poojaa gupta

1625946987

Best Outlook Email Address Extractor to Extract Email Address from Outlook Folders

With this easy application, you may extract email addresses from your Outlook inbox and save them all in a TXT or a CSV file on your computer’s hard drive.

Whether you’re setting up an address book or creating a mailing list, having a method to save all of the e-mail addresses from your Outlook account may be very useful.

Email addresses may be extracted from your Microsoft Outlook account as well as from PST files using Outlook Email Extractor, which is a simple but effective application. Using this software, you may filter the retrieved items, eliminate duplicate addresses, and export the results as Excel CSV or TXT documents.

E-mails may be extracted from Outlook accounts and PST files.

If you have Microsoft Outlook installed and set on your computer, the software may immediately identify your current profile and process all of the e-mail addresses that are currently accessible.

You may, however, manually enter PST files that have been stored on your computer.

Organize the findings and eliminate duplicates.

Due to the large number of addresses saved in many Outlook accounts, it may be essential to delete things that you are no longer interested in using your account. E-mails that do not include certain phrases may be automatically hidden, and only things that match specific keywords can be shown by the application.

Additionally, Outlook Email Extractor can automatically delete duplicate addresses, allowing you to avoid storing things that are no longer needed. As soon as a scanning operation is finished, the software shows the amount of duplicate e-mails found, which gives you a fair indication of how many of them need to be deleted.

Results should be saved as CSV or TXT files.

The list of Outlook folders is presented in a tree-like layout in a separate panel, which is accessible from the main Outlook window. Select which of them should be scanned for e-mail addresses, if you want to include just things that have been retrieved from your contacts, inbox, or outbox folders, for example.

The retrieved elements may be saved as comma-separated Microsoft Excel files, as well as line-separated or TAB-delimited TXT documents once they have been processed and filtered.

On the whole, the Microsoft Outlook Email Extractor is a handy application that can be used to extract e-mail addresses from Outlook accounts and PST files.

Keep track of your email messages and critical attachments from your Microsoft Outlook account with this email grabber software, which has filtering and selective file type extraction capabilities.

In order to ensure the security of your email messages, it is sometimes necessary to save them on local storage devices rather than only on the internet, particularly when dealing with critical attachments or essential communications. There are a variety of methods for doing this, but specialist software such as Outlook Email Extractor Pro will make the process much simpler. This email grabber, which places a strong focus on simplicity, will enable users to selectively store email messages, attachments, and other pertinent data.

Automatically identifies and connects to any connected Microsoft Outlook accounts, resulting in a more efficient procedure.

It will immediately connect itself to users’ Outlook installations, as well as the appropriate account and credentials combination, after they have completed the installation process. Even while this may not seem to be a significant issue, most applications that provide this feature need the user to manually enter their login information.

Not only does this make the entire process simpler, but it also helps to keep the workflow as efficient as possible, leaving users with nothing else to do except continue with the selection of the desired email content, which is the last step in the process.

Choose what to keep, whether to apply filters in order to increase productivity, or which attachments you want to work with.

Using the preview feature, users will be able to see the contents of their Outlook email account, which will be organised in the usual manner, with folders and following directories that are easily expanded or collapsed. Furthermore, one will be able to make use of the check boxes that have been given for ease of choosing.

The software makes it simple to choose the attachment file types that will be downloaded, and it provides a large number of different formats to pick from in the process. Filters may also be applied, which is very helpful when trying to reduce the processing time by a considerable amount.

A simple yet powerful email extractor application that provides an easy method of archiving your Outlook email communications.

Users who need an easy and fast method of downloading full email messages, attachments, or related material from their Outlook account should consider this software. It strives to offer accessible functionality for both beginner and expert users, while having a minimalistic appearance.

What is GEEK

Buddha Community

Best Outlook Email Address Extractor to Extract Email Address from Outlook Folders
bindu singh

bindu singh

1647351133

Procedure To Become An Air Hostess/Cabin Crew

Minimum educational required – 10+2 passed in any stream from a recognized board.

The age limit is 18 to 25 years. It may differ from one airline to another!

 

Physical and Medical standards –

  • Females must be 157 cm in height and males must be 170 cm in height (for males). This parameter may vary from one airline toward the next.
  • The candidate's body weight should be proportional to his or her height.
  • Candidates with blemish-free skin will have an advantage.
  • Physical fitness is required of the candidate.
  • Eyesight requirements: a minimum of 6/9 vision is required. Many airlines allow applicants to fix their vision to 20/20!
  • There should be no history of mental disease in the candidate's past.
  • The candidate should not have a significant cardiovascular condition.

You can become an air hostess if you meet certain criteria, such as a minimum educational level, an age limit, language ability, and physical characteristics.

As can be seen from the preceding information, a 10+2 pass is the minimal educational need for becoming an air hostess in India. So, if you have a 10+2 certificate from a recognized board, you are qualified to apply for an interview for air hostess positions!

You can still apply for this job if you have a higher qualification (such as a Bachelor's or Master's Degree).

So That I may recommend, joining Special Personality development courses, a learning gallery that offers aviation industry courses by AEROFLY INTERNATIONAL AVIATION ACADEMY in CHANDIGARH. They provide extra sessions included in the course and conduct the entire course in 6 months covering all topics at an affordable pricing structure. They pay particular attention to each and every aspirant and prepare them according to airline criteria. So be a part of it and give your aspirations So be a part of it and give your aspirations wings.

Read More:   Safety and Emergency Procedures of Aviation || Operations of Travel and Hospitality Management || Intellectual Language and Interview Training || Premiere Coaching For Retail and Mass Communication |Introductory Cosmetology and Tress Styling  ||  Aircraft Ground Personnel Competent Course

For more information:

Visit us at:     https://aerofly.co.in

Phone         :     wa.me//+919988887551 

Address:     Aerofly International Aviation Academy, SCO 68, 4th Floor, Sector 17-D,                            Chandigarh, Pin 160017 

Email:     info@aerofly.co.in

 

#air hostess institute in Delhi, 

#air hostess institute in Chandigarh, 

#air hostess institute near me,

#best air hostess institute in India,
#air hostess institute,

#best air hostess institute in Delhi, 

#air hostess institute in India, 

#best air hostess institute in India,

#air hostess training institute fees, 

#top 10 air hostess training institute in India, 

#government air hostess training institute in India, 

#best air hostess training institute in the world,

#air hostess training institute fees, 

#cabin crew course fees, 

#cabin crew course duration and fees, 

#best cabin crew training institute in Delhi, 

#cabin crew courses after 12th,

#best cabin crew training institute in Delhi, 

#cabin crew training institute in Delhi, 

#cabin crew training institute in India,

#cabin crew training institute near me,

#best cabin crew training institute in India,

#best cabin crew training institute in Delhi, 

#best cabin crew training institute in the world, 

#government cabin crew training institute

What Is R Programming Language? introduction & Basics

In this R article, we will learn about What Is R Programming Language? introduction & Basics. R is a programming language developed by Ross Ihaka and Robert Gentleman in 1993. R possesses an extensive catalog of statistical and graphical methods. It includes machine learning algorithms, linear regression, time series, statistical inference to name a few. Most of the R libraries are written in R, but for heavy computational tasks, C, C++, and Fortran codes are preferred.

Data analysis with R is done in a series of steps; programming, transforming, discovering, modeling and communicating the results

  • Program: R is a clear and accessible programming tool
  • Transform: R is made up of a collection of libraries designed specifically for data science
  • Discover: Investigate the data, refine your hypothesis and analyze them
  • Model: R provides a wide array of tools to capture the right model for your data
  • Communicate: Integrate codes, graphs, and outputs to a report with R Markdown or build Shiny apps to share with the world.

What is R used for?

  • Statistical inference
  • Data analysis
  • Machine learning algorithm

As conclusion, R is the world’s most widely used statistics programming language. It’s the 1st choice of data scientists and supported by a vibrant and talented community of contributors. R is taught in universities and deployed in mission-critical business applications.

R-environment setup

Windows Installation – We can download the Windows installer version of R from R-3.2.2 for windows (32/64)
 

As it is a Windows installer (.exe) with the name “R-version-win.exe”. You can just double click and run the installer accepting the default settings. If your Windows is a 32-bit version, it installs the 32-bit version. But if your windows are 64-bit, then it installs both the 32-bit and 64-bit versions.

After installation, you can locate the icon to run the program in a directory structure “R\R3.2.2\bin\i386\Rgui.exe” under the Windows Program Files. Clicking this icon brings up the R-GUI which is the R console to do R Programming. 
 

R basic Syntax

R Programming is a very popular programming language that is broadly used in data analysis. The way in which we define its code is quite simple. The “Hello World!” is the basic program for all the languages, and now we will understand the syntax of R programming with the “Hello world” program. We can write our code either in the command prompt, or we can use an R script file.

R command prompt

Once you have R environment setup, then it’s easy to start your R command prompt by just typing the following command at your command prompt −
$R
This will launch R interpreter and you will get a prompt > where you can start typing your program as follows −
 

>myString <- "Hello, World"
>print (myString)
[1] "Hello, World!"

Here the first statement defines a string variable myString, where we assign a string “Hello, World!” and then the next statement print() is being used to print the value stored in myString variable.

R data-types

While doing programming in any programming language, you need to use various variables to store various information. Variables are nothing but reserved memory locations to store values. This means that when you create a variable you reserve some space in memory.

In contrast to other programming languages like C and java in R, the variables are not declared as some data type. The variables are assigned with R-Objects and the data type of the R-object becomes the data type of the variable. There are many types of R-objects. The frequently used ones are −

  • Vectors
  • Lists
  • Matrices
  • Arrays
  • Factors
  • Data Frames

Vectors

#create a vector and find the elements which are >5
v<-c(1,2,3,4,5,6,5,8)
v[v>5]

#subset
subset(v,v>5)

#position in the vector created in which square of the numbers of v is >10 holds good
which(v*v>10)

#to know the values 
v[v*v>10]

Output: [1] 6 8 Output: [1] 6 8 Output: [1] 4 5 6 7 8 Output: [1] 4 5 6 5 8

Matrices

A matrix is a two-dimensional rectangular data set. It can be created using a vector input to the matrix function.

#matrices: a vector with two dimensional attributes
mat<-matrix(c(1,2,3,4))
 
mat1<-matrix(c(1,2,3,4),nrow=2)
mat1

Output:     [,1] [,2] [1,]    1    3 [2,]    2    4

mat2<-matrix(c(1,2,3,4),ncol=2,byrow=T)
mat2

Output:       [,1] [,2] [1,]    1    2 [2,]    3    4

mat3<-matrix(c(1,2,3,4),byrow=T)
mat3

#transpose of matrix
mattrans<-t(mat)
mattrans

#create a character matrix called fruits with elements apple, orange, pear, grapes
fruits<-matrix(c("apple","orange","pear","grapes"),2)
#create 3×4 matrix of marks obtained in each quarterly exams for 4 different subjects 
X<-matrix(c(50,70,40,90,60, 80,50, 90,100, 50,30, 70),nrow=3)
X

#give row names and column names
rownames(X)<-paste(prefix="Test.",1:3)
subs<-c("Maths", "English", "Science", "History")
colnames(X)<-subs
X

Output:       [,1]  [1,]    1  [2,]    2  [3,]    3  [4,]    4 Output:      [,1] [,2] [,3] [,4]  [1,]    1    2    3    4 Output:      [,1] [,2] [,3] [,4]  [1,]   50   90   50   50  [2,]   70   60   90   30  [3,]   40   80  100   70 Output:   Maths English Science History  Test. 1    50      90      50      50  Test. 2    70      60      90      30  Test. 3    40      80     100      70

Arrays

While matrices are confined to two dimensions, arrays can be of any number of dimensions. The array function takes a dim attribute which creates the required number of dimensions. In the below example we create an array with two elements which are 3×3 matrices each.

#Arrays
arr<-array(1:24,dim=c(3,4,2))
arr

#create an array using alphabets with dimensions 3 rows, 2 columns and 3 arrays
arr1<-array(letters[1:18],dim=c(3,2,3))

#select only 1st two matrix of an array
arr1[,,c(1:2)]

#LIST
X<-list(u=2, n='abc')
X
X$u
 [,1] [,2] [,3] [,4]
 [,1] [,2] [,3] [,4]
 [,1] [,2]
 [,1] [,2]

Dataframes

Data frames are tabular data objects. Unlike a matrix in a data frame, each column can contain different modes of data. The first column can be numeric while the second column can be character and the third column can be logical. It is a list of vectors of equal length.

#Dataframes
students<-c("J","L","M","K","I","F","R","S")
Subjects<-rep(c("science","maths"),each=2)
marks<-c(55,70,66,85,88,90,56,78)
data<-data.frame(students,Subjects,marks)
#Accessing dataframes
data[[1]]

data$Subjects
data[,1]

Output: [1] J L M K I F R S Levels: F I J K L M R S Output:   data$Subjects   [1] science science maths   maths   science science maths   maths     Levels: maths science 

Factors

Factors are the r-objects which are created using a vector. It stores the vector along with the distinct values of the elements in the vector as labels. The labels are always character irrespective of whether it is numeric or character or Boolean etc. in the input vector. They are useful in statistical modeling.

Factors are created using the factor() function. The nlevels function gives the count of levels.

#Factors
x<-c(1,2,3)
factor(x)

#apply function
data1<-data.frame(age=c(55,34,42,66,77),bmi=c(26,25,21,30,22))
d<-apply(data1,2,mean)
d

#create two vectors age and gender and find mean age with respect to gender
age<-c(33,34,55,54)
gender<-factor(c("m","f","m","f"))
tapply(age,gender,mean)

Output: [1] 1 2 3 Levels: 1 2 3 Output:  age  bmi 54.8 24.8 Output:  f  m         44 44

R Variables

A variable provides us with named storage that our programs can manipulate. A variable in R can store an atomic vector, a group of atomic vectors, or a combination of many R objects. A valid variable name consists of letters, numbers, and the dot or underlines characters.

Rules for writing Identifiers in R

  1. Identifiers can be a combination of letters, digits, period (.), and underscore (_).
  2. It must start with a letter or a period. If it starts with a period, it cannot be followed by a digit.
  3. Reserved words in R cannot be used as identifiers.

Valid identifiers in R

total, sum, .fine.with.dot, this_is_acceptable, Number5

Invalid identifiers in R

tot@l, 5um, _fine, TRUE, .0ne

Best Practices

Earlier versions of R used underscore (_) as an assignment operator. So, the period (.) was used extensively in variable names having multiple words. Current versions of R support underscore as a valid identifier but it is good practice to use a period as word separators.
For example, a.variable.name is preferred over a_variable_name or alternatively we could use camel case as aVariableName.

Constants in R

Constants, as the name suggests, are entities whose value cannot be altered. Basic types of constant are numeric constants and character constants.

Numeric Constants

All numbers fall under this category. They can be of type integer, double or complex. It can be checked with the typeof() function.
Numeric Constants followed by L are regarded as integers and those followed by i are regarded as complex.

> typeof(5)
> typeof(5L)
> typeof(5L)

[1] “double” [1] “double” [[1] “double”

Character Constants

Character constants can be represented using either single quotes (‘) or double quotes (“) as delimiters.

> 'example'
> typeof("5")

[1] "example" [1] "character"

R Operators

Operators – Arithmetic, Relational, Logical, Assignment, and some of the Miscellaneous Operators that R programming language provides. 

There are four main categories of Operators in the R programming language.

  1. Arithmetic Operators
  2. Relational Operators
  3. Logical Operators
  4. Assignment Operators
  5. Mixed Operators

x <- 35
y<-10

   x+y       > x-y     > x*y       > x/y      > x%/%y     > x%%y   > x^y   [1] 45      [1] 25    [1] 350    [1] 3.5      [1] 3      [1] 5 [1]2.75e+15 

Logical Operators

The below table shows the logical operators in R. Operators & and | perform element-wise operation producing result having a length of the longer operand. But && and || examines only the first element of the operands resulting in a single length logical vector.

a <- c(TRUE,TRUE,FALSE,0,6,7)
b <- c(FALSE,TRUE,FALSE,TRUE,TRUE,TRUE)
a&b 
[1] FALSE TRUE FALSE FALSE TRUE TRUE
a&&b
[1] FALSE
> a|b
[1] TRUE TRUE FALSE TRUE TRUE TRUE
> a||b
[1] TRUE
> !a
[1] FALSE FALSE TRUE TRUE FALSE FALSE
> !b
[1] TRUE FALSE TRUE FALSE FALSE FALSE

R functions

Functions are defined using the function() directive and are stored as R objects just like anything else. In particular, they are R objects of class “function”. Here’s a simple function that takes no arguments simply prints ‘Hi statistics’.

#define the function
f <- function() {
print("Hi statistics!!!")
}
#Call the function
f()

Output: [1] "Hi statistics!!!"

Now let’s define a function called standardize, and the function has a single argument x which is used in the body of a function.

#Define the function that will calculate standardized score.
standardize = function(x) {
m = mean(x)
sd = sd(x)
result = (x – m) / sd
result
}
input<- c(40:50) #Take input for what we want to calculate a standardized score.
standardize(input) #Call the function

Output:   standardize(input) #Call the function   [1] -1.5075567 -1.2060454 -0.9045340 -0.6030227 -0.3015113 0.0000000 0.3015113 0.6030227 0.9045340 1.2060454 1.5075567 

Loop Functions

R has some very useful functions which implement looping in a compact form to make life easier. The very rich and powerful family of applied functions is made of intrinsically vectorized functions. These functions in R allow you to apply some function to a series of objects (eg. vectors, matrices, data frames, or files). They include:

  1. lapply(): Loop over a list and evaluate a function on each element
  2. sapply(): Same as lapply but try to simplify the result
  3. apply(): Apply a function over the margins of an array
  4. tapply(): Apply a function over subsets of a vector
  5. mapply(): Multivariate version of lapply

There is another function called split() which is also useful, particularly in conjunction with lapply.

R Vectors

A vector is a sequence of data elements of the same basic type. Members in a vector are officially called components. Vectors are the most basic R data objects and there are six types of atomic vectors. They are logical, integer, double, complex, character, and raw.

The c() function can be used to create vectors of objects by concatenating things together. 
x <- c(1,2,3,4,5) #double
x #If you use only x auto-printing occurs
l <- c(TRUE, FALSE) #logical
l <- c(T, F) ## logical
c <- c("a", "b", "c", "d") ## character
i <- 1:20 ## integer
cm <- c(2+2i, 3+3i) ## complex
print(l)
print(c)
print(i)
print(cm)

You can see the type of each vector using typeof() function in R.
typeof(x)
typeof(l)
typeof(c)
typeof(i)
typeof(cm)

Output: print(l) [1] TRUE FALSE   print(c)   [1] "a" "b" "c" "d"   print(i)   [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20   print(cm)   [1] 2+2i 3+3i Output: typeof(x) [1] "double"   typeof(l)   [1] "logical"   typeof(c)   [1] "character"   typeof(i)   [1] "integer"   typeof(cm)   [1] "complex" 

Creating a vector using seq() function:

We can use the seq() function to create a vector within an interval by specifying step size or specifying the length of the vector. 

seq(1:10) #By default it will be incremented by 1
seq(1, 20, length.out=5) # specify length of the vector
seq(1, 20, by=2) # specify step size

Output: > seq(1:10) #By default it will be incremented by 1 [1] 1 2 3 4 5 6 7 8 9 10 > seq(1, 20, length.out=5) # specify length of the vector [1] 1.00 5.75 10.50 15.25 20.00 > seq(1, 20, by=2) # specify step size [1] 1 3 5 7 9 11 13 15 17 19

Extract Elements from a Vector:

Elements of a vector can be accessed using indexing. The vector indexing can be logical, integer, or character. The [ ] brackets are used for indexing. Indexing starts with position 1, unlike most programming languages where indexing starts from 0.

Extract Using Integer as Index:

We can use integers as an index to access specific elements. We can also use negative integers to return all elements except that specific element.

x<- 101:110
x[1]   #access the first element
x[c(2,3,4,5)] #Extract 2nd, 3rd, 4th, and 5th elements
x[5:10]        #Extract all elements from 5th to 10th
x[c(-5,-10)] #Extract all elements except 5th and 10th
x[-c(5:10)] #Extract all elements except from 5th to 10th 

Output:   x[1] #Extract the first element   [1] 101   x[c(2,3,4,5)] #Extract 2nd, 3rd, 4th, and 5th elements   [1] 102 103 104 105   x[5:10] #Extract all elements from 5th to 10th   [1] 105 106 107 108 109 110   x[c(-5,-10)] #Extract all elements except 5th and 10th   [1] 101 102 103 104 106 107 108 109   x[-c(5:10)] #Extract all elements except from 5th to 10th   [1] 101 102 103 104 

Extract Using Logical Vector as Index:

If you use a logical vector for indexing, the position where the logical vector is TRUE will be returned.

x[x < 105]
x[x>=104]

Output:   x[x < 105] [1] 101 102 103 104 x[x>=104]   [1] 104 105 106 107 108 109 110 

Modify a Vector in R:

We can modify a vector and assign a new value to it. You can truncate a vector by using reassignments. Check the below example. 

x<- 10:12
x[1]<- 101 #Modify the first element
x
x[2]<-102 #Modify the 2nd element
x
x<- x[1:2] #Truncate the last element
x 

Output:   x   [1] 101 11 12   x[2]<-102 #Modify the 2nd element   x   [1] 101 102 12   x<- x[1:2] #Truncate the last element   x   [1] 101 102 

Arithmetic Operations on Vectors:

We can use arithmetic operations on two vectors of the same length. They can be added, subtracted, multiplied, or divided. Check the output of the below code.

# Create two vectors.
v1 <- c(1:10)
v2 <- c(101:110)

# Vector addition.
add.result <- v1+v2
print(add.result)
# Vector subtraction.
sub.result <- v2-v1
print(sub.result)
# Vector multiplication.
multi.result <- v1*v2
print(multi.result)
# Vector division.
divi.result <- v2/v1
print(divi.result)

Output:   print(add.result)   [1] 102 104 106 108 110 112 114 116 118 120   print(sub.result)   [1] 100 100 100 100 100 100 100 100 100 100   print(multi.result)   [1] 101 204 309 416 525 636 749 864 981 1100   print(divi.result)   [1] 101.00000 51.00000 34.33333 26.00000 21.00000 17.66667 15.28571 13.50000 12.11111 11.00000 

Find Minimum and Maximum in a Vector:

The minimum and the maximum of a vector can be found using the min() or the max() function. range() is also available which returns the minimum and maximum in a vector.

x<- 1001:1010
max(x) # Find the maximum
min(x) # Find the minimum
range(x) #Find the range

Output:   max(x) # Find the maximum   [1] 1010   min(x) # Find the minimum   [1] 1001   range(x) #Find the range   [1] 1001 1010 

R Lists

The list is a data structure having elements of mixed data types. A vector having all elements of the same type is called an atomic vector but a vector having elements of a different type is called list.
We can check the type with typeof() or class() function and find the length using length()function.

x <- list("stat",5.1, TRUE, 1 + 4i)
x
class(x)
typeof(x)
length(x)

Output:   x   [[1]]   [1] "stat"   [[2]]   [1] 5.1   [[3]]   [1] TRUE   [[4]]   [1] 1+4i   class(x)   [1] “list”   typeof(x)   [1] “list”   length(x)   [1] 4 

You can create an empty list of a prespecified length with the vector() function.

x <- vector("list", length = 10)
x

Output:   x   [[1]]   NULL   [[2]]   NULL   [[3]]   NULL   [[4]]   NULL   [[5]]   NULL   [[6]]   NULL   [[7]]   NULL   [[8]]   NULL   [[9]]   NULL   [[10]]   NULL 

How to extract elements from a list?

Lists can be subset using two syntaxes, the $ operator, and square brackets []. The $ operator returns a named element of a list. The [] syntax returns a list, while the [[]] returns an element of a list.

# subsetting
l$e
l["e"]
l[1:2]
l[c(1:2)] #index using integer vector
l[-c(3:length(l))] #negative index to exclude elements from 3rd up to last.
l[c(T,F,F,F,F)] # logical index to access elements

Output: > l$e [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [1,] 1 0 0 0 0 0 0 0 0 0 [2,] 0 1 0 0 0 0 0 0 0 0 [3,] 0 0 1 0 0 0 0 0 0 0 [4,] 0 0 0 1 0 0 0 0 0 0 [5,] 0 0 0 0 1 0 0 0 0 0 [6,] 0 0 0 0 0 1 0 0 0 0 [7,] 0 0 0 0 0 0 1 0 0 0 [8,] 0 0 0 0 0 0 0 1 0 0 [9,] 0 0 0 0 0 0 0 0 1 0 [10,] 0 0 0 0 0 0 0 0 0 1 > l["e"] $e [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [1,] 1 0 0 0 0 0 0 0 0 0 [2,] 0 1 0 0 0 0 0 0 0 0 [3,] 0 0 1 0 0 0 0 0 0 0 [4,] 0 0 0 1 0 0 0 0 0 0 [5,] 0 0 0 0 1 0 0 0 0 0 [6,] 0 0 0 0 0 1 0 0 0 0 [7,] 0 0 0 0 0 0 1 0 0 0 [8,] 0 0 0 0 0 0 0 1 0 0 [9,] 0 0 0 0 0 0 0 0 1 0 [10,] 0 0 0 0 0 0 0 0 0 1 > l[1:2] [[1]] [1] 1 2 3 4 [[2]] [1] FALSE > l[c(1:2)] #index using integer vector [[1]] [1] 1 2 3 4 [[2]] [1] FALSE > l[-c(3:length(l))] #negative index to exclude elements from 3rd up to last. [[1]] [1] 1 2 3 4 [[2]] [1] FALSE l[c(T,F,F,F,F)] [[1]] [1] 1 2 3 4

Modifying a List in R:

We can change components of a list through reassignment.

l[["name"]] <- "Kalyan Nandi"
l

Output: [[1]] [1] 1 2 3 4 [[2]] [1] FALSE [[3]] [1] “Hello Statistics!” $d function (arg = 42) { print(“Hello World!”) } $name [1] “Kalyan Nandi”

R Matrices

In R Programming Matrix is a two-dimensional data structure. They contain elements of the same atomic types. A Matrix can be created using the matrix() function. R can also be used for matrix calculations. Matrices have rows and columns containing a single data type. In a matrix, the order of rows and columns is important. Dimension can be checked directly with the dim() function and all attributes of an object can be checked with the attributes() function. Check the below example.

Creating a matrix in R

m <- matrix(nrow = 2, ncol = 3)
dim(m)
attributes(m)
m <- matrix(1:20, nrow = 4, ncol = 5)
m

Output:   dim(m)   [1] 2 3   attributes(m)   $dim   [1] 2 3   m <- matrix(1:20, nrow = 4, ncol = 5)   m   [,1] [,2] [,3] [,4] [,5]   [1,] 1 5 9 13 17   [2,] 2 6 10 14 18   [3,] 3 7 11 15 19   [4,] 4 8 12 16 20 

Matrices can be created by column-binding or row-binding with the cbind() and rbind() functions.

x<-1:3
y<-10:12
z<-30:32
cbind(x,y,z)
rbind(x,y,z)

Output:   cbind(x,y,z)   x y z   [1,] 1 10 30   [2,] 2 11 31   [3,] 3 12 32   rbind(x,y,z)   [,1] [,2] [,3]   x 1 2 3   y 10 11 12   z 30 31 32 

By default, the matrix function reorders a vector into columns, but we can also tell R to use rows instead.

x <-1:9
matrix(x, nrow = 3, ncol = 3)
matrix(x, nrow = 3, ncol = 3, byrow = TRUE)

Output   cbind(x,y,z)   x y z   [1,] 1 10 30   [2,] 2 11 31   [3,] 3 12 32   rbind(x,y,z)   [,1] [,2] [,3]   x 1 2 3   y 10 11 12   z 30 31 32 

R Arrays

In R, Arrays are the data types that can store data in more than two dimensions. An array can be created using the array() function. It takes vectors as input and uses the values in the dim parameter to create an array. If you create an array of dimensions (2, 3, 4) then it creates 4 rectangular matrices each with 2 rows and 3 columns. Arrays can store only data type.

Give a Name to Columns and Rows:

We can give names to the rows, columns, and matrices in the array by setting the dimnames parameter.

v1 <- c(1,2,3)
v2 <- 100:110
col.names <- c("Col1","Col2","Col3","Col4","Col5","Col6","Col7")
row.names <- c("Row1","Row2")
matrix.names <- c("Matrix1","Matrix2")
arr4 <- array(c(v1,v2), dim=c(2,7,2), dimnames = list(row.names,col.names, matrix.names))
arr4

Output: , , Matrix1 Col1 Col2 Col3 Col4 Col5 Col6 Col7 Row1 1 3 101 103 105 107 109 Row2 2 100 102 104 106 108 110 , , Matrix2 Col1 Col2 Col3 Col4 Col5 Col6 Col7 Row1 1 3 101 103 105 107 109 Row2 2 100 102 104 106 108 110

Accessing/Extracting Array Elements:

# Print the 2nd row of the 1st matrix of the array.
print(arr4[2,,1])
# Print the element in the 2nd row and 4th column of the 2nd matrix.
print(arr4[2,4,2])
# Print the 2nd Matrix.
print(arr4[,,2])

Output: > print(arr4[2,,1]) Col1 Col2 Col3 Col4 Col5 Col6 Col7 2 100 102 104 106 108 110 > > # Print the element in the 2nd row and 4th column of the 2nd matrix. > print(arr4[2,4,2]) [1] 104 > > # Print the 2nd Matrix. > print(arr4[,,2]) Col1 Col2 Col3 Col4 Col5 Col6 Col7 Row1 1 3 101 103 105 107 109 Row2 2 100 102 104 106 108 110

R Factors

Factors are used to represent categorical data and can be unordered or ordered. An example might be “Male” and “Female” if we consider gender. Factor objects can be created with the factor() function.

x <- factor(c("male", "female", "male", "male", "female"))
x
table(x)

Output:   x   [1] male female male male female   Levels: female male   table(x)   x   female male     2      3 

By default, Levels are put in alphabetical order. If you print the above code you will get levels as female and male. But if you want to get your levels in a particular order then set levels parameter like this.

x <- factor(c("male", "female", "male", "male", "female"), levels=c("male", "female"))
x
table(x)

Output:   x   [1] male female male male female   Levels: male female   table(x)   x   male female    3      2 

R Dataframes

Data frames are used to store tabular data in R. They are an important type of object in R and are used in a variety of statistical modeling applications. Data frames are represented as a special type of list where every element of the list has to have the same length. Each element of the list can be thought of as a column and the length of each element of the list is the number of rows. Unlike matrices, data frames can store different classes of objects in each column. Matrices must have every element be the same class (e.g. all integers or all numeric).

Creating a Data Frame:

Data frames can be created explicitly with the data.frame() function.

employee <- c('Ram','Sham','Jadu')
salary <- c(21000, 23400, 26800)
startdate <- as.Date(c('2016-11-1','2015-3-25','2017-3-14'))
employ_data <- data.frame(employee, salary, startdate)
employ_data
View(employ_data)

Output: employ_data employee salary startdate 1 Ram 21000 2016-11-01 2 Sham 23400 2015-03-25 3 Jadu 26800 2017-03-14   View(employ_data) 

Get the Structure of the Data Frame:

If you look at the structure of the data frame now, you see that the variable employee is a character vector, as shown in the following output:

str(employ_data)

Output: > str(employ_data) 'data.frame': 3 obs. of 3 variables: $ employee : Factor w/ 3 levels "Jadu","Ram","Sham": 2 3 1 $ salary : num 21000 23400 26800 $ startdate: Date, format: "2016-11-01" "2015-03-25" "2017-03-14"

Note that the first column, employee, is of type factor, instead of a character vector. By default, data.frame() function converts character vector into factor. To suppress this behavior, we can pass the argument stringsAsFactors=FALSE.

employ_data <- data.frame(employee, salary, startdate, stringsAsFactors = FALSE)
str(employ_data)

Output: 'data.frame': 3 obs. of 3 variables: $ employee : chr "Ram" "Sham" "Jadu" $ salary : num 21000 23400 26800 $ startdate: Date, format: "2016-11-01" "2015-03-25" "2017-03-14"

R Packages

The primary location for obtaining R packages is CRAN.

You can obtain information about the available packages on CRAN with the available.packages() function.
a <- available.packages()

head(rownames(a), 30) # Show the names of the first 30 packages
Packages can be installed with the install.packages() function in R.  To install a single package, pass the name of the lecture to the install.packages() function as the first argument.
The following code installs the ggplot2 package from CRAN.
install.packages(“ggplot2”)
You can install multiple R packages at once with a single call to install.packages(). Place the names of the R packages in a character vector.
install.packages(c(“caret”, “ggplot2”, “dplyr”))
 

Loading packages
Installing a package does not make it immediately available to you in R; you must load the package. The library() function is used to load packages into R. The following code is used to load the ggplot2 package into R. Do not put the package name in quotes.
library(ggplot2)
If you have Installed your packages without root access using the command install.packages(“ggplot2″, lib=”/data/Rpackages/”). Then to load use the below command.
library(ggplot2, lib.loc=”/data/Rpackages/”)
After loading a package, the functions exported by that package will be attached to the top of the search() list (after the workspace).
library(ggplot2)

search()

R – CSV() files

In R, we can read data from files stored outside the R environment. We can also write data into files that will be stored and accessed by the operating system. R can read and write into various file formats like CSV, Excel, XML, etc.

Getting and Setting the Working Directory

We can check which directory the R workspace is pointing to using the getwd() function. You can also set a new working directory using setwd()function.

# Get and print current working directory.
print(getwd())

# Set current working directory.
setwd("/web/com")

# Get and print current working directory.
print(getwd())

Output: [1] "/web/com/1441086124_2016" [1] "/web/com"

Input as CSV File

The CSV file is a text file in which the values in the columns are separated by a comma. Let’s consider the following data present in the file named input.csv.

You can create this file using windows notepad by copying and pasting this data. Save the file as input.csv using the save As All files(*.*) option in notepad.

Reading a CSV File

Following is a simple example of read.csv() function to read a CSV file available in your current working directory −

data <- read.csv("input.csv")
print(data)
  id,   name,    salary,   start_date,     dept

R- Charts and Graphs

R- Pie Charts

Pie charts are created with the function pie(x, labels=) where x is a non-negative numeric vector indicating the area of each slice and labels= notes a character vector of names for the slices.

Syntax

The basic syntax for creating a pie-chart using the R is −

pie(x, labels, radius, main, col, clockwise)

Following is the description of the parameters used −

  • x is a vector containing the numeric values used in the pie chart.
  • labels are used to give a description of the slices.
  • radius indicates the radius of the circle of the pie chart. (value between −1 and +1).
  • main indicates the title of the chart.
  • col indicates the color palette.
  • clockwise is a logical value indicating if the slices are drawn clockwise or anti-clockwise.

Simple Pie chart

# Simple Pie Chart
slices <- c(10, 12,4, 16, 8)
lbls <- c("US", "UK", "Australia", "Germany", "France")
pie(slices, labels = lbls, main="Pie Chart of Countries")

 

3-D pie chart

The pie3D( ) function in the plotrix package provides 3D exploded pie charts.

# 3D Exploded Pie Chart
library(plotrix)
slices <- c(10, 12, 4, 16, 8)
lbls <- c("US", "UK", "Australia", "Germany", "France")
pie3D(slices,labels=lbls,explode=0.1,
   main="Pie Chart of Countries ")

R -Bar Charts

A bar chart represents data in rectangular bars with a length of the bar proportional to the value of the variable. R uses the function barplot() to create bar charts. R can draw both vertical and Horizontal bars in the bar chart. In the bar chart, each of the bars can be given different colors.

Let us suppose, we have a vector of maximum temperatures (in degree Celsius) for seven days as follows.

max.temp <- c(22, 27, 26, 24, 23, 26, 28)
barplot(max.temp)

Some of the frequently used ones are, “main” to give the title, “xlab” and “ylab” to provide labels for the axes, names.arg for naming each bar, “col” to define color, etc.

We can also plot bars horizontally by providing the argument horiz=TRUE.

# barchart with added parameters
barplot(max.temp,
main = "Maximum Temperatures in a Week",
xlab = "Degree Celsius",
ylab = "Day",
names.arg = c("Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"),
col = "darkred",
horiz = TRUE)

Simply doing barplot(age) will not give us the required plot. It will plot 10 bars with height equal to the student’s age. But we want to know the number of students in each age category.

This count can be quickly found using the table() function, as shown below.

> table(age)
age
16 17 18 19 
1  2  6  1

Now plotting this data will give our required bar plot. Note below, that we define the argument “density” to shade the bars.

barplot(table(age),
main="Age Count of 10 Students",
xlab="Age",
ylab="Count",
border="red",
col="blue",
density=10
)

 

A histogram represents the frequencies of values of a variable bucketed into ranges. Histogram is similar to bar chat but the difference is it groups the values into continuous ranges. Each bar in histogram represents the height of the number of values present in that range.

R creates histogram using hist() function. This function takes a vector as an input and uses some more parameters to plot histograms.

Syntax

The basic syntax for creating a histogram using R is −

hist(v,main,xlab,xlim,ylim,breaks,col,border)

Following is the description of the parameters used −

  • v is a vector containing numeric values used in the histogram.
  • main indicates the title of the chart.
  • col is used to set the color of the bars.
  • border is used to set the border color of each bar.
  • xlab is used to give a description of the x-axis.
  • xlim is used to specify the range of values on the x-axis.
  • ylim is used to specify the range of values on the y-axis.
  • breaks are used to mention the width of each bar.

Example

A simple histogram is created using input vector, label, col, and border parameters.

The script given below will create and save the histogram in the current R working directory.

# Create data for the graph.
v <-  c(9,13,21,8,36,22,12,41,31,33,19)

# Give the chart file a name.
png(file = "histogram.png")

# Create the histogram.
hist(v,xlab = "Weight",col = "yellow",border = "blue")

# Save the file.
dev.off()

 

Range of X and Y values

To specify the range of values allowed in X axis and Y axis, we can use the xlim and ylim parameters.

The width of each bar can be decided by using breaks.

# Create data for the graph.
v <- c(9,13,21,8,36,22,12,41,31,33,19)

# Give the chart file a name.
png(file = "histogram_lim_breaks.png")

# Create the histogram.
hist(v,xlab = "Weight",col = "green",border = "red", xlim = c(0,40), ylim = c(0,5),
   breaks = 5)

# Save the file.
dev.off()

R vs SAS – Which Tool is Better?

The debate around data analytics tools has been going on forever. Each time a new one comes out, comparisons transpire. Although many aspects of the tool remain subjective, beginners want to know which tool is better to start with.
The most popular and widely used tools for data analytics are R and SAS. Both of them have been around for a long time and are often pitted against each other. So, let’s compare them based on the most relevant factors.

  1. Availability and Cost: SAS is widely used in most private organizations as it is a commercial software. It is more expensive than any other data analytics tool available. It might thus be a bit difficult buying the software if you are an individual professional or a student starting out. On the other hand, R is an open source software and is completely free to use. Anyone can begin using it right away without having to spend a penny. So, regarding availability and cost, R is hands down the better tool.
  2. Ease of learning: Since SAS is a commercial software, it has a whole lot of online resources available. Also, those who already know SQL might find it easier to adapt to SAS as it comes with PROC SQL option. The tool has a user-friendly GUI. It comes with an extensive documentation and tutorial base which can help early learners get started seamlessly. Whereas, the learning curve for R is quite steep. You need to learn to code at the root level and carrying out simple tasks demand a lot of time and effort with R. However, several forums and online communities post religiously about its usage.
  3. Data Handling Capabilities: When it comes to data handling, both SAS and R perform well, but there are some caveats for the latter. While SAS can even churn through terabytes of data with ease, R might be constrained as it makes use of the available RAM in the machine. This can be a hassle for 32-bit systems with low RAM capacity. Due to this, R can at times become unresponsive or give an ‘out of memory’ error. Both of them can run parallel computations, support integrations for Hadoop, Spark, Cloudera and Apache Pig among others. Also, the availability of devices with better RAM capacity might negate the disadvantages of R.
  4. Graphical Capabilities: Graphical capabilities or data visualization is the strongest forte of R. This is where SAS lacks behind in a major way. R has access to packages like GGPlot, RGIS, Lattice, and GGVIS among others which provide superior graphical competency. In comparison, Base SAS is struggling hard to catch up with the advancements in graphics and visualization in data analytics. Even the graphics packages available in SAS are poorly documented which makes them difficult to use.
  5. Advancements in Tool: Advancements in the industry give way to advancements in tools, and both SAS and R hold up pretty well in this regard. SAS, being a corporate software, rolls out new features and technologies frequently with new versions of its software. However, the updates are not as fast as R since it is open source software and has many contributors throughout the world. Alternatively, the latest updates in SAS are pushed out after thorough testing, making them much more stable, and reliable than R. Both the tools come with a fair share of pros & cons.
  6. Job Scenario: Currently, large corporations insist on using SAS, but SMEs and start-ups are increasingly opting for R, given that it’s free. The current job trend seems to show that while SAS is losing its momentum, R is gaining potential. The job scenario is on the cusp of change, and both the tools seem strong, but since R is on an uphill path, it can probably witness more jobs in the future, albeit not in huge corporates.
  7. Deep Learning Support: While SAS has just begun work on adding deep learning support, R has added support for a few packages which enable deep learning capabilities in the tool. You can use KerasR and keras package in R which are mere interfaces for the original Keras package built on Python. Although none of the tools are excellent facilitators of deep learning, R has seen some recent active developments on this front.
  8. Customer Service Support and Community: As one would expect from full-fledged commercial software, SAS offers excellent customer service support as well as the backing of a helpful community. Since R is free open-source software, expecting customer support will be hard to justify. However, it has a vast online community that can help you with almost everything. On the other hand, no matter what problem you face with SAS, you can immediately reach out to their customer support and get it solved without any hassles.

Final Verdict
As per estimations by the Economic Times, the analytics industry will grow to $16 billion till 2025 in India. If you wish to venture into this domain, there can’t be a better time. Just start learning the tool you think is better based on the comparison points above.


Original article source at: https://www.mygreatlearning.com

#r #programming 

Ayan Code

1656193861

Simple Login Page in HTML and CSS | Source Code

Hello guys, Today in this post we’ll learn How to Create a Simple Login Page with a fantastic design. To create it we are going to use pure CSS and HTML. Hope you enjoy this post.

A login page is one of the most important component of a website or app that allows authorized users to access an entire site or a part of a website. You would have already seen them when visiting a website. Let's head to create it.

Whether it’s a signup or login page, it should be catchy, user-friendly and easy to use. These types of Forms lead to increased sales, lead generation, and customer growth.


Demo

Click to watch demo!

Simple Login Page HTML CSS (source code)

<!DOCTYPE html>
  <html lang="en" >
  <head>
    <meta charset="UTF-8">
    <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/normalize/5.0.0/normalize.min.css">
  <link rel="stylesheet" href="styledfer.css">
  </head>

  <body>
   <div id="login-form-wrap">
    <h2>Login</h2>
    <form id="login-form">
      <p>
      <input type="email" id="email" name="email" placeholder="Email " required><i class="validation"><span></span><span></span></i>
      </p>
      <p>
      <input type="password" id="password" name="password" placeholder="Password" required><i class="validation"><span></span><span></span></i>
      </p>
      <p>
      <input type="submit" id="login" value="Login">
      </p>

      </form>
    <div id="create-account-wrap">
      <p>Don't have an accout? <a href="#">Create One</a><p>
    </div>
   </div>
    
  <script src='https://code.jquery.com/jquery-2.2.4.min.js'></script>
  <script src='https://cdnjs.cloudflare.com/ajax/libs/jquery-validate/1.15.0/jquery.validate.min.js'></script>
  </body>
</html>

CSS CODE

body {
  background-color: #020202;
  font-size: 1.6rem;
  font-family: "Open Sans", sans-serif;
  color: #2b3e51;
}
h2 {
  font-weight: 300;
  text-align: center;
}
p {
  position: relative;
}
a,
a:link,
a:visited,
a:active {
  color: #ff9100;
  -webkit-transition: all 0.2s ease;
  transition: all 0.2s ease;
}
a:focus, a:hover,
a:link:focus,
a:link:hover,
a:visited:focus,
a:visited:hover,
a:active:focus,
a:active:hover {
  color: #ff9f22;
  -webkit-transition: all 0.2s ease;
  transition: all 0.2s ease;
}
#login-form-wrap {
  background-color: #fff;
  width: 16em;
  margin: 30px auto;
  text-align: center;
  padding: 20px 0 0 0;
  border-radius: 4px;
  box-shadow: 0px 30px 50px 0px rgba(0, 0, 0, 0.2);
}
#login-form {
  padding: 0 60px;
}
input {
  display: block;
  box-sizing: border-box;
  width: 100%;
  outline: none;
  height: 60px;
  line-height: 60px;
  border-radius: 4px;
}
#email,
#password {
  width: 100%;
  padding: 0 0 0 10px;
  margin: 0;
  color: #8a8b8e;
  border: 1px solid #c2c0ca;
  font-style: normal;
  font-size: 16px;
  -webkit-appearance: none;
     -moz-appearance: none;
          appearance: none;
  position: relative;
  display: inline-block;
  background: none;
}
#email:focus,
#password:focus {
  border-color: #3ca9e2;
}
#email:focus:invalid,
#password:focus:invalid {
  color: #cc1e2b;
  border-color: #cc1e2b;
}
#email:valid ~ .validation,
#password:valid ~ .validation 
{
  display: block;
  border-color: #0C0;
}
#email:valid ~ .validation span,
#password:valid ~ .validation span{
  background: #0C0;
  position: absolute;
  border-radius: 6px;
}
#email:valid ~ .validation span:first-child,
#password:valid ~ .validation span:first-child{
  top: 30px;
  left: 14px;
  width: 20px;
  height: 3px;
  -webkit-transform: rotate(-45deg);
          transform: rotate(-45deg);
}
#email:valid ~ .validation span:last-child
#password:valid ~ .validation span:last-child
{
  top: 35px;
  left: 8px;
  width: 11px;
  height: 3px;
  -webkit-transform: rotate(45deg);
          transform: rotate(45deg);
}
.validation {
  display: none;
  position: absolute;
  content: " ";
  height: 60px;
  width: 30px;
  right: 15px;
  top: 0px;
}
input[type="submit"] {
  border: none;
  display: block;
  background-color: #ff9100;
  color: #fff;
  font-weight: bold;
  text-transform: uppercase;
  cursor: pointer;
  -webkit-transition: all 0.2s ease;
  transition: all 0.2s ease;
  font-size: 18px;
  position: relative;
  display: inline-block;
  cursor: pointer;
  text-align: center;
}
input[type="submit"]:hover {
  background-color: #ff9b17;
  -webkit-transition: all 0.2s ease;
  transition: all 0.2s ease;
}

#create-account-wrap {
  background-color: #eeedf1;
  color: #8a8b8e;
  font-size: 14px;
  width: 100%;
  padding: 10px 0;
  border-radius: 0 0 4px 4px;
}

Congratulations! You have now successfully created our Simple Login Page in HTML and CSS.

My Website: codewithayan, see this to checkout all of my amazing Tutorials.

Gloria magee

Gloria magee

1618472877

Cannot start Microsoft Office Outlook

On this site, you’ll see working methods to repair the “can’t start Microsoft Outlook” issue. Additionally, these methods can enable you to get up your Outlook and running again without any mistakes.

Now, let us see how it is possible to fix and prevent a much worse situation when you can’t start Outlook. But first, we’re beginning from the reason and symptoms of the mistake.

Recover your Outlook with Outlook PST Recovery.

Which are the causes and symptom of the “Don’t start Microsoft Outlook” mistake?

The most important symptom of the matter is quite clear and readily identifiable. After you click on Outlook you’ll discover a dialogue box appears and can be hanging for a little while, then you receive the “can’t start Microsoft view. cannot open the outlook window. The set of connections can’t be opened” error.

Can’t start Microsoft Outlook

In case the file has corrupted then you are going to discover that its dimensions become kb.

Additionally, there’s absolutely no specific cause for this mistake, but all versions of MS Outlook from 2003 into Outlook 2019 might be impacted. Anyhow, whatever the motive is, the result is the same – you can’t start Outlook. . And the answers for this query are given below.

Workarounds to Solve “Don’t start Microsoft Outlook” problem

Now you understand the reasons why causes “can’t start Microsoft outlook. Cannot open the view window. The collection of folders cannot be opened” problem. Therefore, let us see how to have them repaired. Below there are 2 workarounds that fix this situation.

1. Recover the Navigation Pane configuration file

Typically it’s the corrupt Navigation Pane settings file that limits Microsoft Outlook from the beginning, so the first thing you have to do would be to regain it. Here is how you can do this task:

Click on the Start button.

Following that, Compose the"outlook.exe /resetnavpane" control and click on OK.

If you discover any difficulty and unable to recoup the Navigation pane settings document, then attempt to manually delete the XML file which stores the navigation pane configurations. To do this, go using the next measures:

It’ll open the folder in which MS Outlook Setup files are saved.

Cannot start Microsoft Outlook

2. Repair your Outlook data files with the help of Scanpst.exe.

Then default Outlook data file PST may be damaged or deleted, that’s the reason you can’t start Outlook. The document Outlook.pst isn’t a personal folders file"

To do so, do the Actions listed below:

Below you’ll discover Scanpst.exe from the listing. Double click it.

Additionally, you can go via Start and kind scanpst.exe from the Search box.

Following that, you’ll discover a window click the Browse button to choose your default Outlook.pst file.

After a couple of minutes, your document is going to be fixed.

Hopefully, your document got fixed. If not Then You Need to attempt the alternative provided below:

The majority of the time it fixes the documents. However, if the corruption is intense then this instrument fails. In these situations, you want to utilize PST File Retrieval designed by Mailconvertertools. A novice user can utilize this tool and fix their own Outlook PST files. It’s the very best way to recuperate and fix Outlook PST files and it simplifies all the constraints of the Inbox Repair Tool.

Conclusion

This technical manual is all about how to resolve “can’t start Microsoft outlook. Cannot open the view window. The collection of folders cannot be opened” I am hoping that your issue has been solved. When there’s any difficulty regarding any measure then don’t hesitate to contact.

#cannot open the outlook window #the set of folders cannot be opened outlook #outlook the set of folders cannot be opened #the set of folders cannot be opened outlook 2016 #outlook the information store cannot be opened #outlook information store could not be opened

First DigiAdd

1620022624

Best Email marketing strategy for Business to Reach Customer

A company can plan when to send time-based promotions or non-promotional emails using an email marketing strategy. With an email marketing strategy in place, marketers can plan out their email advertising process ahead of time.Top Email Marketing Platform

#creative email marketing services #email marketing #best email marketing services #top email marketing platform #email database & marketing services #email marketing service provider in pune