Vicenta  Hauck

Vicenta Hauck

1661867280

Learn About Scikit-learn’s SimpleImputer

In the tutorial, we will learn about Scikit-learn’s SimpleImputer, IterativeImputer, and KNNImputer. We will also create a pipeline to impute categorical and numerical features and feed them into a machine learning model.

Source: https://www.kdnuggets.com

#machine-learning #scikitlearn

What is GEEK

Buddha Community

Learn About Scikit-learn’s SimpleImputer
Michael  Hamill

Michael Hamill

1618278600

Scikit-Learn Is Still Rocking, Been Introduced To French President

Amilestone for open source projects — French President Emmanuel Macron has recently been introduced to Scikit-learn. In fact, in a recent tweet, Scikit-learn creator and Inria tenured research director, Gael Varoquaux announced the presentation of Scikit-Learn, with applications of machine learning in digital health, to the president of France.

He stated the advancement of this free software machine learning library — “started from the grassroots, built by a community, we are powering digital revolutions, adding transparency and independence.”

#news #application of scikit learn for machine learning #applications of scikit learn for digital health #scikit learn #scikit learn introduced to french president

Mike  Kozey

Mike Kozey

1656151740

Test_cov_console: Flutter Console Coverage Test

Flutter Console Coverage Test

This small dart tools is used to generate Flutter Coverage Test report to console

How to install

Add a line like this to your package's pubspec.yaml (and run an implicit flutter pub get):

dev_dependencies:
  test_cov_console: ^0.2.2

How to run

run the following command to make sure all flutter library is up-to-date

flutter pub get
Running "flutter pub get" in coverage...                            0.5s

run the following command to generate lcov.info on coverage directory

flutter test --coverage
00:02 +1: All tests passed!

run the tool to generate report from lcov.info

flutter pub run test_cov_console
---------------------------------------------|---------|---------|---------|-------------------|
File                                         |% Branch | % Funcs | % Lines | Uncovered Line #s |
---------------------------------------------|---------|---------|---------|-------------------|
lib/src/                                     |         |         |         |                   |
 print_cov.dart                              |  100.00 |  100.00 |   88.37 |...,149,205,206,207|
 print_cov_constants.dart                    |    0.00 |    0.00 |    0.00 |    no unit testing|
lib/                                         |         |         |         |                   |
 test_cov_console.dart                       |    0.00 |    0.00 |    0.00 |    no unit testing|
---------------------------------------------|---------|---------|---------|-------------------|
 All files with unit testing                 |  100.00 |  100.00 |   88.37 |                   |
---------------------------------------------|---------|---------|---------|-------------------|

Optional parameter

If not given a FILE, "coverage/lcov.info" will be used.
-f, --file=<FILE>                      The target lcov.info file to be reported
-e, --exclude=<STRING1,STRING2,...>    A list of contains string for files without unit testing
                                       to be excluded from report
-l, --line                             It will print Lines & Uncovered Lines only
                                       Branch & Functions coverage percentage will not be printed
-i, --ignore                           It will not print any file without unit testing
-m, --multi                            Report from multiple lcov.info files
-c, --csv                              Output to CSV file
-o, --output=<CSV-FILE>                Full path of output CSV file
                                       If not given, "coverage/test_cov_console.csv" will be used
-t, --total                            Print only the total coverage
                                       Note: it will ignore all other option (if any), except -m
-p, --pass=<MINIMUM>                   Print only the whether total coverage is passed MINIMUM value or not
                                       If the value >= MINIMUM, it will print PASSED, otherwise FAILED
                                       Note: it will ignore all other option (if any), except -m
-h, --help                             Show this help

example run the tool with parameters

flutter pub run test_cov_console --file=coverage/lcov.info --exclude=_constants,_mock
---------------------------------------------|---------|---------|---------|-------------------|
File                                         |% Branch | % Funcs | % Lines | Uncovered Line #s |
---------------------------------------------|---------|---------|---------|-------------------|
lib/src/                                     |         |         |         |                   |
 print_cov.dart                              |  100.00 |  100.00 |   88.37 |...,149,205,206,207|
lib/                                         |         |         |         |                   |
 test_cov_console.dart                       |    0.00 |    0.00 |    0.00 |    no unit testing|
---------------------------------------------|---------|---------|---------|-------------------|
 All files with unit testing                 |  100.00 |  100.00 |   88.37 |                   |
---------------------------------------------|---------|---------|---------|-------------------|

report for multiple lcov.info files (-m, --multi)

It support to run for multiple lcov.info files with the followings directory structures:
1. No root module
<root>/<module_a>
<root>/<module_a>/coverage/lcov.info
<root>/<module_a>/lib/src
<root>/<module_b>
<root>/<module_b>/coverage/lcov.info
<root>/<module_b>/lib/src
...
2. With root module
<root>/coverage/lcov.info
<root>/lib/src
<root>/<module_a>
<root>/<module_a>/coverage/lcov.info
<root>/<module_a>/lib/src
<root>/<module_b>
<root>/<module_b>/coverage/lcov.info
<root>/<module_b>/lib/src
...
You must run test_cov_console on <root> dir, and the report would be grouped by module, here is
the sample output for directory structure 'with root module':
flutter pub run test_cov_console --file=coverage/lcov.info --exclude=_constants,_mock --multi
---------------------------------------------|---------|---------|---------|-------------------|
File                                         |% Branch | % Funcs | % Lines | Uncovered Line #s |
---------------------------------------------|---------|---------|---------|-------------------|
lib/src/                                     |         |         |         |                   |
 print_cov.dart                              |  100.00 |  100.00 |   88.37 |...,149,205,206,207|
lib/                                         |         |         |         |                   |
 test_cov_console.dart                       |    0.00 |    0.00 |    0.00 |    no unit testing|
---------------------------------------------|---------|---------|---------|-------------------|
 All files with unit testing                 |  100.00 |  100.00 |   88.37 |                   |
---------------------------------------------|---------|---------|---------|-------------------|
---------------------------------------------|---------|---------|---------|-------------------|
File - module_a -                            |% Branch | % Funcs | % Lines | Uncovered Line #s |
---------------------------------------------|---------|---------|---------|-------------------|
lib/src/                                     |         |         |         |                   |
 print_cov.dart                              |  100.00 |  100.00 |   88.37 |...,149,205,206,207|
lib/                                         |         |         |         |                   |
 test_cov_console.dart                       |    0.00 |    0.00 |    0.00 |    no unit testing|
---------------------------------------------|---------|---------|---------|-------------------|
 All files with unit testing                 |  100.00 |  100.00 |   88.37 |                   |
---------------------------------------------|---------|---------|---------|-------------------|
---------------------------------------------|---------|---------|---------|-------------------|
File - module_b -                            |% Branch | % Funcs | % Lines | Uncovered Line #s |
---------------------------------------------|---------|---------|---------|-------------------|
lib/src/                                     |         |         |         |                   |
 print_cov.dart                              |  100.00 |  100.00 |   88.37 |...,149,205,206,207|
lib/                                         |         |         |         |                   |
 test_cov_console.dart                       |    0.00 |    0.00 |    0.00 |    no unit testing|
---------------------------------------------|---------|---------|---------|-------------------|
 All files with unit testing                 |  100.00 |  100.00 |   88.37 |                   |
---------------------------------------------|---------|---------|---------|-------------------|

Output to CSV file (-c, --csv, -o, --output)

flutter pub run test_cov_console -c --output=coverage/test_coverage.csv

#### sample CSV output file:
File,% Branch,% Funcs,% Lines,Uncovered Line #s
lib/,,,,
test_cov_console.dart,0.00,0.00,0.00,no unit testing
lib/src/,,,,
parser.dart,100.00,100.00,97.22,"97"
parser_constants.dart,100.00,100.00,100.00,""
print_cov.dart,100.00,100.00,82.91,"29,49,51,52,171,174,177,180,183,184,185,186,187,188,279,324,325,387,388,389,390,391,392,393,394,395,398"
print_cov_constants.dart,0.00,0.00,0.00,no unit testing
All files with unit testing,100.00,100.00,86.07,""

Installing

Use this package as an executable

Install it

You can install the package from the command line:

dart pub global activate test_cov_console

Use it

The package has the following executables:

$ test_cov_console

Use this package as a library

Depend on it

Run this command:

With Dart:

 $ dart pub add test_cov_console

With Flutter:

 $ flutter pub add test_cov_console

This will add a line like this to your package's pubspec.yaml (and run an implicit dart pub get):

dependencies:
  test_cov_console: ^0.2.2

Alternatively, your editor might support dart pub get or flutter pub get. Check the docs for your editor to learn more.

Import it

Now in your Dart code, you can use:

import 'package:test_cov_console/test_cov_console.dart';

example/lib/main.dart

import 'package:flutter/material.dart';

void main() {
  runApp(MyApp());
}

class MyApp extends StatelessWidget {
  // This widget is the root of your application.
  @override
  Widget build(BuildContext context) {
    return MaterialApp(
      title: 'Flutter Demo',
      theme: ThemeData(
        // This is the theme of your application.
        //
        // Try running your application with "flutter run". You'll see the
        // application has a blue toolbar. Then, without quitting the app, try
        // changing the primarySwatch below to Colors.green and then invoke
        // "hot reload" (press "r" in the console where you ran "flutter run",
        // or simply save your changes to "hot reload" in a Flutter IDE).
        // Notice that the counter didn't reset back to zero; the application
        // is not restarted.
        primarySwatch: Colors.blue,
        // This makes the visual density adapt to the platform that you run
        // the app on. For desktop platforms, the controls will be smaller and
        // closer together (more dense) than on mobile platforms.
        visualDensity: VisualDensity.adaptivePlatformDensity,
      ),
      home: MyHomePage(title: 'Flutter Demo Home Page'),
    );
  }
}

class MyHomePage extends StatefulWidget {
  MyHomePage({Key? key, required this.title}) : super(key: key);

  // This widget is the home page of your application. It is stateful, meaning
  // that it has a State object (defined below) that contains fields that affect
  // how it looks.

  // This class is the configuration for the state. It holds the values (in this
  // case the title) provided by the parent (in this case the App widget) and
  // used by the build method of the State. Fields in a Widget subclass are
  // always marked "final".

  final String title;

  @override
  _MyHomePageState createState() => _MyHomePageState();
}

class _MyHomePageState extends State<MyHomePage> {
  int _counter = 0;

  void _incrementCounter() {
    setState(() {
      // This call to setState tells the Flutter framework that something has
      // changed in this State, which causes it to rerun the build method below
      // so that the display can reflect the updated values. If we changed
      // _counter without calling setState(), then the build method would not be
      // called again, and so nothing would appear to happen.
      _counter++;
    });
  }

  @override
  Widget build(BuildContext context) {
    // This method is rerun every time setState is called, for instance as done
    // by the _incrementCounter method above.
    //
    // The Flutter framework has been optimized to make rerunning build methods
    // fast, so that you can just rebuild anything that needs updating rather
    // than having to individually change instances of widgets.
    return Scaffold(
      appBar: AppBar(
        // Here we take the value from the MyHomePage object that was created by
        // the App.build method, and use it to set our appbar title.
        title: Text(widget.title),
      ),
      body: Center(
        // Center is a layout widget. It takes a single child and positions it
        // in the middle of the parent.
        child: Column(
          // Column is also a layout widget. It takes a list of children and
          // arranges them vertically. By default, it sizes itself to fit its
          // children horizontally, and tries to be as tall as its parent.
          //
          // Invoke "debug painting" (press "p" in the console, choose the
          // "Toggle Debug Paint" action from the Flutter Inspector in Android
          // Studio, or the "Toggle Debug Paint" command in Visual Studio Code)
          // to see the wireframe for each widget.
          //
          // Column has various properties to control how it sizes itself and
          // how it positions its children. Here we use mainAxisAlignment to
          // center the children vertically; the main axis here is the vertical
          // axis because Columns are vertical (the cross axis would be
          // horizontal).
          mainAxisAlignment: MainAxisAlignment.center,
          children: <Widget>[
            Text(
              'You have pushed the button this many times:',
            ),
            Text(
              '$_counter',
              style: Theme.of(context).textTheme.headline4,
            ),
          ],
        ),
      ),
      floatingActionButton: FloatingActionButton(
        onPressed: _incrementCounter,
        tooltip: 'Increment',
        child: Icon(Icons.add),
      ), // This trailing comma makes auto-formatting nicer for build methods.
    );
  }
}

Author: DigitalKatalis
Source Code: https://github.com/DigitalKatalis/test_cov_console 
License: BSD-3-Clause license

#flutter #dart #test 

Vaughn  Sauer

Vaughn Sauer

1622792520

Top Free Resources To Learn Scikit-Learn

Scikit-Learn is one of the popular software machine learning libraries. The library is built on top of NumPy, SciPy, and Matplotlib and supports supervised and unsupervised learning as well as provides various tools for model fitting, data preprocessing, model selection and evaluation.

Scikit-Learn Tutorials

About: From the developers of Scikit-Learn, this tutorial provides an introduction to machine learning with Scikit-Learn. It includes topics such as problem setting, loading an example dataset, learning and predicting. The tutorial is suitable for both beginners and advanced students.

Perform Sentiment Analysis with Scikit-Learn

**About: **In this project-based course, you will learn the fundamentals of sentiment analysis, and build a logistic regression model to classify movie reviews as either positive or negative. You will learn how to develop and employ a logistic regression classifier using Scikit-Learn, perform feature extraction with The Natural Language Toolkit (NLTK), tune model hyperparameters and evaluate model accuracy etc.

Python Machine Learning: Scikit-Learn Tutorial

**About: **Python Machine Learning: Scikit-Learn tutorial will help you learn the basics of Python machine learning. You will learn how to use Python and its libraries to explore your data with the help of Matplotlib and Principal Component Analysis (PCA). You will also learn how to work with the KMeans algorithm to construct an unsupervised model, fit this model to your data, predict values, and validate the model.

Scikit Learn Tutorial | Machine Learning with Python

**About: **Edureka’s video tutorial introduces machine learning in Python. It will take you through regression and clustering techniques along with a demo of SVM classification on the famous iris dataset. This video helps you to learn the introduction to Scikit-learn and how to install it, understand how machine learning works, among other things.

Regression using Scikit-Learn

About: In this Coursera offering, you will learn about Linear Regression, Regression using Random Forest Algorithm, Regression using Support Vector Machine Algorithm. Scikit-Learn provides a comprehensive array of tools for building regression models.

Machine Learning with Scikit-Learn Tutorial

About: In this course, you will learn about machine learning, algorithms, and how Scikit-Learn makes it all so easy. You will get to know the machine learning approach, jargons to understand a dataset, features of supervised and unsupervised learning models, algorithms such as regression, classification, clustering, and dimensionality reduction.

Predict Sales Revenue with Scikit-Learn

About: In this two-hour long project-based course, you will build and evaluate a simple linear regression model using Python. You will employ the Scikit-Learn module for calculating the linear regression while using pandas for data management and seaborn for plotting. By the end of this course, you will be able to build a simple linear regression model in Python with Scikit-Learn, employ Exploratory Data Analysis (EDA) to small data sets with seaborn and pandas.

SciPy 2016 Scikit-learn Tutorial

**About: **This tutorial is available on GitHub. It includes an introduction to machine learning with sample applications, data formats, preparation and representation, supervised learning: training and test data, the Scikit-Learn estimator interface and more.

Build NLP pipelines using Scikit-Learn

About: This is a two-hour long project-based course, where you will understand the business problem and the dataset and learn how to generate a hypothesis to create new features based on existing data. You will learn to perform text pre-processing and create custom transformers to generate new features. You will also learn to implement an NLP pipeline, create custom transformers and build a text classification model.

#developers corner #learn scikit-learn #machine learning library #scikit learn

Jackson  Crist

Jackson Crist

1618280760

9 Guidelines to Master Scikit-learn without Giving Up in The Middle

Undoubtedly, Scikit-learn is one of the best machine learning libraries available today. There are several reasons for that. The consistency among Scikit-learn estimators is one reason. You cannot find such consistency in any other machine learning library. The .fit()/.predict() paradigm best describes the consistency. Another reason is that Scikit-learn has a variety of uses. It can be used for classification, regression, clustering, dimensionality reduction, anomaly detection.
Therefore, Scikit-learn is a must-have Python library in your data science toolkit. But, learning to use Scikit-learn is not straightforward. It’s not simple as you imagine. You have to set up some background before learning it. Even while you learning Scikit-learn, you should follow some guidelines and best practices. In this article, I’m happy to share 9 guidelines that worked for me to master the Scikit-learn without giving up the learning process in the middle. Whenever possible, I will include the links to my previous posts which will help you to set up the background and continue to learn the Scikit-learn.

#data-science #scikit-learn #machine-learning #unsupervised-learning #supervised-learning

Housing Price with scikit-learn’s StratifiedShuffleSplit

A simple hands-on practice on Scikit-learn. In this work I have tried to showcase the housing prices in California, datasets are available on GitHub

import pandas as pd 
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
housing = pd.read_csv('housing.csv')
housing.head()

Image for post

Image for post

housing.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20640 entries, 0 to 20639
Data columns (total 10 columns):
longitude             20640 non-null float64
latitude              20640 non-null float64
housing_median_age    20640 non-null float64
total_rooms           20640 non-null float64
total_bedrooms        20433 non-null float64
population            20640 non-null float64
households            20640 non-null float64
median_income         20640 non-null float64
median_house_value    20640 non-null float64
ocean_proximity       20640 non-null object
dtypes: float64(9), object(1)
memory usage: 1.5+ MB
  • There is 20,640 instance in the dataset, which means that it is fairly small by Machine learning standards. Notice the total_bedrooms attribute has only 20,433 non-null values, meaning that 207 districts are missing this feature. We need to take care of this later.
  • ocean_proximity column was repetitive, which means it is probably a categorical attribute, we will see how many districts belong to each category by using the value_counts() method.

Image for post

Big Data Jobs

housing['ocean_proximity'].value_counts()

<1H OCEAN     9136
INLAND        6551
NEAR OCEAN    2658
NEAR BAY      2290
ISLAND           5
Name: ocean_proximity, dtype: int64
housing.describe()

Image for post

From the histogram, we can see that slightly over 800 districts have a median_house_value equal to about $100,000.

housing.hist(bins=50, figsize=(20,15))
plt.show()

Image for post

  • Since the median income is a very important attribute to predict median housing prices. If we look at the median income histogram more closely most of the median income values are clustered around 2 to 5 (i.e., $20,000 — $50,000), but some median goes far beyond 6 ($60,000).
  • It is important to have a sufficient number of instances in our dataset for each stratum, or else the estimation of the dataset may be biased. This means that we should not have too many strata.

#scikit-learn #ai #data-model #data-science #machine-learning #deep learning