Osborne  Durgan

Osborne Durgan

1593256680

Configure Azure Advisor Recommendation Rules for Azure VMs

We can configure the Azure Advisor Recommendation rules for Azure Virtual Machine. Azure Advisor allows us to set rules for Virtual machine utilization. Azure Advisor analyzes the recent usage patterns of your virtual machines and uses the configured rules in the Azure Advisor to identify low usage virtual machines.

Configure Azure Advisor Recommendation Rules for Azure VMs

You can customize the recommendation rules based on CPU Utilization. needs.

From the Azure Portal, Open the Azure Advisor, and navigate to the “Configuration

Once you open the Configuration Settings, move to tot the Rules Tab. Here you can change the settings for the value you need to apply for VM utilization.

You can modify the CPU utilization threshold inside the Advisor and it will be used as recommendation by the Azure Advisor while providing the recommendation.

#azure #azure advisor #azure vms

What is GEEK

Buddha Community

Configure Azure Advisor Recommendation Rules for Azure VMs
Osborne  Durgan

Osborne Durgan

1593256680

Configure Azure Advisor Recommendation Rules for Azure VMs

We can configure the Azure Advisor Recommendation rules for Azure Virtual Machine. Azure Advisor allows us to set rules for Virtual machine utilization. Azure Advisor analyzes the recent usage patterns of your virtual machines and uses the configured rules in the Azure Advisor to identify low usage virtual machines.

Configure Azure Advisor Recommendation Rules for Azure VMs

You can customize the recommendation rules based on CPU Utilization. needs.

From the Azure Portal, Open the Azure Advisor, and navigate to the “Configuration

Once you open the Configuration Settings, move to tot the Rules Tab. Here you can change the settings for the value you need to apply for VM utilization.

You can modify the CPU utilization threshold inside the Advisor and it will be used as recommendation by the Azure Advisor while providing the recommendation.

#azure #azure advisor #azure vms

Ruthie  Bugala

Ruthie Bugala

1620991260

Check Azure VMs Advisor Recommendation Directly from the VMs

We can configure the Azure Advisor Recommendation rules for Azure Virtual Machine. Azure Advisor allows us to set rules for Virtual machine utilization. In one of our previous posts, we have seen how we can configure the recommendation based on CPU Utilization for Azure VMs. In this post, let us take a look at how we can review the guidance for Azure VMs directly from the Azure VM itself.

Check Azure Advisor Check Azure VMs Advisor Recommendation Directly from the VMs

Related Tip: Configure Azure Advisor Recommendation Rules for Azure VMs

To review the recommendation directly from the Azure VM, open the Azure VM resources, and from the Settings select “Advisor Recommendation”

#azure #azure advisor #azure vms #vms

Check Azure VMs Advisor Recommendation Directly from the VMs

We can configure the Azure Advisor Recommendation rules for Azure Virtual Machine. Azure Advisor allows us to set rules for Virtual machine utilization. In one of our previous posts, we have seen how we can configure the recommendation based on CPU Utilization for Azure VMs. In this post, let us take a look at how we can review the guidance for Azure VMs directly from the Azure VM itself.

Check Azure Advisor Check Azure VMs Advisor Recommendation Directly from the VMs

To review the recommendation directly from the Azure VM, open the Azure VM resources, and from the Settings select “Advisor Recommendation”

This will bring all the recommendations for the specific Virtual Machine,

Rest of the feature will remain same, and you can also create the recommendation digests directly here as well.

#azure #azure advisor #azure vms

Background Fetch for React Native Apps

react-native-background-fetch

Background Fetch is a very simple plugin which attempts to awaken an app in the background about every 15 minutes, providing a short period of background running-time. This plugin will execute your provided callbackFn whenever a background-fetch event occurs.

There is no way to increase the rate which a fetch-event occurs and this plugin sets the rate to the most frequent possible — you will never receive an event faster than 15 minutes. The operating-system will automatically throttle the rate the background-fetch events occur based upon usage patterns. Eg: if user hasn't turned on their phone for a long period of time, fetch events will occur less frequently or if an iOS user disables background refresh they may not happen at all.

:new: Background Fetch now provides a scheduleTask method for scheduling arbitrary "one-shot" or periodic tasks.

iOS

  • There is no way to increase the rate which a fetch-event occurs and this plugin sets the rate to the most frequent possible — you will never receive an event faster than 15 minutes. The operating-system will automatically throttle the rate the background-fetch events occur based upon usage patterns. Eg: if user hasn't turned on their phone for a long period of time, fetch events will occur less frequently.
  • scheduleTask seems only to fire when the device is plugged into power.
  • ⚠️ When your app is terminated, iOS no longer fires events — There is no such thing as stopOnTerminate: false for iOS.
  • iOS can take days before Apple's machine-learning algorithm settles in and begins regularly firing events. Do not sit staring at your logs waiting for an event to fire. If your simulated events work, that's all you need to know that everything is correctly configured.
  • If the user doesn't open your iOS app for long periods of time, iOS will stop firing events.

Android

Installing the plugin

⚠️ If you have a previous version of react-native-background-fetch < 2.7.0 installed into react-native >= 0.60, you should first unlink your previous version as react-native link is no longer required.

$ react-native unlink react-native-background-fetch

With yarn

$ yarn add react-native-background-fetch

With npm

$ npm install --save react-native-background-fetch

Setup Guides

iOS Setup

react-native >= 0.60

Android Setup

react-native >= 0.60

Example

ℹ️ This repo contains its own Example App. See /example

import React from 'react';
import {
  SafeAreaView,
  StyleSheet,
  ScrollView,
  View,
  Text,
  FlatList,
  StatusBar,
} from 'react-native';

import {
  Header,
  Colors
} from 'react-native/Libraries/NewAppScreen';

import BackgroundFetch from "react-native-background-fetch";

class App extends React.Component {
  constructor(props) {
    super(props);
    this.state = {
      events: []
    };
  }

  componentDidMount() {
    // Initialize BackgroundFetch ONLY ONCE when component mounts.
    this.initBackgroundFetch();
  }

  async initBackgroundFetch() {
    // BackgroundFetch event handler.
    const onEvent = async (taskId) => {
      console.log('[BackgroundFetch] task: ', taskId);
      // Do your background work...
      await this.addEvent(taskId);
      // IMPORTANT:  You must signal to the OS that your task is complete.
      BackgroundFetch.finish(taskId);
    }

    // Timeout callback is executed when your Task has exceeded its allowed running-time.
    // You must stop what you're doing immediately BackgroundFetch.finish(taskId)
    const onTimeout = async (taskId) => {
      console.warn('[BackgroundFetch] TIMEOUT task: ', taskId);
      BackgroundFetch.finish(taskId);
    }

    // Initialize BackgroundFetch only once when component mounts.
    let status = await BackgroundFetch.configure({minimumFetchInterval: 15}, onEvent, onTimeout);

    console.log('[BackgroundFetch] configure status: ', status);
  }

  // Add a BackgroundFetch event to <FlatList>
  addEvent(taskId) {
    // Simulate a possibly long-running asynchronous task with a Promise.
    return new Promise((resolve, reject) => {
      this.setState(state => ({
        events: [...state.events, {
          taskId: taskId,
          timestamp: (new Date()).toString()
        }]
      }));
      resolve();
    });
  }

  render() {
    return (
      <>
        <StatusBar barStyle="dark-content" />
        <SafeAreaView>
          <ScrollView
            contentInsetAdjustmentBehavior="automatic"
            style={styles.scrollView}>
            <Header />

            <View style={styles.body}>
              <View style={styles.sectionContainer}>
                <Text style={styles.sectionTitle}>BackgroundFetch Demo</Text>
              </View>
            </View>
          </ScrollView>
          <View style={styles.sectionContainer}>
            <FlatList
              data={this.state.events}
              renderItem={({item}) => (<Text>[{item.taskId}]: {item.timestamp}</Text>)}
              keyExtractor={item => item.timestamp}
            />
          </View>
        </SafeAreaView>
      </>
    );
  }
}

const styles = StyleSheet.create({
  scrollView: {
    backgroundColor: Colors.lighter,
  },
  body: {
    backgroundColor: Colors.white,
  },
  sectionContainer: {
    marginTop: 32,
    paddingHorizontal: 24,
  },
  sectionTitle: {
    fontSize: 24,
    fontWeight: '600',
    color: Colors.black,
  },
  sectionDescription: {
    marginTop: 8,
    fontSize: 18,
    fontWeight: '400',
    color: Colors.dark,
  },
});

export default App;

Executing Custom Tasks

In addition to the default background-fetch task defined by BackgroundFetch.configure, you may also execute your own arbitrary "oneshot" or periodic tasks (iOS requires additional Setup Instructions). However, all events will be fired into the Callback provided to BackgroundFetch#configure:

⚠️ iOS:

  • scheduleTask on iOS seems only to run when the device is plugged into power.
  • scheduleTask on iOS are designed for low-priority tasks, such as purging cache files — they tend to be unreliable for mission-critical tasks. scheduleTask will never run as frequently as you want.
  • The default fetch event is much more reliable and fires far more often.
  • scheduleTask on iOS stop when the user terminates the app. There is no such thing as stopOnTerminate: false for iOS.
// Step 1:  Configure BackgroundFetch as usual.
let status = await BackgroundFetch.configure({
  minimumFetchInterval: 15
}, async (taskId) => {  // <-- Event callback
  // This is the fetch-event callback.
  console.log("[BackgroundFetch] taskId: ", taskId);

  // Use a switch statement to route task-handling.
  switch (taskId) {
    case 'com.foo.customtask':
      print("Received custom task");
      break;
    default:
      print("Default fetch task");
  }
  // Finish, providing received taskId.
  BackgroundFetch.finish(taskId);
}, async (taskId) => {  // <-- Task timeout callback
  // This task has exceeded its allowed running-time.
  // You must stop what you're doing and immediately .finish(taskId)
  BackgroundFetch.finish(taskId);
});

// Step 2:  Schedule a custom "oneshot" task "com.foo.customtask" to execute 5000ms from now.
BackgroundFetch.scheduleTask({
  taskId: "com.foo.customtask",
  forceAlarmManager: true,
  delay: 5000  // <-- milliseconds
});

API Documentation

Config

Common Options

@param {Integer} minimumFetchInterval [15]

The minimum interval in minutes to execute background fetch events. Defaults to 15 minutes. Note: Background-fetch events will never occur at a frequency higher than every 15 minutes. Apple uses a secret algorithm to adjust the frequency of fetch events, presumably based upon usage patterns of the app. Fetch events can occur less often than your configured minimumFetchInterval.

@param {Integer} delay (milliseconds)

ℹ️ Valid only for BackgroundFetch.scheduleTask. The minimum number of milliseconds in future that task should execute.

@param {Boolean} periodic [false]

ℹ️ Valid only for BackgroundFetch.scheduleTask. Defaults to false. Set true to execute the task repeatedly. When false, the task will execute just once.

Android Options

@config {Boolean} stopOnTerminate [true]

Set false to continue background-fetch events after user terminates the app. Default to true.

@config {Boolean} startOnBoot [false]

Set true to initiate background-fetch events when the device is rebooted. Defaults to false.

NOTE: startOnBoot requires stopOnTerminate: false.

@config {Boolean} forceAlarmManager [false]

By default, the plugin will use Android's JobScheduler when possible. The JobScheduler API prioritizes for battery-life, throttling task-execution based upon device usage and battery level.

Configuring forceAlarmManager: true will bypass JobScheduler to use Android's older AlarmManager API, resulting in more accurate task-execution at the cost of higher battery usage.

let status = await BackgroundFetch.configure({
  minimumFetchInterval: 15,
  forceAlarmManager: true
}, async (taskId) => {  // <-- Event callback
  console.log("[BackgroundFetch] taskId: ", taskId);
  BackgroundFetch.finish(taskId);
}, async (taskId) => {  // <-- Task timeout callback
  // This task has exceeded its allowed running-time.
  // You must stop what you're doing and immediately .finish(taskId)
  BackgroundFetch.finish(taskId);
});
.
.
.
// And with with #scheduleTask
BackgroundFetch.scheduleTask({
  taskId: 'com.foo.customtask',
  delay: 5000,       // milliseconds
  forceAlarmManager: true,
  periodic: false
});

@config {Boolean} enableHeadless [false]

Set true to enable React Native's Headless JS mechanism, for handling fetch events after app termination.

  • 📂 index.js (MUST BE IN index.js):
import BackgroundFetch from "react-native-background-fetch";

let MyHeadlessTask = async (event) => {
  // Get task id from event {}:
  let taskId = event.taskId;
  let isTimeout = event.timeout;  // <-- true when your background-time has expired.
  if (isTimeout) {
    // This task has exceeded its allowed running-time.
    // You must stop what you're doing immediately finish(taskId)
    console.log('[BackgroundFetch] Headless TIMEOUT:', taskId);
    BackgroundFetch.finish(taskId);
    return;
  }
  console.log('[BackgroundFetch HeadlessTask] start: ', taskId);

  // Perform an example HTTP request.
  // Important:  await asychronous tasks when using HeadlessJS.
  let response = await fetch('https://reactnative.dev/movies.json');
  let responseJson = await response.json();
  console.log('[BackgroundFetch HeadlessTask] response: ', responseJson);

  // Required:  Signal to native code that your task is complete.
  // If you don't do this, your app could be terminated and/or assigned
  // battery-blame for consuming too much time in background.
  BackgroundFetch.finish(taskId);
}

// Register your BackgroundFetch HeadlessTask
BackgroundFetch.registerHeadlessTask(MyHeadlessTask);

@config {integer} requiredNetworkType [BackgroundFetch.NETWORK_TYPE_NONE]

Set basic description of the kind of network your job requires.

If your job doesn't need a network connection, you don't need to use this option as the default value is BackgroundFetch.NETWORK_TYPE_NONE.

NetworkTypeDescription
BackgroundFetch.NETWORK_TYPE_NONEThis job doesn't care about network constraints, either any or none.
BackgroundFetch.NETWORK_TYPE_ANYThis job requires network connectivity.
BackgroundFetch.NETWORK_TYPE_CELLULARThis job requires network connectivity that is a cellular network.
BackgroundFetch.NETWORK_TYPE_UNMETEREDThis job requires network connectivity that is unmetered. Most WiFi networks are unmetered, as in "you can upload as much as you like".
BackgroundFetch.NETWORK_TYPE_NOT_ROAMINGThis job requires network connectivity that is not roaming (being outside the country of origin)

@config {Boolean} requiresBatteryNotLow [false]

Specify that to run this job, the device's battery level must not be low.

This defaults to false. If true, the job will only run when the battery level is not low, which is generally the point where the user is given a "low battery" warning.

@config {Boolean} requiresStorageNotLow [false]

Specify that to run this job, the device's available storage must not be low.

This defaults to false. If true, the job will only run when the device is not in a low storage state, which is generally the point where the user is given a "low storage" warning.

@config {Boolean} requiresCharging [false]

Specify that to run this job, the device must be charging (or be a non-battery-powered device connected to permanent power, such as Android TV devices). This defaults to false.

@config {Boolean} requiresDeviceIdle [false]

When set true, ensure that this job will not run if the device is in active use.

The default state is false: that is, the for the job to be runnable even when someone is interacting with the device.

This state is a loose definition provided by the system. In general, it means that the device is not currently being used interactively, and has not been in use for some time. As such, it is a good time to perform resource heavy jobs. Bear in mind that battery usage will still be attributed to your application, and shown to the user in battery stats.


Methods

Method NameArgumentsReturnsNotes
configure{FetchConfig}, callbackFn, timeoutFnPromise<BackgroundFetchStatus>Configures the plugin's callbackFn and timeoutFn. This callback will fire each time a background-fetch event occurs in addition to events from #scheduleTask. The timeoutFn will be called when the OS reports your task is nearing the end of its allowed background-time.
scheduleTask{TaskConfig}Promise<boolean>Executes a custom task. The task will be executed in the same Callback function provided to #configure.
statuscallbackFnPromise<BackgroundFetchStatus>Your callback will be executed with the current status (Integer) 0: Restricted, 1: Denied, 2: Available. These constants are defined as BackgroundFetch.STATUS_RESTRICTED, BackgroundFetch.STATUS_DENIED, BackgroundFetch.STATUS_AVAILABLE (NOTE: Android will always return STATUS_AVAILABLE)
finishString taskIdVoidYou MUST call this method in your callbackFn provided to #configure in order to signal to the OS that your task is complete. iOS provides only 30s of background-time for a fetch-event -- if you exceed this 30s, iOS will kill your app.
startnonePromise<BackgroundFetchStatus>Start the background-fetch API. Your callbackFn provided to #configure will be executed each time a background-fetch event occurs. NOTE the #configure method automatically calls #start. You do not have to call this method after you #configure the plugin
stop[taskId:String]Promise<boolean>Stop the background-fetch API and all #scheduleTask from firing events. Your callbackFn provided to #configure will no longer be executed. If you provide an optional taskId, only that #scheduleTask will be stopped.

Debugging

iOS

🆕 BGTaskScheduler API for iOS 13+

  • ⚠️ At the time of writing, the new task simulator does not yet work in Simulator; Only real devices.
  • See Apple docs Starting and Terminating Tasks During Development
  • After running your app in XCode, Click the [||] button to initiate a Breakpoint.
  • In the console (lldb), paste the following command (Note: use cursor up/down keys to cycle through previously run commands):
e -l objc -- (void)[[BGTaskScheduler sharedScheduler] _simulateLaunchForTaskWithIdentifier:@"com.transistorsoft.fetch"]
  • Click the [ > ] button to continue. The task will execute and the Callback function provided to BackgroundFetch.configure will receive the event.

Simulating task-timeout events

  • Only the new BGTaskScheduler api supports simulated task-timeout events. To simulate a task-timeout, your fetchCallback must not call BackgroundFetch.finish(taskId):
let status = await BackgroundFetch.configure({
  minimumFetchInterval: 15
}, async (taskId) => {  // <-- Event callback.
  // This is the task callback.
  console.log("[BackgroundFetch] taskId", taskId);
  //BackgroundFetch.finish(taskId); // <-- Disable .finish(taskId) when simulating an iOS task timeout
}, async (taskId) => {  // <-- Event timeout callback
  // This task has exceeded its allowed running-time.
  // You must stop what you're doing and immediately .finish(taskId)
  print("[BackgroundFetch] TIMEOUT taskId:", taskId);
  BackgroundFetch.finish(taskId);
});
  • Now simulate an iOS task timeout as follows, in the same manner as simulating an event above:
e -l objc -- (void)[[BGTaskScheduler sharedScheduler] _simulateExpirationForTaskWithIdentifier:@"com.transistorsoft.fetch"]

Old BackgroundFetch API

  • Simulate background fetch events in XCode using Debug->Simulate Background Fetch
  • iOS can take some hours or even days to start a consistently scheduling background-fetch events since iOS schedules fetch events based upon the user's patterns of activity. If Simulate Background Fetch works, your can be sure that everything is working fine. You just need to wait.

Android

  • Observe plugin logs in $ adb logcat:
$ adb logcat *:S ReactNative:V ReactNativeJS:V TSBackgroundFetch:V
  • Simulate a background-fetch event on a device (insert <your.application.id>) (only works for sdk 21+:
$ adb shell cmd jobscheduler run -f <your.application.id> 999
  • For devices with sdk <21, simulate a "Headless JS" event with (insert <your.application.id>)
$ adb shell am broadcast -a <your.application.id>.event.BACKGROUND_FETCH

Download Details:
Author: transistorsoft
Source Code: https://github.com/transistorsoft/react-native-background-fetch
License: MIT license

#react  #reactnative  #mobileapp  #javascript 

Eric  Bukenya

Eric Bukenya

1624713540

Learn NoSQL in Azure: Diving Deeper into Azure Cosmos DB

This article is a part of the series – Learn NoSQL in Azure where we explore Azure Cosmos DB as a part of the non-relational database system used widely for a variety of applications. Azure Cosmos DB is a part of Microsoft’s serverless databases on Azure which is highly scalable and distributed across all locations that run on Azure. It is offered as a platform as a service (PAAS) from Azure and you can develop databases that have a very high throughput and very low latency. Using Azure Cosmos DB, customers can replicate their data across multiple locations across the globe and also across multiple locations within the same region. This makes Cosmos DB a highly available database service with almost 99.999% availability for reads and writes for multi-region modes and almost 99.99% availability for single-region modes.

In this article, we will focus more on how Azure Cosmos DB works behind the scenes and how can you get started with it using the Azure Portal. We will also explore how Cosmos DB is priced and understand the pricing model in detail.

How Azure Cosmos DB works

As already mentioned, Azure Cosmos DB is a multi-modal NoSQL database service that is geographically distributed across multiple Azure locations. This helps customers to deploy the databases across multiple locations around the globe. This is beneficial as it helps to reduce the read latency when the users use the application.

As you can see in the figure above, Azure Cosmos DB is distributed across the globe. Let’s suppose you have a web application that is hosted in India. In that case, the NoSQL database in India will be considered as the master database for writes and all the other databases can be considered as a read replicas. Whenever new data is generated, it is written to the database in India first and then it is synchronized with the other databases.

Consistency Levels

While maintaining data over multiple regions, the most common challenge is the latency as when the data is made available to the other databases. For example, when data is written to the database in India, users from India will be able to see that data sooner than users from the US. This is due to the latency in synchronization between the two regions. In order to overcome this, there are a few modes that customers can choose from and define how often or how soon they want their data to be made available in the other regions. Azure Cosmos DB offers five levels of consistency which are as follows:

  • Strong
  • Bounded staleness
  • Session
  • Consistent prefix
  • Eventual

In most common NoSQL databases, there are only two levels – Strong and EventualStrong being the most consistent level while Eventual is the least. However, as we move from Strong to Eventual, consistency decreases but availability and throughput increase. This is a trade-off that customers need to decide based on the criticality of their applications. If you want to read in more detail about the consistency levels, the official guide from Microsoft is the easiest to understand. You can refer to it here.

Azure Cosmos DB Pricing Model

Now that we have some idea about working with the NoSQL database – Azure Cosmos DB on Azure, let us try to understand how the database is priced. In order to work with any cloud-based services, it is essential that you have a sound knowledge of how the services are charged, otherwise, you might end up paying something much higher than your expectations.

If you browse to the pricing page of Azure Cosmos DB, you can see that there are two modes in which the database services are billed.

  • Database Operations – Whenever you execute or run queries against your NoSQL database, there are some resources being used. Azure terms these usages in terms of Request Units or RU. The amount of RU consumed per second is aggregated and billed
  • Consumed Storage – As you start storing data in your database, it will take up some space in order to store that data. This storage is billed per the standard SSD-based storage across any Azure locations globally

Let’s learn about this in more detail.

#azure #azure cosmos db #nosql #azure #nosql in azure #azure cosmos db