny have infiltrated just about every benchmark leaderboard in natural language processing (NLP), from question answering to grammar correction. In many ways transformer architectures are undergoing a surge in development similar to what we saw with convolutional neural networks following the 2012 ImageNet competition, for better and for worse.

#natural language processing #ai artificial intelligence #transformers #transformer architecture #transformer models

Fredy  Larson

Fredy Larson

1595059664

How long does it take to develop/build an app?

With more of us using smartphones, the popularity of mobile applications has exploded. In the digital era, the number of people looking for products and services online is growing rapidly. Smartphone owners look for mobile applications that give them quick access to companies’ products and services. As a result, mobile apps provide customers with a lot of benefits in just one device.

Likewise, companies use mobile apps to increase customer loyalty and improve their services. Mobile Developers are in high demand as companies use apps not only to create brand awareness but also to gather information. For that reason, mobile apps are used as tools to collect valuable data from customers to help companies improve their offer.

There are many types of mobile applications, each with its own advantages. For example, native apps perform better, while web apps don’t need to be customized for the platform or operating system (OS). Likewise, hybrid apps provide users with comfortable user experience. However, you may be wondering how long it takes to develop an app.

To give you an idea of how long the app development process takes, here’s a short guide.

App Idea & Research

app-idea-research

_Average time spent: two to five weeks _

This is the initial stage and a crucial step in setting the project in the right direction. In this stage, you brainstorm ideas and select the best one. Apart from that, you’ll need to do some research to see if your idea is viable. Remember that coming up with an idea is easy; the hard part is to make it a reality.

All your ideas may seem viable, but you still have to run some tests to keep it as real as possible. For that reason, when Web Developers are building a web app, they analyze the available ideas to see which one is the best match for the targeted audience.

Targeting the right audience is crucial when you are developing an app. It saves time when shaping the app in the right direction as you have a clear set of objectives. Likewise, analyzing how the app affects the market is essential. During the research process, App Developers must gather information about potential competitors and threats. This helps the app owners develop strategies to tackle difficulties that come up after the launch.

The research process can take several weeks, but it determines how successful your app can be. For that reason, you must take your time to know all the weaknesses and strengths of the competitors, possible app strategies, and targeted audience.

The outcomes of this stage are app prototypes and the minimum feasible product.

#android app #frontend #ios app #minimum viable product (mvp) #mobile app development #web development #android app development #app development #app development for ios and android #app development process #ios and android app development #ios app development #stages in app development

A Deep Dive Into the Transformer Architecture — The Development of Transformer Models

Transformers for Natural Language Processing

It may seem like a long time since the world of natural language processing (NLP) was transformed by the seminal “Attention is All You Need” paper by Vaswani et al., but in fact that was less than 3 years ago. The relative recency of the introduction of transformer architectures and the ubiquity with which they have upended language tasks speaks to the rapid rate of progress in machine learning and artificial intelligence. There’s no better time than now to gain a deep understanding of the inner workings of transformer architectures, especially with transformer models making big inroads into diverse new applications like predicting chemical reactions and reinforcement learning.

Whether you’re an old hand or you’re only paying attention to transformer style architecture for the first time, this article should offer something for you. First, we’ll dive deep into the fundamental concepts used to build the original 2017 Transformer. Then we’ll touch on some of the developments implemented in subsequent transformer models. Where appropriate we’ll point out some limitations and how modern models inheriting ideas from the original Transformer are trying to overcome various shortcomings or improve performance.

What do Transformers do?

Transformers are the current state-of-the-art type of model for dealing with sequences. Perhaps the most prominent application of these models is in text processing tasks, and the most prominent of these is machine translation. In fact, transformers and their conceptual progeny have infiltrated just about every benchmark leaderboard in natural language processing (NLP), from question answering to grammar correction. In many ways transformer architectures are undergoing a surge in development similar to what we saw with convolutional neural networks following the 2012 ImageNet competition, for better and for worse.

Image for post

#architecture #natural-language-process #transformers #deep-learning

Edna  Bernhard

Edna Bernhard

1596525540

A Deep Dive Into the Transformer Architecture

Transformers for Natural Language Processing

It may seem like a long time since the world of natural language processing (NLP) was transformed by the seminal “Attention is All You Need” paper by Vaswani et al., but in fact that was less than 3 years ago. The relative recency of the introduction of transformer architectures and the ubiquity with which they have upended language tasks speaks to the rapid rate of progress in machine learning and artificial intelligence. There’s no better time than now to gain a deep understanding of the inner workings of transformer architectures, especially with transformer models making big inroads into diverse new applications like predicting chemical reactions and reinforcement learning.

Whether you’re an old hand or you’re only paying attention to transformer style architecture for the first time, this article should offer something for you. First, we’ll dive deep into the fundamental concepts used to build the original 2017 Transformer. Then we’ll touch on some of the developments implemented in subsequent transformer models. Where appropriate we’ll point out some limitations and how modern models inheriting ideas from the original Transformer are trying to overcome various shortcomings or improve performance.

What Do Transformers Do?

Transformers are the current state-of-the-art type of model for dealing with sequences. Perhaps the most prominent application of these models is in text processing tasks, and the most prominent of these is machine translation. In fact, transformers and their conceptual progeny have infiltrated just about every benchmark leaderboard in natural language processing (NLP), from question answering to grammar correction. In many ways transformer architectures are undergoing a surge in development similar to what we saw with convolutional neural networks following the 2012 ImageNet competition, for better and for worse.

#natural language processing #ai artificial intelligence #transformers #transformer architecture #transformer models #ai

Eve  Klocko

Eve Klocko

1596736920

A Deep Dive Into the Transformer Architecture

Transformers for Natural Language Processing

It may seem like a long time since the world of natural language processing (NLP) was transformed by the seminal “Attention is All You Need” paper by Vaswani et al., but in fact that was less than 3 years ago. The relative recency of the introduction of transformer architectures and the ubiquity with which they have upended language tasks speaks to the rapid rate of progress in machine learning and artificial intelligence. There’s no better time than now to gain a deep understanding of the inner workings of transformer architectures, especially with transformer models making big inroads into diverse new applications like predicting chemical reactions and reinforcement learning.

Whether you’re an old hand or you’re only paying attention to transformer style architecture for the first time, this article should offer something for you. First, we’ll dive deep into the fundamental concepts used to build the original 2017 Transformer. Then we’ll touch on some of the developments implemented in subsequent transformer models. Where appropriate we’ll point out some limitations and how modern models inheriting ideas from the original Transformer are trying to overcome various shortcomings or improve performance.

What Do Transformers Do?

Transformers are the current state-of-the-art type of model for dealing with sequences. Perhaps the most prominent application of these models is in text processing tasks, and the most prominent of these is machine translation. In fact, transformers and their conceptual progeny have infiltrated just about every benchmark leaderboard in natural language processing (NLP), from question answering to grammar correction. In many ways transformer architectures are undergoing a surge in development similar to what we saw with convolutional neural networks following the 2012 ImageNet competition, for better and for worse.

#natural language processing #ai artificial intelligence #transformers #transformer architecture #transformer models