Leonard  Paucek

Leonard Paucek

1674995040

Nuxt Movies: A TMDB Client Built with Nuxt 3

Nuxt Movies

Movies app demo built using Nuxt 3, Vue 3, UnoCSS, Image Module, The Movie Database API and TypeScript.

🍿 Live preview: https://movies.nuxt.space

Screenshots

Proxy Server

Check proxy/README

Setup

# Enable pnpm
$ corepack enable

# Install dependencies
$ pnpm install

# Start dev server with hot reload at localhost:3000
$ pnpm dev

Credits

Based on jasonujmaalvis/vue-movies and tastejs/nuxt-movies.

Data provided by The Movie Database.

This project uses the TMDB API but is not endorsed or certified by TMDB.


Download details:

Author: nuxt
Source code: https://github.com/nuxt/movies

License:  Security policy

#nuxt 

What is GEEK

Buddha Community

Nuxt Movies: A TMDB Client Built with Nuxt 3
Veronica  Roob

Veronica Roob

1653475560

A Pure PHP Implementation Of The MessagePack Serialization Format

msgpack.php

A pure PHP implementation of the MessagePack serialization format.

Features

Installation

The recommended way to install the library is through Composer:

composer require rybakit/msgpack

Usage

Packing

To pack values you can either use an instance of a Packer:

$packer = new Packer();
$packed = $packer->pack($value);

or call a static method on the MessagePack class:

$packed = MessagePack::pack($value);

In the examples above, the method pack automatically packs a value depending on its type. However, not all PHP types can be uniquely translated to MessagePack types. For example, the MessagePack format defines map and array types, which are represented by a single array type in PHP. By default, the packer will pack a PHP array as a MessagePack array if it has sequential numeric keys, starting from 0 and as a MessagePack map otherwise:

$mpArr1 = $packer->pack([1, 2]);               // MP array [1, 2]
$mpArr2 = $packer->pack([0 => 1, 1 => 2]);     // MP array [1, 2]
$mpMap1 = $packer->pack([0 => 1, 2 => 3]);     // MP map {0: 1, 2: 3}
$mpMap2 = $packer->pack([1 => 2, 2 => 3]);     // MP map {1: 2, 2: 3}
$mpMap3 = $packer->pack(['a' => 1, 'b' => 2]); // MP map {a: 1, b: 2}

However, sometimes you need to pack a sequential array as a MessagePack map. To do this, use the packMap method:

$mpMap = $packer->packMap([1, 2]); // {0: 1, 1: 2}

Here is a list of type-specific packing methods:

$packer->packNil();           // MP nil
$packer->packBool(true);      // MP bool
$packer->packInt(42);         // MP int
$packer->packFloat(M_PI);     // MP float (32 or 64)
$packer->packFloat32(M_PI);   // MP float 32
$packer->packFloat64(M_PI);   // MP float 64
$packer->packStr('foo');      // MP str
$packer->packBin("\x80");     // MP bin
$packer->packArray([1, 2]);   // MP array
$packer->packMap(['a' => 1]); // MP map
$packer->packExt(1, "\xaa");  // MP ext

Check the "Custom types" section below on how to pack custom types.

Packing options

The Packer object supports a number of bitmask-based options for fine-tuning the packing process (defaults are in bold):

NameDescription
FORCE_STRForces PHP strings to be packed as MessagePack UTF-8 strings
FORCE_BINForces PHP strings to be packed as MessagePack binary data
DETECT_STR_BINDetects MessagePack str/bin type automatically
  
FORCE_ARRForces PHP arrays to be packed as MessagePack arrays
FORCE_MAPForces PHP arrays to be packed as MessagePack maps
DETECT_ARR_MAPDetects MessagePack array/map type automatically
  
FORCE_FLOAT32Forces PHP floats to be packed as 32-bits MessagePack floats
FORCE_FLOAT64Forces PHP floats to be packed as 64-bits MessagePack floats

The type detection mode (DETECT_STR_BIN/DETECT_ARR_MAP) adds some overhead which can be noticed when you pack large (16- and 32-bit) arrays or strings. However, if you know the value type in advance (for example, you only work with UTF-8 strings or/and associative arrays), you can eliminate this overhead by forcing the packer to use the appropriate type, which will save it from running the auto-detection routine. Another option is to explicitly specify the value type. The library provides 2 auxiliary classes for this, Map and Bin. Check the "Custom types" section below for details.

Examples:

// detect str/bin type and pack PHP 64-bit floats (doubles) to MP 32-bit floats
$packer = new Packer(PackOptions::DETECT_STR_BIN | PackOptions::FORCE_FLOAT32);

// these will throw MessagePack\Exception\InvalidOptionException
$packer = new Packer(PackOptions::FORCE_STR | PackOptions::FORCE_BIN);
$packer = new Packer(PackOptions::FORCE_FLOAT32 | PackOptions::FORCE_FLOAT64);

Unpacking

To unpack data you can either use an instance of a BufferUnpacker:

$unpacker = new BufferUnpacker();

$unpacker->reset($packed);
$value = $unpacker->unpack();

or call a static method on the MessagePack class:

$value = MessagePack::unpack($packed);

If the packed data is received in chunks (e.g. when reading from a stream), use the tryUnpack method, which attempts to unpack data and returns an array of unpacked messages (if any) instead of throwing an InsufficientDataException:

while ($chunk = ...) {
    $unpacker->append($chunk);
    if ($messages = $unpacker->tryUnpack()) {
        return $messages;
    }
}

If you want to unpack from a specific position in a buffer, use seek:

$unpacker->seek(42); // set position equal to 42 bytes
$unpacker->seek(-8); // set position to 8 bytes before the end of the buffer

To skip bytes from the current position, use skip:

$unpacker->skip(10); // set position to 10 bytes ahead of the current position

To get the number of remaining (unread) bytes in the buffer:

$unreadBytesCount = $unpacker->getRemainingCount();

To check whether the buffer has unread data:

$hasUnreadBytes = $unpacker->hasRemaining();

If needed, you can remove already read data from the buffer by calling:

$releasedBytesCount = $unpacker->release();

With the read method you can read raw (packed) data:

$packedData = $unpacker->read(2); // read 2 bytes

Besides the above methods BufferUnpacker provides type-specific unpacking methods, namely:

$unpacker->unpackNil();   // PHP null
$unpacker->unpackBool();  // PHP bool
$unpacker->unpackInt();   // PHP int
$unpacker->unpackFloat(); // PHP float
$unpacker->unpackStr();   // PHP UTF-8 string
$unpacker->unpackBin();   // PHP binary string
$unpacker->unpackArray(); // PHP sequential array
$unpacker->unpackMap();   // PHP associative array
$unpacker->unpackExt();   // PHP MessagePack\Type\Ext object

Unpacking options

The BufferUnpacker object supports a number of bitmask-based options for fine-tuning the unpacking process (defaults are in bold):

NameDescription
BIGINT_AS_STRConverts overflowed integers to strings [1]
BIGINT_AS_GMPConverts overflowed integers to GMP objects [2]
BIGINT_AS_DECConverts overflowed integers to Decimal\Decimal objects [3]

1. The binary MessagePack format has unsigned 64-bit as its largest integer data type, but PHP does not support such integers, which means that an overflow can occur during unpacking.

2. Make sure the GMP extension is enabled.

3. Make sure the Decimal extension is enabled.

Examples:

$packedUint64 = "\xcf"."\xff\xff\xff\xff"."\xff\xff\xff\xff";

$unpacker = new BufferUnpacker($packedUint64);
var_dump($unpacker->unpack()); // string(20) "18446744073709551615"

$unpacker = new BufferUnpacker($packedUint64, UnpackOptions::BIGINT_AS_GMP);
var_dump($unpacker->unpack()); // object(GMP) {...}

$unpacker = new BufferUnpacker($packedUint64, UnpackOptions::BIGINT_AS_DEC);
var_dump($unpacker->unpack()); // object(Decimal\Decimal) {...}

Custom types

In addition to the basic types, the library provides functionality to serialize and deserialize arbitrary types. This can be done in several ways, depending on your use case. Let's take a look at them.

Type objects

If you need to serialize an instance of one of your classes into one of the basic MessagePack types, the best way to do this is to implement the CanBePacked interface in the class. A good example of such a class is the Map type class that comes with the library. This type is useful when you want to explicitly specify that a given PHP array should be packed as a MessagePack map without triggering an automatic type detection routine:

$packer = new Packer();

$packedMap = $packer->pack(new Map([1, 2, 3]));
$packedArray = $packer->pack([1, 2, 3]);

More type examples can be found in the src/Type directory.

Type transformers

As with type objects, type transformers are only responsible for serializing values. They should be used when you need to serialize a value that does not implement the CanBePacked interface. Examples of such values could be instances of built-in or third-party classes that you don't own, or non-objects such as resources.

A transformer class must implement the CanPack interface. To use a transformer, it must first be registered in the packer. Here is an example of how to serialize PHP streams into the MessagePack bin format type using one of the supplied transformers, StreamTransformer:

$packer = new Packer(null, [new StreamTransformer()]);

$packedBin = $packer->pack(fopen('/path/to/file', 'r+'));

More type transformer examples can be found in the src/TypeTransformer directory.

Extensions

In contrast to the cases described above, extensions are intended to handle extension types and are responsible for both serialization and deserialization of values (types).

An extension class must implement the Extension interface. To use an extension, it must first be registered in the packer and the unpacker.

The MessagePack specification divides extension types into two groups: predefined and application-specific. Currently, there is only one predefined type in the specification, Timestamp.

Timestamp

The Timestamp extension type is a predefined type. Support for this type in the library is done through the TimestampExtension class. This class is responsible for handling Timestamp objects, which represent the number of seconds and optional adjustment in nanoseconds:

$timestampExtension = new TimestampExtension();

$packer = new Packer();
$packer = $packer->extendWith($timestampExtension);

$unpacker = new BufferUnpacker();
$unpacker = $unpacker->extendWith($timestampExtension);

$packedTimestamp = $packer->pack(Timestamp::now());
$timestamp = $unpacker->reset($packedTimestamp)->unpack();

$seconds = $timestamp->getSeconds();
$nanoseconds = $timestamp->getNanoseconds();

When using the MessagePack class, the Timestamp extension is already registered:

$packedTimestamp = MessagePack::pack(Timestamp::now());
$timestamp = MessagePack::unpack($packedTimestamp);

Application-specific extensions

In addition, the format can be extended with your own types. For example, to make the built-in PHP DateTime objects first-class citizens in your code, you can create a corresponding extension, as shown in the example. Please note, that custom extensions have to be registered with a unique extension ID (an integer from 0 to 127).

More extension examples can be found in the examples/MessagePack directory.

To learn more about how extension types can be useful, check out this article.

Exceptions

If an error occurs during packing/unpacking, a PackingFailedException or an UnpackingFailedException will be thrown, respectively. In addition, an InsufficientDataException can be thrown during unpacking.

An InvalidOptionException will be thrown in case an invalid option (or a combination of mutually exclusive options) is used.

Tests

Run tests as follows:

vendor/bin/phpunit

Also, if you already have Docker installed, you can run the tests in a docker container. First, create a container:

./dockerfile.sh | docker build -t msgpack -

The command above will create a container named msgpack with PHP 8.1 runtime. You may change the default runtime by defining the PHP_IMAGE environment variable:

PHP_IMAGE='php:8.0-cli' ./dockerfile.sh | docker build -t msgpack -

See a list of various images here.

Then run the unit tests:

docker run --rm -v $PWD:/msgpack -w /msgpack msgpack

Fuzzing

To ensure that the unpacking works correctly with malformed/semi-malformed data, you can use a testing technique called Fuzzing. The library ships with a help file (target) for PHP-Fuzzer and can be used as follows:

php-fuzzer fuzz tests/fuzz_buffer_unpacker.php

Performance

To check performance, run:

php -n -dzend_extension=opcache.so \
-dpcre.jit=1 -dopcache.enable=1 -dopcache.enable_cli=1 \
tests/bench.php

Example output

Filter: MessagePack\Tests\Perf\Filter\ListFilter
Rounds: 3
Iterations: 100000

=============================================
Test/Target            Packer  BufferUnpacker
---------------------------------------------
nil .................. 0.0030 ........ 0.0139
false ................ 0.0037 ........ 0.0144
true ................. 0.0040 ........ 0.0137
7-bit uint #1 ........ 0.0052 ........ 0.0120
7-bit uint #2 ........ 0.0059 ........ 0.0114
7-bit uint #3 ........ 0.0061 ........ 0.0119
5-bit sint #1 ........ 0.0067 ........ 0.0126
5-bit sint #2 ........ 0.0064 ........ 0.0132
5-bit sint #3 ........ 0.0066 ........ 0.0135
8-bit uint #1 ........ 0.0078 ........ 0.0200
8-bit uint #2 ........ 0.0077 ........ 0.0212
8-bit uint #3 ........ 0.0086 ........ 0.0203
16-bit uint #1 ....... 0.0111 ........ 0.0271
16-bit uint #2 ....... 0.0115 ........ 0.0260
16-bit uint #3 ....... 0.0103 ........ 0.0273
32-bit uint #1 ....... 0.0116 ........ 0.0326
32-bit uint #2 ....... 0.0118 ........ 0.0332
32-bit uint #3 ....... 0.0127 ........ 0.0325
64-bit uint #1 ....... 0.0140 ........ 0.0277
64-bit uint #2 ....... 0.0134 ........ 0.0294
64-bit uint #3 ....... 0.0134 ........ 0.0281
8-bit int #1 ......... 0.0086 ........ 0.0241
8-bit int #2 ......... 0.0089 ........ 0.0225
8-bit int #3 ......... 0.0085 ........ 0.0229
16-bit int #1 ........ 0.0118 ........ 0.0280
16-bit int #2 ........ 0.0121 ........ 0.0270
16-bit int #3 ........ 0.0109 ........ 0.0274
32-bit int #1 ........ 0.0128 ........ 0.0346
32-bit int #2 ........ 0.0118 ........ 0.0339
32-bit int #3 ........ 0.0135 ........ 0.0368
64-bit int #1 ........ 0.0138 ........ 0.0276
64-bit int #2 ........ 0.0132 ........ 0.0286
64-bit int #3 ........ 0.0137 ........ 0.0274
64-bit int #4 ........ 0.0180 ........ 0.0285
64-bit float #1 ...... 0.0134 ........ 0.0284
64-bit float #2 ...... 0.0125 ........ 0.0275
64-bit float #3 ...... 0.0126 ........ 0.0283
fix string #1 ........ 0.0035 ........ 0.0133
fix string #2 ........ 0.0094 ........ 0.0216
fix string #3 ........ 0.0094 ........ 0.0222
fix string #4 ........ 0.0091 ........ 0.0241
8-bit string #1 ...... 0.0122 ........ 0.0301
8-bit string #2 ...... 0.0118 ........ 0.0304
8-bit string #3 ...... 0.0119 ........ 0.0315
16-bit string #1 ..... 0.0150 ........ 0.0388
16-bit string #2 ..... 0.1545 ........ 0.1665
32-bit string ........ 0.1570 ........ 0.1756
wide char string #1 .. 0.0091 ........ 0.0236
wide char string #2 .. 0.0122 ........ 0.0313
8-bit binary #1 ...... 0.0100 ........ 0.0302
8-bit binary #2 ...... 0.0123 ........ 0.0324
8-bit binary #3 ...... 0.0126 ........ 0.0327
16-bit binary ........ 0.0168 ........ 0.0372
32-bit binary ........ 0.1588 ........ 0.1754
fix array #1 ......... 0.0042 ........ 0.0131
fix array #2 ......... 0.0294 ........ 0.0367
fix array #3 ......... 0.0412 ........ 0.0472
16-bit array #1 ...... 0.1378 ........ 0.1596
16-bit array #2 ........... S ............. S
32-bit array .............. S ............. S
complex array ........ 0.1865 ........ 0.2283
fix map #1 ........... 0.0725 ........ 0.1048
fix map #2 ........... 0.0319 ........ 0.0405
fix map #3 ........... 0.0356 ........ 0.0665
fix map #4 ........... 0.0465 ........ 0.0497
16-bit map #1 ........ 0.2540 ........ 0.3028
16-bit map #2 ............. S ............. S
32-bit map ................ S ............. S
complex map .......... 0.2372 ........ 0.2710
fixext 1 ............. 0.0283 ........ 0.0358
fixext 2 ............. 0.0291 ........ 0.0371
fixext 4 ............. 0.0302 ........ 0.0355
fixext 8 ............. 0.0288 ........ 0.0384
fixext 16 ............ 0.0293 ........ 0.0359
8-bit ext ............ 0.0302 ........ 0.0439
16-bit ext ........... 0.0334 ........ 0.0499
32-bit ext ........... 0.1845 ........ 0.1888
32-bit timestamp #1 .. 0.0337 ........ 0.0547
32-bit timestamp #2 .. 0.0335 ........ 0.0560
64-bit timestamp #1 .. 0.0371 ........ 0.0575
64-bit timestamp #2 .. 0.0374 ........ 0.0542
64-bit timestamp #3 .. 0.0356 ........ 0.0533
96-bit timestamp #1 .. 0.0362 ........ 0.0699
96-bit timestamp #2 .. 0.0381 ........ 0.0701
96-bit timestamp #3 .. 0.0367 ........ 0.0687
=============================================
Total                  2.7618          4.0820
Skipped                     4               4
Failed                      0               0
Ignored                     0               0

With JIT:

php -n -dzend_extension=opcache.so \
-dpcre.jit=1 -dopcache.jit_buffer_size=64M -dopcache.jit=tracing -dopcache.enable=1 -dopcache.enable_cli=1 \
tests/bench.php

Example output

Filter: MessagePack\Tests\Perf\Filter\ListFilter
Rounds: 3
Iterations: 100000

=============================================
Test/Target            Packer  BufferUnpacker
---------------------------------------------
nil .................. 0.0005 ........ 0.0054
false ................ 0.0004 ........ 0.0059
true ................. 0.0004 ........ 0.0059
7-bit uint #1 ........ 0.0010 ........ 0.0047
7-bit uint #2 ........ 0.0010 ........ 0.0046
7-bit uint #3 ........ 0.0010 ........ 0.0046
5-bit sint #1 ........ 0.0025 ........ 0.0046
5-bit sint #2 ........ 0.0023 ........ 0.0046
5-bit sint #3 ........ 0.0024 ........ 0.0045
8-bit uint #1 ........ 0.0043 ........ 0.0081
8-bit uint #2 ........ 0.0043 ........ 0.0079
8-bit uint #3 ........ 0.0041 ........ 0.0080
16-bit uint #1 ....... 0.0064 ........ 0.0095
16-bit uint #2 ....... 0.0064 ........ 0.0091
16-bit uint #3 ....... 0.0064 ........ 0.0094
32-bit uint #1 ....... 0.0085 ........ 0.0114
32-bit uint #2 ....... 0.0077 ........ 0.0122
32-bit uint #3 ....... 0.0077 ........ 0.0120
64-bit uint #1 ....... 0.0085 ........ 0.0159
64-bit uint #2 ....... 0.0086 ........ 0.0157
64-bit uint #3 ....... 0.0086 ........ 0.0158
8-bit int #1 ......... 0.0042 ........ 0.0080
8-bit int #2 ......... 0.0042 ........ 0.0080
8-bit int #3 ......... 0.0042 ........ 0.0081
16-bit int #1 ........ 0.0065 ........ 0.0095
16-bit int #2 ........ 0.0065 ........ 0.0090
16-bit int #3 ........ 0.0056 ........ 0.0085
32-bit int #1 ........ 0.0067 ........ 0.0107
32-bit int #2 ........ 0.0066 ........ 0.0106
32-bit int #3 ........ 0.0063 ........ 0.0104
64-bit int #1 ........ 0.0072 ........ 0.0162
64-bit int #2 ........ 0.0073 ........ 0.0174
64-bit int #3 ........ 0.0072 ........ 0.0164
64-bit int #4 ........ 0.0077 ........ 0.0161
64-bit float #1 ...... 0.0053 ........ 0.0135
64-bit float #2 ...... 0.0053 ........ 0.0135
64-bit float #3 ...... 0.0052 ........ 0.0135
fix string #1 ....... -0.0002 ........ 0.0044
fix string #2 ........ 0.0035 ........ 0.0067
fix string #3 ........ 0.0035 ........ 0.0077
fix string #4 ........ 0.0033 ........ 0.0078
8-bit string #1 ...... 0.0059 ........ 0.0110
8-bit string #2 ...... 0.0063 ........ 0.0121
8-bit string #3 ...... 0.0064 ........ 0.0124
16-bit string #1 ..... 0.0099 ........ 0.0146
16-bit string #2 ..... 0.1522 ........ 0.1474
32-bit string ........ 0.1511 ........ 0.1483
wide char string #1 .. 0.0039 ........ 0.0084
wide char string #2 .. 0.0073 ........ 0.0123
8-bit binary #1 ...... 0.0040 ........ 0.0112
8-bit binary #2 ...... 0.0075 ........ 0.0123
8-bit binary #3 ...... 0.0077 ........ 0.0129
16-bit binary ........ 0.0096 ........ 0.0145
32-bit binary ........ 0.1535 ........ 0.1479
fix array #1 ......... 0.0008 ........ 0.0061
fix array #2 ......... 0.0121 ........ 0.0165
fix array #3 ......... 0.0193 ........ 0.0222
16-bit array #1 ...... 0.0607 ........ 0.0479
16-bit array #2 ........... S ............. S
32-bit array .............. S ............. S
complex array ........ 0.0749 ........ 0.0824
fix map #1 ........... 0.0329 ........ 0.0431
fix map #2 ........... 0.0161 ........ 0.0189
fix map #3 ........... 0.0205 ........ 0.0262
fix map #4 ........... 0.0252 ........ 0.0205
16-bit map #1 ........ 0.1016 ........ 0.0927
16-bit map #2 ............. S ............. S
32-bit map ................ S ............. S
complex map .......... 0.1096 ........ 0.1030
fixext 1 ............. 0.0157 ........ 0.0161
fixext 2 ............. 0.0175 ........ 0.0183
fixext 4 ............. 0.0156 ........ 0.0185
fixext 8 ............. 0.0163 ........ 0.0184
fixext 16 ............ 0.0164 ........ 0.0182
8-bit ext ............ 0.0158 ........ 0.0207
16-bit ext ........... 0.0203 ........ 0.0219
32-bit ext ........... 0.1614 ........ 0.1539
32-bit timestamp #1 .. 0.0195 ........ 0.0249
32-bit timestamp #2 .. 0.0188 ........ 0.0260
64-bit timestamp #1 .. 0.0207 ........ 0.0281
64-bit timestamp #2 .. 0.0212 ........ 0.0291
64-bit timestamp #3 .. 0.0207 ........ 0.0295
96-bit timestamp #1 .. 0.0222 ........ 0.0358
96-bit timestamp #2 .. 0.0228 ........ 0.0353
96-bit timestamp #3 .. 0.0210 ........ 0.0319
=============================================
Total                  1.6432          1.9674
Skipped                     4               4
Failed                      0               0
Ignored                     0               0

You may change default benchmark settings by defining the following environment variables:

NameDefault
MP_BENCH_TARGETSpure_p,pure_u, see a list of available targets
MP_BENCH_ITERATIONS100_000
MP_BENCH_DURATIONnot set
MP_BENCH_ROUNDS3
MP_BENCH_TESTS-@slow, see a list of available tests

For example:

export MP_BENCH_TARGETS=pure_p
export MP_BENCH_ITERATIONS=1000000
export MP_BENCH_ROUNDS=5
# a comma separated list of test names
export MP_BENCH_TESTS='complex array, complex map'
# or a group name
# export MP_BENCH_TESTS='-@slow' // @pecl_comp
# or a regexp
# export MP_BENCH_TESTS='/complex (array|map)/'

Another example, benchmarking both the library and the PECL extension:

MP_BENCH_TARGETS=pure_p,pure_u,pecl_p,pecl_u \
php -n -dextension=msgpack.so -dzend_extension=opcache.so \
-dpcre.jit=1 -dopcache.enable=1 -dopcache.enable_cli=1 \
tests/bench.php

Example output

Filter: MessagePack\Tests\Perf\Filter\ListFilter
Rounds: 3
Iterations: 100000

===========================================================================
Test/Target            Packer  BufferUnpacker  msgpack_pack  msgpack_unpack
---------------------------------------------------------------------------
nil .................. 0.0031 ........ 0.0141 ...... 0.0055 ........ 0.0064
false ................ 0.0039 ........ 0.0154 ...... 0.0056 ........ 0.0053
true ................. 0.0038 ........ 0.0139 ...... 0.0056 ........ 0.0044
7-bit uint #1 ........ 0.0061 ........ 0.0110 ...... 0.0059 ........ 0.0046
7-bit uint #2 ........ 0.0065 ........ 0.0119 ...... 0.0042 ........ 0.0029
7-bit uint #3 ........ 0.0054 ........ 0.0117 ...... 0.0045 ........ 0.0025
5-bit sint #1 ........ 0.0047 ........ 0.0103 ...... 0.0038 ........ 0.0022
5-bit sint #2 ........ 0.0048 ........ 0.0117 ...... 0.0038 ........ 0.0022
5-bit sint #3 ........ 0.0046 ........ 0.0102 ...... 0.0038 ........ 0.0023
8-bit uint #1 ........ 0.0063 ........ 0.0174 ...... 0.0039 ........ 0.0031
8-bit uint #2 ........ 0.0063 ........ 0.0167 ...... 0.0040 ........ 0.0029
8-bit uint #3 ........ 0.0063 ........ 0.0168 ...... 0.0039 ........ 0.0030
16-bit uint #1 ....... 0.0092 ........ 0.0222 ...... 0.0049 ........ 0.0030
16-bit uint #2 ....... 0.0096 ........ 0.0227 ...... 0.0042 ........ 0.0046
16-bit uint #3 ....... 0.0123 ........ 0.0274 ...... 0.0059 ........ 0.0051
32-bit uint #1 ....... 0.0136 ........ 0.0331 ...... 0.0060 ........ 0.0048
32-bit uint #2 ....... 0.0130 ........ 0.0336 ...... 0.0070 ........ 0.0048
32-bit uint #3 ....... 0.0127 ........ 0.0329 ...... 0.0051 ........ 0.0048
64-bit uint #1 ....... 0.0126 ........ 0.0268 ...... 0.0055 ........ 0.0049
64-bit uint #2 ....... 0.0135 ........ 0.0281 ...... 0.0052 ........ 0.0046
64-bit uint #3 ....... 0.0131 ........ 0.0274 ...... 0.0069 ........ 0.0044
8-bit int #1 ......... 0.0077 ........ 0.0236 ...... 0.0058 ........ 0.0044
8-bit int #2 ......... 0.0087 ........ 0.0244 ...... 0.0058 ........ 0.0048
8-bit int #3 ......... 0.0084 ........ 0.0241 ...... 0.0055 ........ 0.0049
16-bit int #1 ........ 0.0112 ........ 0.0271 ...... 0.0048 ........ 0.0045
16-bit int #2 ........ 0.0124 ........ 0.0292 ...... 0.0057 ........ 0.0049
16-bit int #3 ........ 0.0118 ........ 0.0270 ...... 0.0058 ........ 0.0050
32-bit int #1 ........ 0.0137 ........ 0.0366 ...... 0.0058 ........ 0.0051
32-bit int #2 ........ 0.0133 ........ 0.0366 ...... 0.0056 ........ 0.0049
32-bit int #3 ........ 0.0129 ........ 0.0350 ...... 0.0052 ........ 0.0048
64-bit int #1 ........ 0.0145 ........ 0.0254 ...... 0.0034 ........ 0.0025
64-bit int #2 ........ 0.0097 ........ 0.0214 ...... 0.0034 ........ 0.0025
64-bit int #3 ........ 0.0096 ........ 0.0287 ...... 0.0059 ........ 0.0050
64-bit int #4 ........ 0.0143 ........ 0.0277 ...... 0.0059 ........ 0.0046
64-bit float #1 ...... 0.0134 ........ 0.0281 ...... 0.0057 ........ 0.0052
64-bit float #2 ...... 0.0141 ........ 0.0281 ...... 0.0057 ........ 0.0050
64-bit float #3 ...... 0.0144 ........ 0.0282 ...... 0.0057 ........ 0.0050
fix string #1 ........ 0.0036 ........ 0.0143 ...... 0.0066 ........ 0.0053
fix string #2 ........ 0.0107 ........ 0.0222 ...... 0.0065 ........ 0.0068
fix string #3 ........ 0.0116 ........ 0.0245 ...... 0.0063 ........ 0.0069
fix string #4 ........ 0.0105 ........ 0.0253 ...... 0.0083 ........ 0.0077
8-bit string #1 ...... 0.0126 ........ 0.0318 ...... 0.0075 ........ 0.0088
8-bit string #2 ...... 0.0121 ........ 0.0295 ...... 0.0076 ........ 0.0086
8-bit string #3 ...... 0.0125 ........ 0.0293 ...... 0.0130 ........ 0.0093
16-bit string #1 ..... 0.0159 ........ 0.0368 ...... 0.0117 ........ 0.0086
16-bit string #2 ..... 0.1547 ........ 0.1686 ...... 0.1516 ........ 0.1373
32-bit string ........ 0.1558 ........ 0.1729 ...... 0.1511 ........ 0.1396
wide char string #1 .. 0.0098 ........ 0.0237 ...... 0.0066 ........ 0.0065
wide char string #2 .. 0.0128 ........ 0.0291 ...... 0.0061 ........ 0.0082
8-bit binary #1 ........... I ............. I ........... F ............. I
8-bit binary #2 ........... I ............. I ........... F ............. I
8-bit binary #3 ........... I ............. I ........... F ............. I
16-bit binary ............. I ............. I ........... F ............. I
32-bit binary ............. I ............. I ........... F ............. I
fix array #1 ......... 0.0040 ........ 0.0129 ...... 0.0120 ........ 0.0058
fix array #2 ......... 0.0279 ........ 0.0390 ...... 0.0143 ........ 0.0165
fix array #3 ......... 0.0415 ........ 0.0463 ...... 0.0162 ........ 0.0187
16-bit array #1 ...... 0.1349 ........ 0.1628 ...... 0.0334 ........ 0.0341
16-bit array #2 ........... S ............. S ........... S ............. S
32-bit array .............. S ............. S ........... S ............. S
complex array ............. I ............. I ........... F ............. F
fix map #1 ................ I ............. I ........... F ............. I
fix map #2 ........... 0.0345 ........ 0.0391 ...... 0.0143 ........ 0.0168
fix map #3 ................ I ............. I ........... F ............. I
fix map #4 ........... 0.0459 ........ 0.0473 ...... 0.0151 ........ 0.0163
16-bit map #1 ........ 0.2518 ........ 0.2962 ...... 0.0400 ........ 0.0490
16-bit map #2 ............. S ............. S ........... S ............. S
32-bit map ................ S ............. S ........... S ............. S
complex map .......... 0.2380 ........ 0.2682 ...... 0.0545 ........ 0.0579
fixext 1 .................. I ............. I ........... F ............. F
fixext 2 .................. I ............. I ........... F ............. F
fixext 4 .................. I ............. I ........... F ............. F
fixext 8 .................. I ............. I ........... F ............. F
fixext 16 ................. I ............. I ........... F ............. F
8-bit ext ................. I ............. I ........... F ............. F
16-bit ext ................ I ............. I ........... F ............. F
32-bit ext ................ I ............. I ........... F ............. F
32-bit timestamp #1 ....... I ............. I ........... F ............. F
32-bit timestamp #2 ....... I ............. I ........... F ............. F
64-bit timestamp #1 ....... I ............. I ........... F ............. F
64-bit timestamp #2 ....... I ............. I ........... F ............. F
64-bit timestamp #3 ....... I ............. I ........... F ............. F
96-bit timestamp #1 ....... I ............. I ........... F ............. F
96-bit timestamp #2 ....... I ............. I ........... F ............. F
96-bit timestamp #3 ....... I ............. I ........... F ............. F
===========================================================================
Total                  1.5625          2.3866        0.7735          0.7243
Skipped                     4               4             4               4
Failed                      0               0            24              17
Ignored                    24              24             0               7

With JIT:

MP_BENCH_TARGETS=pure_p,pure_u,pecl_p,pecl_u \
php -n -dextension=msgpack.so -dzend_extension=opcache.so \
-dpcre.jit=1 -dopcache.jit_buffer_size=64M -dopcache.jit=tracing -dopcache.enable=1 -dopcache.enable_cli=1 \
tests/bench.php

Example output

Filter: MessagePack\Tests\Perf\Filter\ListFilter
Rounds: 3
Iterations: 100000

===========================================================================
Test/Target            Packer  BufferUnpacker  msgpack_pack  msgpack_unpack
---------------------------------------------------------------------------
nil .................. 0.0001 ........ 0.0052 ...... 0.0053 ........ 0.0042
false ................ 0.0007 ........ 0.0060 ...... 0.0057 ........ 0.0043
true ................. 0.0008 ........ 0.0060 ...... 0.0056 ........ 0.0041
7-bit uint #1 ........ 0.0031 ........ 0.0046 ...... 0.0062 ........ 0.0041
7-bit uint #2 ........ 0.0021 ........ 0.0043 ...... 0.0062 ........ 0.0041
7-bit uint #3 ........ 0.0022 ........ 0.0044 ...... 0.0061 ........ 0.0040
5-bit sint #1 ........ 0.0030 ........ 0.0048 ...... 0.0062 ........ 0.0040
5-bit sint #2 ........ 0.0032 ........ 0.0046 ...... 0.0062 ........ 0.0040
5-bit sint #3 ........ 0.0031 ........ 0.0046 ...... 0.0062 ........ 0.0040
8-bit uint #1 ........ 0.0054 ........ 0.0079 ...... 0.0062 ........ 0.0050
8-bit uint #2 ........ 0.0051 ........ 0.0079 ...... 0.0064 ........ 0.0044
8-bit uint #3 ........ 0.0051 ........ 0.0082 ...... 0.0062 ........ 0.0044
16-bit uint #1 ....... 0.0077 ........ 0.0094 ...... 0.0065 ........ 0.0045
16-bit uint #2 ....... 0.0077 ........ 0.0094 ...... 0.0063 ........ 0.0045
16-bit uint #3 ....... 0.0077 ........ 0.0095 ...... 0.0064 ........ 0.0047
32-bit uint #1 ....... 0.0088 ........ 0.0119 ...... 0.0063 ........ 0.0043
32-bit uint #2 ....... 0.0089 ........ 0.0117 ...... 0.0062 ........ 0.0039
32-bit uint #3 ....... 0.0089 ........ 0.0118 ...... 0.0063 ........ 0.0044
64-bit uint #1 ....... 0.0097 ........ 0.0155 ...... 0.0063 ........ 0.0045
64-bit uint #2 ....... 0.0095 ........ 0.0153 ...... 0.0061 ........ 0.0045
64-bit uint #3 ....... 0.0096 ........ 0.0156 ...... 0.0063 ........ 0.0047
8-bit int #1 ......... 0.0053 ........ 0.0083 ...... 0.0062 ........ 0.0044
8-bit int #2 ......... 0.0052 ........ 0.0080 ...... 0.0062 ........ 0.0044
8-bit int #3 ......... 0.0052 ........ 0.0080 ...... 0.0062 ........ 0.0043
16-bit int #1 ........ 0.0089 ........ 0.0097 ...... 0.0069 ........ 0.0046
16-bit int #2 ........ 0.0075 ........ 0.0093 ...... 0.0063 ........ 0.0043
16-bit int #3 ........ 0.0075 ........ 0.0094 ...... 0.0062 ........ 0.0046
32-bit int #1 ........ 0.0086 ........ 0.0122 ...... 0.0063 ........ 0.0044
32-bit int #2 ........ 0.0087 ........ 0.0120 ...... 0.0066 ........ 0.0046
32-bit int #3 ........ 0.0086 ........ 0.0121 ...... 0.0060 ........ 0.0044
64-bit int #1 ........ 0.0096 ........ 0.0149 ...... 0.0060 ........ 0.0045
64-bit int #2 ........ 0.0096 ........ 0.0157 ...... 0.0062 ........ 0.0044
64-bit int #3 ........ 0.0096 ........ 0.0160 ...... 0.0063 ........ 0.0046
64-bit int #4 ........ 0.0097 ........ 0.0157 ...... 0.0061 ........ 0.0044
64-bit float #1 ...... 0.0079 ........ 0.0153 ...... 0.0056 ........ 0.0044
64-bit float #2 ...... 0.0079 ........ 0.0152 ...... 0.0057 ........ 0.0045
64-bit float #3 ...... 0.0079 ........ 0.0155 ...... 0.0057 ........ 0.0044
fix string #1 ........ 0.0010 ........ 0.0045 ...... 0.0071 ........ 0.0044
fix string #2 ........ 0.0048 ........ 0.0075 ...... 0.0070 ........ 0.0060
fix string #3 ........ 0.0048 ........ 0.0086 ...... 0.0068 ........ 0.0060
fix string #4 ........ 0.0050 ........ 0.0088 ...... 0.0070 ........ 0.0059
8-bit string #1 ...... 0.0081 ........ 0.0129 ...... 0.0069 ........ 0.0062
8-bit string #2 ...... 0.0086 ........ 0.0128 ...... 0.0069 ........ 0.0065
8-bit string #3 ...... 0.0086 ........ 0.0126 ...... 0.0115 ........ 0.0065
16-bit string #1 ..... 0.0105 ........ 0.0137 ...... 0.0128 ........ 0.0068
16-bit string #2 ..... 0.1510 ........ 0.1486 ...... 0.1526 ........ 0.1391
32-bit string ........ 0.1517 ........ 0.1475 ...... 0.1504 ........ 0.1370
wide char string #1 .. 0.0044 ........ 0.0085 ...... 0.0067 ........ 0.0057
wide char string #2 .. 0.0081 ........ 0.0125 ...... 0.0069 ........ 0.0063
8-bit binary #1 ........... I ............. I ........... F ............. I
8-bit binary #2 ........... I ............. I ........... F ............. I
8-bit binary #3 ........... I ............. I ........... F ............. I
16-bit binary ............. I ............. I ........... F ............. I
32-bit binary ............. I ............. I ........... F ............. I
fix array #1 ......... 0.0014 ........ 0.0059 ...... 0.0132 ........ 0.0055
fix array #2 ......... 0.0146 ........ 0.0156 ...... 0.0155 ........ 0.0148
fix array #3 ......... 0.0211 ........ 0.0229 ...... 0.0179 ........ 0.0180
16-bit array #1 ...... 0.0673 ........ 0.0498 ...... 0.0343 ........ 0.0388
16-bit array #2 ........... S ............. S ........... S ............. S
32-bit array .............. S ............. S ........... S ............. S
complex array ............. I ............. I ........... F ............. F
fix map #1 ................ I ............. I ........... F ............. I
fix map #2 ........... 0.0148 ........ 0.0180 ...... 0.0156 ........ 0.0179
fix map #3 ................ I ............. I ........... F ............. I
fix map #4 ........... 0.0252 ........ 0.0201 ...... 0.0214 ........ 0.0167
16-bit map #1 ........ 0.1027 ........ 0.0836 ...... 0.0388 ........ 0.0510
16-bit map #2 ............. S ............. S ........... S ............. S
32-bit map ................ S ............. S ........... S ............. S
complex map .......... 0.1104 ........ 0.1010 ...... 0.0556 ........ 0.0602
fixext 1 .................. I ............. I ........... F ............. F
fixext 2 .................. I ............. I ........... F ............. F
fixext 4 .................. I ............. I ........... F ............. F
fixext 8 .................. I ............. I ........... F ............. F
fixext 16 ................. I ............. I ........... F ............. F
8-bit ext ................. I ............. I ........... F ............. F
16-bit ext ................ I ............. I ........... F ............. F
32-bit ext ................ I ............. I ........... F ............. F
32-bit timestamp #1 ....... I ............. I ........... F ............. F
32-bit timestamp #2 ....... I ............. I ........... F ............. F
64-bit timestamp #1 ....... I ............. I ........... F ............. F
64-bit timestamp #2 ....... I ............. I ........... F ............. F
64-bit timestamp #3 ....... I ............. I ........... F ............. F
96-bit timestamp #1 ....... I ............. I ........... F ............. F
96-bit timestamp #2 ....... I ............. I ........... F ............. F
96-bit timestamp #3 ....... I ............. I ........... F ............. F
===========================================================================
Total                  0.9642          1.0909        0.8224          0.7213
Skipped                     4               4             4               4
Failed                      0               0            24              17
Ignored                    24              24             0               7

Note that the msgpack extension (v2.1.2) doesn't support ext, bin and UTF-8 str types.

License

The library is released under the MIT License. See the bundled LICENSE file for details.

Author: rybakit
Source Code: https://github.com/rybakit/msgpack.php
License: MIT License

#php 

Chatgpt-api: Node.js client for the official ChatGPT API

ChatGPT API

Node.js client for the official ChatGPT API.

Intro

This package is a Node.js wrapper around ChatGPT by OpenAI. TS batteries included. ✨

Example usage

Updates

March 1, 2023

The official OpenAI chat completions API has been released, and it is now the default for this package! 🔥

MethodFree?Robust?Quality?
ChatGPTAPI❌ No✅ Yes✅️ Real ChatGPT models
ChatGPTUnofficialProxyAPI✅ Yes☑️ Maybe✅ Real ChatGPT

Note: We strongly recommend using ChatGPTAPI since it uses the officially supported API from OpenAI. We may remove support for ChatGPTUnofficialProxyAPI in a future release.

  1. ChatGPTAPI - Uses the gpt-3.5-turbo-0301 model with the official OpenAI chat completions API (official, robust approach, but it's not free)
  2. ChatGPTUnofficialProxyAPI - Uses an unofficial proxy server to access ChatGPT's backend API in a way that circumvents Cloudflare (uses the real ChatGPT and is pretty lightweight, but relies on a third-party server and is rate-limited)

CLI

To run the CLI, you'll need an OpenAI API key:

export OPENAI_API_KEY="sk-TODO"
npx chatgpt "your prompt here"

By default, the response is streamed to stdout, the results are stored in a local config file, and every invocation starts a new conversation. You can use -c to continue the previous conversation and --no-stream to disable streaming.

Under the hood, the CLI uses ChatGPTAPI with text-davinci-003 to mimic ChatGPT.

Usage:
  $ chatgpt <prompt>

Commands:
  <prompt>  Ask ChatGPT a question
  rm-cache  Clears the local message cache
  ls-cache  Prints the local message cache path

For more info, run any command with the `--help` flag:
  $ chatgpt --help
  $ chatgpt rm-cache --help
  $ chatgpt ls-cache --help

Options:
  -c, --continue          Continue last conversation (default: false)
  -d, --debug             Enables debug logging (default: false)
  -s, --stream            Streams the response (default: true)
  -s, --store             Enables the local message cache (default: true)
  -t, --timeout           Timeout in milliseconds
  -k, --apiKey            OpenAI API key
  -n, --conversationName  Unique name for the conversation
  -h, --help              Display this message
  -v, --version           Display version number

Install

npm install chatgpt

Make sure you're using node >= 18 so fetch is available (or node >= 14 if you install a fetch polyfill).

Usage

To use this module from Node.js, you need to pick between two methods:

MethodFree?Robust?Quality?
ChatGPTAPI❌ No✅ Yes✅️ Real ChatGPT models
ChatGPTUnofficialProxyAPI✅ Yes☑️ Maybe✅ Real ChatGPT

ChatGPTAPI - Uses the gpt-3.5-turbo-0301 model with the official OpenAI chat completions API (official, robust approach, but it's not free). You can override the model, completion params, and system message to fully customize your assistant.

ChatGPTUnofficialProxyAPI - Uses an unofficial proxy server to access ChatGPT's backend API in a way that circumvents Cloudflare (uses the real ChatGPT and is pretty lightweight, but relies on a third-party server and is rate-limited)

Both approaches have very similar APIs, so it should be simple to swap between them.

Note: We strongly recommend using ChatGPTAPI since it uses the officially supported API from OpenAI. We may remove support for ChatGPTUnofficialProxyAPI in a future release.

Usage - ChatGPTAPI

Sign up for an OpenAI API key and store it in your environment.

import { ChatGPTAPI } from 'chatgpt'

async function example() {
  const api = new ChatGPTAPI({
    apiKey: process.env.OPENAI_API_KEY
  })

  const res = await api.sendMessage('Hello World!')
  console.log(res.text)
}

You can override the default model (gpt-3.5-turbo-0301) and any OpenAI chat completion params using completionParams:

const api = new ChatGPTAPI({
  apiKey: process.env.OPENAI_API_KEY,
  completionParams: {
    temperature: 0.5,
    top_p: 0.8
  }
})

If you want to track the conversation, you'll need to pass the parentMessageId like this:

const api = new ChatGPTAPI({ apiKey: process.env.OPENAI_API_KEY })

// send a message and wait for the response
let res = await api.sendMessage('What is OpenAI?')
console.log(res.text)

// send a follow-up
res = await api.sendMessage('Can you expand on that?', {
  parentMessageId: res.id
})
console.log(res.text)

// send another follow-up
res = await api.sendMessage('What were we talking about?', {
  parentMessageId: res.id
})
console.log(res.text)

You can add streaming via the onProgress handler:

const res = await api.sendMessage('Write a 500 word essay on frogs.', {
  // print the partial response as the AI is "typing"
  onProgress: (partialResponse) => console.log(partialResponse.text)
})

// print the full text at the end
console.log(res.text)

You can add a timeout using the timeoutMs option:

// timeout after 2 minutes (which will also abort the underlying HTTP request)
const response = await api.sendMessage(
  'write me a really really long essay on frogs',
  {
    timeoutMs: 2 * 60 * 1000
  }
)

If you want to see more info about what's actually being sent to OpenAI's chat completions API, set the debug: true option in the ChatGPTAPI constructor:

const api = new ChatGPTAPI({
  apiKey: process.env.OPENAI_API_KEY,
  debug: true
})

We default to a basic systemMessage. You can override this in either the ChatGPTAPI constructor or sendMessage:

const res = await api.sendMessage('what is the answer to the universe?', {
  systemMessage: `You are ChatGPT, a large language model trained by OpenAI. You answer as concisely as possible for each responseIf you are generating a list, do not have too many items.
Current date: ${new Date().toISOString()}\n\n`
})

Note that we automatically handle appending the previous messages to the prompt and attempt to optimize for the available tokens (which defaults to 4096).

Usage in CommonJS (Dynamic import)

async function example() {
  // To use ESM in CommonJS, you can use a dynamic import
  const { ChatGPTAPI } = await import('chatgpt')

  const api = new ChatGPTAPI({ apiKey: process.env.OPENAI_API_KEY })

  const res = await api.sendMessage('Hello World!')
  console.log(res.text)
}

Usage - ChatGPTUnofficialProxyAPI

The API for ChatGPTUnofficialProxyAPI is almost exactly the same. You just need to provide a ChatGPT accessToken instead of an OpenAI API key.

import { ChatGPTUnofficialProxyAPI } from 'chatgpt'

async function example() {
  const api = new ChatGPTUnofficialProxyAPI({
    accessToken: process.env.OPENAI_ACCESS_TOKEN
  })

  const res = await api.sendMessage('Hello World!')
  console.log(res.text)
}

See demos/demo-reverse-proxy for a full example:

npx tsx demos/demo-reverse-proxy.ts

ChatGPTUnofficialProxyAPI messages also contain a conversationid in addition to parentMessageId, since the ChatGPT webapp can't reference messages across

Reverse Proxy

You can override the reverse proxy by passing apiReverseProxyUrl:

const api = new ChatGPTUnofficialProxyAPI({
  accessToken: process.env.OPENAI_ACCESS_TOKEN,
  apiReverseProxyUrl: 'https://your-example-server.com/api/conversation'
})

Known reverse proxies run by community members include:

Reverse Proxy URLAuthorRate LimitsLast Checked
https://chat.duti.tech/api/conversation@acheong08120 req/min by IP2/19/2023
https://gpt.pawan.krd/backend-api/conversation@PawanOsman?2/19/2023

Note: info on how the reverse proxies work is not being published at this time in order to prevent OpenAI from disabling access.

Access Token

To use ChatGPTUnofficialProxyAPI, you'll need an OpenAI access token from the ChatGPT webapp. To do this, you can use any of the following methods which take an email and password and return an access token:

These libraries work with email + password accounts (e.g., they do not support accounts where you auth via Microsoft / Google).

Alternatively, you can manually get an accessToken by logging in to the ChatGPT webapp and then opening https://chat.openai.com/api/auth/session, which will return a JSON object containing your accessToken string.

Access tokens last for days.

Note: using a reverse proxy will expose your access token to a third-party. There shouldn't be any adverse effects possible from this, but please consider the risks before using this method.

Docs

See the auto-generated docs for more info on methods and parameters.

Demos

Most of the demos use ChatGPTAPI. It should be pretty easy to convert them to use ChatGPTUnofficialProxyAPI if you'd rather use that approach. The only thing that needs to change is how you initialize the api with an accessToken instead of an apiKey.

To run the included demos:

  1. clone repo
  2. install node deps
  3. set OPENAI_API_KEY in .env

A basic demo is included for testing purposes:

npx tsx demos/demo.ts

A demo showing on progress handler:

npx tsx demos/demo-on-progress.ts

The on progress demo uses the optional onProgress parameter to sendMessage to receive intermediary results as ChatGPT is "typing".

A conversation demo:

npx tsx demos/demo-conversation.ts

A persistence demo shows how to store messages in Redis for persistence:

npx tsx demos/demo-persistence.ts

Any keyv adaptor is supported for persistence, and there are overrides if you'd like to use a different way of storing / retrieving messages.

Note that persisting message is required for remembering the context of previous conversations beyond the scope of the current Node.js process, since by default, we only store messages in memory. Here's an external demo of using a completely custom database solution to persist messages.

Note: Persistence is handled automatically when using ChatGPTUnofficialProxyAPI because it is connecting indirectly to ChatGPT.

Projects

All of these awesome projects are built using the chatgpt package. 🤯

If you create a cool integration, feel free to open a PR and add it to the list.

Compatibility

  • This package is ESM-only.
  • This package supports node >= 14.
  • This module assumes that fetch is installed.
    • In node >= 18, it's installed by default.
    • In node < 18, you need to install a polyfill like unfetch/polyfill (guide) or isomorphic-fetch (guide).
  • If you want to build a website using chatgpt, we recommend using it only from your backend API

Credits


Previous Updates

Feb 19, 2023
 

We now provide three ways of accessing the unofficial ChatGPT API, all of which have tradeoffs:

MethodFree?Robust?Quality?
ChatGPTAPI❌ No✅ Yes☑️ Mimics ChatGPT
ChatGPTUnofficialProxyAPI✅ Yes☑️ Maybe✅ Real ChatGPT
ChatGPTAPIBrowser (v3)✅ Yes❌ No✅ Real ChatGPT

Note: I recommend that you use either ChatGPTAPI or ChatGPTUnofficialProxyAPI.

  1. ChatGPTAPI - Uses text-davinci-003 to mimic ChatGPT via the official OpenAI completions API (most robust approach, but it's not free and doesn't use a model fine-tuned for chat)
  2. ChatGPTUnofficialProxyAPI - Uses an unofficial proxy server to access ChatGPT's backend API in a way that circumvents Cloudflare (uses the real ChatGPT and is pretty lightweight, but relies on a third-party server and is rate-limited)
  3. ChatGPTAPIBrowser - (deprecated; v3.5.1 of this package) Uses Puppeteer to access the official ChatGPT webapp (uses the real ChatGPT, but very flaky, heavyweight, and error prone)

Feb 5, 2023
 

OpenAI has disabled the leaked chat model we were previously using, so we're now defaulting to text-davinci-003, which is not free.

We've found several other hidden, fine-tuned chat models, but OpenAI keeps disabling them, so we're searching for alternative workarounds.

Feb 1, 2023
 

This package no longer requires any browser hacks – it is now using the official OpenAI completions API with a leaked model that ChatGPT uses under the hood. 🔥

import { ChatGPTAPI } from 'chatgpt'

const api = new ChatGPTAPI({
  apiKey: process.env.OPENAI_API_KEY
})

const res = await api.sendMessage('Hello World!')
console.log(res.text)

Please upgrade to chatgpt@latest (at least v4.0.0). The updated version is significantly more lightweight and robust compared with previous versions. You also don't have to worry about IP issues or rate limiting.

Huge shoutout to @waylaidwanderer for discovering the leaked chat model!

If you run into any issues, we do have a pretty active Discord with a bunch of ChatGPT hackers from the Node.js & Python communities.

Lastly, please consider starring this repo and following me on twitter twitter to help support the project.

Thanks && cheers, Travis


Download Details:

Author: Transitive-bullshit
Source Code: https://github.com/transitive-bullshit/chatgpt-api 
License: MIT license

#chatgpt #api #node #AI #openai #chatbot 

A Wrapper for Sembast and SQFlite to Enable Easy

FHIR_DB

This is really just a wrapper around Sembast_SQFLite - so all of the heavy lifting was done by Alex Tekartik. I highly recommend that if you have any questions about working with this package that you take a look at Sembast. He's also just a super nice guy, and even answered a question for me when I was deciding which sembast version to use. As usual, ResoCoder also has a good tutorial.

I have an interest in low-resource settings and thus a specific reason to be able to store data offline. To encourage this use, there are a number of other packages I have created based around the data format FHIR. FHIR® is the registered trademark of HL7 and is used with the permission of HL7. Use of the FHIR trademark does not constitute endorsement of this product by HL7.

Using the Db

So, while not absolutely necessary, I highly recommend that you use some sort of interface class. This adds the benefit of more easily handling errors, plus if you change to a different database in the future, you don't have to change the rest of your app, just the interface.

I've used something like this in my projects:

class IFhirDb {
  IFhirDb();
  final ResourceDao resourceDao = ResourceDao();

  Future<Either<DbFailure, Resource>> save(Resource resource) async {
    Resource resultResource;
    try {
      resultResource = await resourceDao.save(resource);
    } catch (error) {
      return left(DbFailure.unableToSave(error: error.toString()));
    }
    return right(resultResource);
  }

  Future<Either<DbFailure, List<Resource>>> returnListOfSingleResourceType(
      String resourceType) async {
    List<Resource> resultList;
    try {
      resultList =
          await resourceDao.getAllSortedById(resourceType: resourceType);
    } catch (error) {
      return left(DbFailure.unableToObtainList(error: error.toString()));
    }
    return right(resultList);
  }

  Future<Either<DbFailure, List<Resource>>> searchFunction(
      String resourceType, String searchString, String reference) async {
    List<Resource> resultList;
    try {
      resultList =
          await resourceDao.searchFor(resourceType, searchString, reference);
    } catch (error) {
      return left(DbFailure.unableToObtainList(error: error.toString()));
    }
    return right(resultList);
  }
}

I like this because in case there's an i/o error or something, it won't crash your app. Then, you can call this interface in your app like the following:

final patient = Patient(
    resourceType: 'Patient',
    name: [HumanName(text: 'New Patient Name')],
    birthDate: Date(DateTime.now()),
);

final saveResult = await IFhirDb().save(patient);

This will save your newly created patient to the locally embedded database.

IMPORTANT: this database will expect that all previously created resources have an id. When you save a resource, it will check to see if that resource type has already been stored. (Each resource type is saved in it's own store in the database). It will then check if there is an ID. If there's no ID, it will create a new one for that resource (along with metadata on version number and creation time). It will save it, and return the resource. If it already has an ID, it will copy the the old version of the resource into a _history store. It will then update the metadata of the new resource and save that version into the appropriate store for that resource. If, for instance, we have a previously created patient:

{
    "resourceType": "Patient",
    "id": "fhirfli-294057507-6811107",
    "meta": {
        "versionId": "1",
        "lastUpdated": "2020-10-16T19:41:28.054369Z"
    },
    "name": [
        {
            "given": ["New"],
            "family": "Patient"
        }
    ],
    "birthDate": "2020-10-16"
}

And we update the last name to 'Provider'. The above version of the patient will be kept in _history, while in the 'Patient' store in the db, we will have the updated version:

{
    "resourceType": "Patient",
    "id": "fhirfli-294057507-6811107",
    "meta": {
        "versionId": "2",
        "lastUpdated": "2020-10-16T19:45:07.316698Z"
    },
    "name": [
        {
            "given": ["New"],
            "family": "Provider"
        }
    ],
    "birthDate": "2020-10-16"
}

This way we can keep track of all previous version of all resources (which is obviously important in medicine).

For most of the interactions (saving, deleting, etc), they work the way you'd expect. The only difference is search. Because Sembast is NoSQL, we can search on any of the fields in a resource. If in our interface class, we have the following function:

  Future<Either<DbFailure, List<Resource>>> searchFunction(
      String resourceType, String searchString, String reference) async {
    List<Resource> resultList;
    try {
      resultList =
          await resourceDao.searchFor(resourceType, searchString, reference);
    } catch (error) {
      return left(DbFailure.unableToObtainList(error: error.toString()));
    }
    return right(resultList);
  }

You can search for all immunizations of a certain patient:

searchFunction(
        'Immunization', 'patient.reference', 'Patient/$patientId');

This function will search through all entries in the 'Immunization' store. It will look at all 'patient.reference' fields, and return any that match 'Patient/$patientId'.

The last thing I'll mention is that this is a password protected db, using AES-256 encryption (although it can also use Salsa20). Anytime you use the db, you have the option of using a password for encryption/decryption. Remember, if you setup the database using encryption, you will only be able to access it using that same password. When you're ready to change the password, you will need to call the update password function. If we again assume we created a change password method in our interface, it might look something like this:

class IFhirDb {
  IFhirDb();
  final ResourceDao resourceDao = ResourceDao();
  ...
    Future<Either<DbFailure, Unit>> updatePassword(String oldPassword, String newPassword) async {
    try {
      await resourceDao.updatePw(oldPassword, newPassword);
    } catch (error) {
      return left(DbFailure.unableToUpdatePassword(error: error.toString()));
    }
    return right(Unit);
  }

You don't have to use a password, and in that case, it will save the db file as plain text. If you want to add a password later, it will encrypt it at that time.

General Store

After using this for a while in an app, I've realized that it needs to be able to store data apart from just FHIR resources, at least on occasion. For this, I've added a second class for all versions of the database called GeneralDao. This is similar to the ResourceDao, but fewer options. So, in order to save something, it would look like this:

await GeneralDao().save('password', {'new':'map'});
await GeneralDao().save('password', {'new':'map'}, 'key');

The difference between these two options is that the first one will generate a key for the map being stored, while the second will store the map using the key provided. Both will return the key after successfully storing the map.

Other functions available include:

// deletes everything in the general store
await GeneralDao().deleteAllGeneral('password'); 

// delete specific entry
await GeneralDao().delete('password','key'); 

// returns map with that key
await GeneralDao().find('password', 'key'); 

FHIR® is a registered trademark of Health Level Seven International (HL7) and its use does not constitute an endorsement of products by HL7®

Use this package as a library

Depend on it

Run this command:

With Flutter:

 $ flutter pub add fhir_db

This will add a line like this to your package's pubspec.yaml (and run an implicit flutter pub get):

dependencies:
  fhir_db: ^0.4.3

Alternatively, your editor might support or flutter pub get. Check the docs for your editor to learn more.

Import it

Now in your Dart code, you can use:

import 'package:fhir_db/dstu2.dart';
import 'package:fhir_db/dstu2/fhir_db.dart';
import 'package:fhir_db/dstu2/general_dao.dart';
import 'package:fhir_db/dstu2/resource_dao.dart';
import 'package:fhir_db/encrypt/aes.dart';
import 'package:fhir_db/encrypt/salsa.dart';
import 'package:fhir_db/r4.dart';
import 'package:fhir_db/r4/fhir_db.dart';
import 'package:fhir_db/r4/general_dao.dart';
import 'package:fhir_db/r4/resource_dao.dart';
import 'package:fhir_db/r5.dart';
import 'package:fhir_db/r5/fhir_db.dart';
import 'package:fhir_db/r5/general_dao.dart';
import 'package:fhir_db/r5/resource_dao.dart';
import 'package:fhir_db/stu3.dart';
import 'package:fhir_db/stu3/fhir_db.dart';
import 'package:fhir_db/stu3/general_dao.dart';
import 'package:fhir_db/stu3/resource_dao.dart'; 

example/lib/main.dart

import 'package:fhir/r4.dart';
import 'package:fhir_db/r4.dart';
import 'package:flutter/material.dart';
import 'package:test/test.dart';

Future<void> main() async {
  WidgetsFlutterBinding.ensureInitialized();

  final resourceDao = ResourceDao();

  // await resourceDao.updatePw('newPw', null);
  await resourceDao.deleteAllResources(null);

  group('Playing with passwords', () {
    test('Playing with Passwords', () async {
      final patient = Patient(id: Id('1'));

      final saved = await resourceDao.save(null, patient);

      await resourceDao.updatePw(null, 'newPw');
      final search1 = await resourceDao.find('newPw',
          resourceType: R4ResourceType.Patient, id: Id('1'));
      expect(saved, search1[0]);

      await resourceDao.updatePw('newPw', 'newerPw');
      final search2 = await resourceDao.find('newerPw',
          resourceType: R4ResourceType.Patient, id: Id('1'));
      expect(saved, search2[0]);

      await resourceDao.updatePw('newerPw', null);
      final search3 = await resourceDao.find(null,
          resourceType: R4ResourceType.Patient, id: Id('1'));
      expect(saved, search3[0]);

      await resourceDao.deleteAllResources(null);
    });
  });

  final id = Id('12345');
  group('Saving Things:', () {
    test('Save Patient', () async {
      final humanName = HumanName(family: 'Atreides', given: ['Duke']);
      final patient = Patient(id: id, name: [humanName]);
      final saved = await resourceDao.save(null, patient);

      expect(saved.id, id);

      expect((saved as Patient).name?[0], humanName);
    });

    test('Save Organization', () async {
      final organization = Organization(id: id, name: 'FhirFli');
      final saved = await resourceDao.save(null, organization);

      expect(saved.id, id);

      expect((saved as Organization).name, 'FhirFli');
    });

    test('Save Observation1', () async {
      final observation1 = Observation(
        id: Id('obs1'),
        code: CodeableConcept(text: 'Observation #1'),
        effectiveDateTime: FhirDateTime(DateTime(1981, 09, 18)),
      );
      final saved = await resourceDao.save(null, observation1);

      expect(saved.id, Id('obs1'));

      expect((saved as Observation).code.text, 'Observation #1');
    });

    test('Save Observation1 Again', () async {
      final observation1 = Observation(
          id: Id('obs1'),
          code: CodeableConcept(text: 'Observation #1 - Updated'));
      final saved = await resourceDao.save(null, observation1);

      expect(saved.id, Id('obs1'));

      expect((saved as Observation).code.text, 'Observation #1 - Updated');

      expect(saved.meta?.versionId, Id('2'));
    });

    test('Save Observation2', () async {
      final observation2 = Observation(
        id: Id('obs2'),
        code: CodeableConcept(text: 'Observation #2'),
        effectiveDateTime: FhirDateTime(DateTime(1981, 09, 18)),
      );
      final saved = await resourceDao.save(null, observation2);

      expect(saved.id, Id('obs2'));

      expect((saved as Observation).code.text, 'Observation #2');
    });

    test('Save Observation3', () async {
      final observation3 = Observation(
        id: Id('obs3'),
        code: CodeableConcept(text: 'Observation #3'),
        effectiveDateTime: FhirDateTime(DateTime(1981, 09, 18)),
      );
      final saved = await resourceDao.save(null, observation3);

      expect(saved.id, Id('obs3'));

      expect((saved as Observation).code.text, 'Observation #3');
    });
  });

  group('Finding Things:', () {
    test('Find 1st Patient', () async {
      final search = await resourceDao.find(null,
          resourceType: R4ResourceType.Patient, id: id);
      final humanName = HumanName(family: 'Atreides', given: ['Duke']);

      expect(search.length, 1);

      expect((search[0] as Patient).name?[0], humanName);
    });

    test('Find 3rd Observation', () async {
      final search = await resourceDao.find(null,
          resourceType: R4ResourceType.Observation, id: Id('obs3'));

      expect(search.length, 1);

      expect(search[0].id, Id('obs3'));

      expect((search[0] as Observation).code.text, 'Observation #3');
    });

    test('Find All Observations', () async {
      final search = await resourceDao.getResourceType(
        null,
        resourceTypes: [R4ResourceType.Observation],
      );

      expect(search.length, 3);

      final idList = [];
      for (final obs in search) {
        idList.add(obs.id.toString());
      }

      expect(idList.contains('obs1'), true);

      expect(idList.contains('obs2'), true);

      expect(idList.contains('obs3'), true);
    });

    test('Find All (non-historical) Resources', () async {
      final search = await resourceDao.getAll(null);

      expect(search.length, 5);
      final patList = search.toList();
      final orgList = search.toList();
      final obsList = search.toList();
      patList.retainWhere(
          (resource) => resource.resourceType == R4ResourceType.Patient);
      orgList.retainWhere(
          (resource) => resource.resourceType == R4ResourceType.Organization);
      obsList.retainWhere(
          (resource) => resource.resourceType == R4ResourceType.Observation);

      expect(patList.length, 1);

      expect(orgList.length, 1);

      expect(obsList.length, 3);
    });
  });

  group('Deleting Things:', () {
    test('Delete 2nd Observation', () async {
      await resourceDao.delete(
          null, null, R4ResourceType.Observation, Id('obs2'), null, null);

      final search = await resourceDao.getResourceType(
        null,
        resourceTypes: [R4ResourceType.Observation],
      );

      expect(search.length, 2);

      final idList = [];
      for (final obs in search) {
        idList.add(obs.id.toString());
      }

      expect(idList.contains('obs1'), true);

      expect(idList.contains('obs2'), false);

      expect(idList.contains('obs3'), true);
    });

    test('Delete All Observations', () async {
      await resourceDao.deleteSingleType(null,
          resourceType: R4ResourceType.Observation);

      final search = await resourceDao.getAll(null);

      expect(search.length, 2);

      final patList = search.toList();
      final orgList = search.toList();
      patList.retainWhere(
          (resource) => resource.resourceType == R4ResourceType.Patient);
      orgList.retainWhere(
          (resource) => resource.resourceType == R4ResourceType.Organization);

      expect(patList.length, 1);

      expect(patList.length, 1);
    });

    test('Delete All Resources', () async {
      await resourceDao.deleteAllResources(null);

      final search = await resourceDao.getAll(null);

      expect(search.length, 0);
    });
  });

  group('Password - Saving Things:', () {
    test('Save Patient', () async {
      await resourceDao.updatePw(null, 'newPw');
      final humanName = HumanName(family: 'Atreides', given: ['Duke']);
      final patient = Patient(id: id, name: [humanName]);
      final saved = await resourceDao.save('newPw', patient);

      expect(saved.id, id);

      expect((saved as Patient).name?[0], humanName);
    });

    test('Save Organization', () async {
      final organization = Organization(id: id, name: 'FhirFli');
      final saved = await resourceDao.save('newPw', organization);

      expect(saved.id, id);

      expect((saved as Organization).name, 'FhirFli');
    });

    test('Save Observation1', () async {
      final observation1 = Observation(
        id: Id('obs1'),
        code: CodeableConcept(text: 'Observation #1'),
        effectiveDateTime: FhirDateTime(DateTime(1981, 09, 18)),
      );
      final saved = await resourceDao.save('newPw', observation1);

      expect(saved.id, Id('obs1'));

      expect((saved as Observation).code.text, 'Observation #1');
    });

    test('Save Observation1 Again', () async {
      final observation1 = Observation(
          id: Id('obs1'),
          code: CodeableConcept(text: 'Observation #1 - Updated'));
      final saved = await resourceDao.save('newPw', observation1);

      expect(saved.id, Id('obs1'));

      expect((saved as Observation).code.text, 'Observation #1 - Updated');

      expect(saved.meta?.versionId, Id('2'));
    });

    test('Save Observation2', () async {
      final observation2 = Observation(
        id: Id('obs2'),
        code: CodeableConcept(text: 'Observation #2'),
        effectiveDateTime: FhirDateTime(DateTime(1981, 09, 18)),
      );
      final saved = await resourceDao.save('newPw', observation2);

      expect(saved.id, Id('obs2'));

      expect((saved as Observation).code.text, 'Observation #2');
    });

    test('Save Observation3', () async {
      final observation3 = Observation(
        id: Id('obs3'),
        code: CodeableConcept(text: 'Observation #3'),
        effectiveDateTime: FhirDateTime(DateTime(1981, 09, 18)),
      );
      final saved = await resourceDao.save('newPw', observation3);

      expect(saved.id, Id('obs3'));

      expect((saved as Observation).code.text, 'Observation #3');
    });
  });

  group('Password - Finding Things:', () {
    test('Find 1st Patient', () async {
      final search = await resourceDao.find('newPw',
          resourceType: R4ResourceType.Patient, id: id);
      final humanName = HumanName(family: 'Atreides', given: ['Duke']);

      expect(search.length, 1);

      expect((search[0] as Patient).name?[0], humanName);
    });

    test('Find 3rd Observation', () async {
      final search = await resourceDao.find('newPw',
          resourceType: R4ResourceType.Observation, id: Id('obs3'));

      expect(search.length, 1);

      expect(search[0].id, Id('obs3'));

      expect((search[0] as Observation).code.text, 'Observation #3');
    });

    test('Find All Observations', () async {
      final search = await resourceDao.getResourceType(
        'newPw',
        resourceTypes: [R4ResourceType.Observation],
      );

      expect(search.length, 3);

      final idList = [];
      for (final obs in search) {
        idList.add(obs.id.toString());
      }

      expect(idList.contains('obs1'), true);

      expect(idList.contains('obs2'), true);

      expect(idList.contains('obs3'), true);
    });

    test('Find All (non-historical) Resources', () async {
      final search = await resourceDao.getAll('newPw');

      expect(search.length, 5);
      final patList = search.toList();
      final orgList = search.toList();
      final obsList = search.toList();
      patList.retainWhere(
          (resource) => resource.resourceType == R4ResourceType.Patient);
      orgList.retainWhere(
          (resource) => resource.resourceType == R4ResourceType.Organization);
      obsList.retainWhere(
          (resource) => resource.resourceType == R4ResourceType.Observation);

      expect(patList.length, 1);

      expect(orgList.length, 1);

      expect(obsList.length, 3);
    });
  });

  group('Password - Deleting Things:', () {
    test('Delete 2nd Observation', () async {
      await resourceDao.delete(
          'newPw', null, R4ResourceType.Observation, Id('obs2'), null, null);

      final search = await resourceDao.getResourceType(
        'newPw',
        resourceTypes: [R4ResourceType.Observation],
      );

      expect(search.length, 2);

      final idList = [];
      for (final obs in search) {
        idList.add(obs.id.toString());
      }

      expect(idList.contains('obs1'), true);

      expect(idList.contains('obs2'), false);

      expect(idList.contains('obs3'), true);
    });

    test('Delete All Observations', () async {
      await resourceDao.deleteSingleType('newPw',
          resourceType: R4ResourceType.Observation);

      final search = await resourceDao.getAll('newPw');

      expect(search.length, 2);

      final patList = search.toList();
      final orgList = search.toList();
      patList.retainWhere(
          (resource) => resource.resourceType == R4ResourceType.Patient);
      orgList.retainWhere(
          (resource) => resource.resourceType == R4ResourceType.Organization);

      expect(patList.length, 1);

      expect(patList.length, 1);
    });

    test('Delete All Resources', () async {
      await resourceDao.deleteAllResources('newPw');

      final search = await resourceDao.getAll('newPw');

      expect(search.length, 0);

      await resourceDao.updatePw('newPw', null);
    });
  });
} 

Download Details:

Author: MayJuun

Source Code: https://github.com/MayJuun/fhir/tree/main/fhir_db

#sqflite  #dart  #flutter 

Garry Taylor

Garry Taylor

1669952228

Dijkstra's Algorithm Explained with Examples

In this tutorial, you'll learn: What is Dijkstra's Algorithm and how Dijkstra's algorithm works with the help of visual guides.

You can use algorithms in programming to solve specific problems through a set of precise instructions or procedures.

Dijkstra's algorithm is one of many graph algorithms you'll come across. It is used to find the shortest path from a fixed node to all other nodes in a graph.

There are different representations of Dijkstra's algorithm. You can either find the shortest path between two nodes, or the shortest path from a fixed node to the rest of the nodes in a graph.

In this article, you'll learn how Dijkstra's algorithm works with the help of visual guides.

How Does Dijkstra’s Algorithm Work?

Before we dive into more detailed visual examples, you need to understand how Dijkstra's algorithm works.

Although the theoretical explanation may seem a bit abstract, it'll help you understand the practical aspect better.

In a given graph containing different nodes, we are required to get the shortest path from a given node to the rest of the nodes.

These nodes can represent any object like the names of cities, letters, and so on.

Between each node is a number denoting the distance between two nodes, as you can see in the image below:

nodes-1

We usually work with two arrays – one for visited nodes, and another for unvisited nodes. You'll learn more about the arrays in the next section.

When a node is visited, the algorithm calculates how long it took to get to the node and stores the distance. If a shorter path to a node is found, the initial value assigned for the distance is updated.

Note that a node cannot be visited twice.

The algorithm runs recursively until all the nodes have been visited.

Dijkstra's Algorithm Example

In this section, we'll take a look at a practical example that shows how Dijkstra's algorithm works.

Here's the graph we'll be working with:

nodes

We'll use the table below to put down the visited nodes and their distance from the fixed node:

NODESHORTEST DISTANCE FROM FIXED NODE
A
B
C
D
E

Visited nodes = []
Unvisited nodes = [A,B,C,D,E]

Above, we have a table showing each node and the shortest distance from the that node to the fixed node. We are yet to choose the fixed node.

Note that the distance for each node in the table is currently denoted as infinity (∞). This is because we don't know the shortest distance yet.

We also have two arrays – visited and unvisited. Whenever a node is visited, it is added to the visited nodes array.

Let's get started!

To simplify things, I'll break the process down into iterations. You'll see what happens in each step with the aid of diagrams.

Iteration #1

The first iteration might seem confusing, but that's totally fine. Once we start repeating the process in each iteration, you'll have a clearer picture of how the algorithm works.

Step #1 - Pick an unvisited node

We'll choose A as the fixed node. So we'll find the shortest distance from A to every other node in the graph.

node1-1

We're going to give A a distance of 0 because it is the initial node. So the table would look like this:

NODESHORTEST DISTANCE FROM FIXED NODE
A0
B
C
D
E

Step #2 - Find the distance from current nodenode1a-3

The next thing to do after choosing a node is to find the distance from it to the unvisited nodes around it.

The two unvisited nodes directly linked to A are B and C.

To get the distance from A to B:

0 + 4 = 4

0 being the value of the current node (A), and 4 being the distance between A and B in the graph.

To get the distance from A to C:

0 + 2 = 2

Step #3 - Update table with known distances

In the last step, we got 4 and 2 as the values of B and C respectively. So we'll update the table with those values:

NODESHORTEST DISTANCE FROM FIXED NODE
A0
B4
C2
D
E

Step #4 - Update arrays

At this point, the first iteration is complete. We'll move node A to the visited nodes array:

Visited nodes = [A]
Unvisited nodes = [B,C,D,E]

Before we proceed to the next iteration, you should know the following:

  • Once a node has been visited, it cannot be linked to the current node. Refer to step #2 in the iteration above and step #2 in the next iteration.
  • A node cannot be visited twice.
  • You can only update the shortest known distance if you get a value smaller than the recorded distance.

Iteration #2

Step #1 - Pick an unvisited node

We have four unvisited nodes — [B,C,D,E]. So how do you know which node to pick for the next iteration?

Well, we pick the node with the smallest known distance recorded in the table. Here's the table:

NODESHORTEST DISTANCE FROM FIXED NODE
A0
B4
C2
D
E

So we're going with node C.

node2-2

Step #2 - Find the distance from current node

To find the distance from the current node to the fixed node, we have to consider the nodes linked to the current node.

The nodes linked to the current node are A and B.

But A has been visited in the previous iteration so it will not be linked to the current node. That is:

node2a-1

From the diagram above,

  • The green color denotes the current node.
  • The blue color denotes the visited nodes. We cannot link to them or visit them again.
  • The red color shows the link from the unvisited nodes to the current node.

To find the distance from C to B:

2 + 1 = 3

2 above is recorded distance for node C while 1 is the distance between C and B in the graph.

Step #3 - Update table with known distances

In the last step, we got the value of B to be 3. In the first iteration, it was 4.

We're going to update the distance in the table to 3.

NODESHORTEST DISTANCE FROM FIXED NODE
A0
B3
C2
D
E

So, A --> B = 4 (First iteration).

A --> C --> B = 3 (Second iteration).

The algorithm has helped us find the shortest path to B from A.

Step #4 - Update arrays

We're done with the last visited node. Let's add it to the visited nodes array:

Visited nodes = [A,C]
Unvisited nodes = [B,D,E]

Iteration #3

Step #1 - Pick an unvisited node

We're down to three unvisited nodes — [B,D,E]. From the array, B has the shortest known distance.

node3-2

To restate what is going on in the diagram above:

  • The green color denotes the current node.
  • The blue color denotes the visited nodes. We cannot link to them or visit them again.
  • The red color shows the link from the unvisited nodes to the current node.

Step #2 - Find the distance from current node

The nodes linked to the current node are D and E.

B (the current node) has a value of 3. Therefore,

For node D, 3 + 3 = 6.

For node E, 3 + 2 = 5.

Step #3 - Update table with known distances

NODESHORTEST DISTANCE FROM FIXED NODE
A0
B3
C2
D6
E5

Step #4 - Update arrays

Visited nodes = [A,C,B]
Unvisited nodes = [D,E]

Iteration #4

Step #1 - Pick an unvisited node

Like other iterations, we'll go with the unvisited node with the shortest known distance. That is E.

node4-1

Step #2 - Find the distance from current node

According to our table, E has a value of 5.

For D in the current iteration,

5 + 5 = 10.

The value gotten for D here is 10, which is greater than the recorded value of 6 in the previous iteration. For this reason, we'll not update the table.

Step #3 - Update table with known distances

Our table remains the same:

NODESHORTEST DISTANCE FROM FIXED NODE
A0
B3
C2
D6
E5

Step #4 - Update arrays

Visited nodes = [A,C,B,E]
Unvisited nodes = [D]

Iteration #5

Step #1 - Pick an unvisited node

We're currently left with one node in the unvisited array — D.

node5-1

Step #2 - Find the distance from current node

The algorithm has gotten to the last iteration. This is because all nodes linked to the current node have been visited already so we can't link to them.

Step #3 - Update table with known distances

Our table remains the same:

NODESHORTEST DISTANCE FROM FIXED NODE
A0
B3
C2
D6
E5

At this point, we have updated the table with the shortest distance from the fixed node to every other node in the graph.

Step #4 - Update arrays

Visited nodes = [A,C,B,E,D]
Unvisited nodes = []

As can be seen above, we have no nodes left to visit. Using Dijkstra's algorithm, we've found the shortest distance from the fixed node to others nodes in the graph.

Dijkstra's Algorithm Pseudocode Example

The pseudocode example in this section was gotten from Wikipedia. Here it is:

 1  function Dijkstra(Graph, source):
 2      
 3      for each vertex v in Graph.Vertices:
 4          dist[v] ← INFINITY
 5          prev[v] ← UNDEFINED
 6          add v to Q
 7      dist[source] ← 0
 8      
 9      while Q is not empty:
10          u ← vertex in Q with min dist[u]
11          remove u from Q
12          
13          for each neighbor v of u still in Q:
14              alt ← dist[u] + Graph.Edges(u, v)
15              if alt < dist[v]:
16                  dist[v] ← alt
17                  prev[v] ← u
18
19      return dist[], prev[]

Applications of Dijkstra's Algorithm

Here are some of the common applications of Dijkstra's algorithm:

  • In maps to get the shortest distance between locations. An example is Google Maps.
  • In telecommunications to determine transmission rate.
  • In robotic design to determine shortest path for automated robots.

Summary

In this article, we talked about Dijkstra's algorithm. It is used to find the shortest distance from a fixed node to all other nodes in a graph.

We started by giving a brief summary of how the algorithm works.

We then had a look at an example that further explained Dijkstra's algorithm in steps using visual guides.

We concluded with a pseudocode example and some of the applications of Dijkstra's algorithm.

Happy coding!

Original article source at https://www.freecodecamp.org

#algorithm #datastructures

SumatoSoft

SumatoSoft

1650002573

How a Discovery Phase of a Project Leads to Success For Our Clients

When it comes to wondering about the relevance of the development of additional systems or a new product, it can be tricky to assess risks, remove uncertainty and doubt, and make a final decision based on the data and not on the endless set of assumptions. Also, you may discover that you don’t have the necessary knowledge and experience to develop the necessary solution.  

Unfortunately, projects fail. But there is an option to increase the chances of success up to 50%. 

According to a McKinsey report, one of the world’s most prestigious consulting firms,   50% of projects fail because of poor requirement definitions. This is old data, we agree. 

According to St. Cloud State University report, a leading public university in the Upper Midwest of the United States, 48% of projects experienced project time or budget overrun because of poor and incomplete requirements

St Cloud State University report

As a leading software development company with 9 years of experience, we can say that these figures are true. That is why we want to share with you our expertise about the Discovery Phase of a project that allows businesses to increase their chances of project success up to 50%! 

We split our article into 3 logical parts: 

In Part 1 we make a Discovery Phase overview. We look at its meaning, participants, purposes, how much time it takes and money required, who participates in it.

In Part 2 we describe how we run the Discovery Phase in agile for our clients and lead them to success. We also list the tools we use during this phase. 

In Part 3 you will read about what our clients get as a result of the Discovery phase and what benefits they reap.

For those who prefer to get information in a condensed form, we prepared a table with key messages about the project Discovery Phase. 

Enjoy reading!

A Discovery Phase in One Table

Key definitionsDetails
What isthe research of requirements and business goals at the very beginning of the project
Purposes

Precise budget and timeframe estimation 

The comprehensive shared vision of the whole project

The development team gets tools to make a great solution

Less uncertainty

ParticipantsProject manager, Business Analyst, Technical expert, UX/UI designer (optional), Software architect
Top benefits

Reduce development costs as much as 50%

Validate your business/product idea

Cut time-to-market by 20% 

Improve requirement management

Duration and price

From 1 to 3 month 

From 15.000$ to 25.000$

Key steps

Step 1: The Initial interview. Requirements elicitation. 

Step #2: The discovery of users and their needs

Step #3: Writing of the Vision and Scope document 

Step #4: Prototyping 

Step #5: Documentation of Software Requirement Specification (SRS)

Key deliverables

Product Vision and Scope 

Software requirements specification (SRS) 

Prototype designed at a high level 

Development roadmap with timeline and budget

Part 1: A Comprehensive Guide about a Discovery Phase

planning discovery phase

 

What is a Discovery Phase

A project Discovery Phase is the research of requirements and business goals at the start of the project. At that phase, we: 

  • flash out your business goals (what you want to achieve)
  • identify your target audience and their needs and requirements (what user issues you want to solve)
  • define the scope of work
  • estimate risks and assumptions
  • find the best technical solution
  • create a vision of the solution
  • and last but not the least, we document all this information.

During that phase, we need to cover such topics, like: 

  1. Design
  2. Working environment (devices and platforms)
  3. Technical preferences (e.g. databases)
  4. Integrations with third-party service providers
  5. Legislation limitations
  6. Localization
  7. Performance
  8. Reliability
  9. Security
  10. And much more.

What are the Purposes of a Discovery Phase

BA specialists

The positive effect of a Discovery Phase on development is hard to underestimate. We want to mention 4 goals why to conduct it: 

Purpose #1 Precise budget and timeline estimation 

The Discovery Phase of a project is the only possible option to make a precise estimation for a complex project since it reveals your goals, your client’s needs, the scope of work, external and internal limitations. 

Purpose #2 The comprehensive shared vision of the whole project 

Research results are fully documented. Hence, business goals, success metrics, user profiles, the project vision, and architecture become clearly defined for all stakeholders and become available anytime.

Purpose #3 The development team gets tools to make a great solution

Requirements lie at the very core of any software. The developers, designers, QA engineers use requirements in their work to make a great software product. Clearly defined requirements significantly increase the chances to release the product within timeframes, budget, and with due regard to business goals. 

Purpose #4 Less uncertainty

Launching a new product is a risky venture. Just some examples are budget overrun, no-market fit, missing vital requirements, implementation of not an optimal solution, etc. The Discovery Phase of a project helps to remove most of the uncertainty. ‍

Participants Of a Discovery Phase Of a Project

planning development strategy

Normally, a project manager, business analyst, and one technical expert form a team that can handle this phase. However, the more complex the project leads to the increase in the number of team members. From our perspective we can list the next specialists: 

Project manager 

Responsible for flawless communication of the discovery team and the client. This specialist is accountable for planning and tracking the progress of the phase. 

Business analyst 

Business analysts do the research and prepare 80-100% of the final documentation. BA must have various specific skills to spot the challenges and find the solution for them.

Good Business Analysts have a very clear vision of what information they should ask about to make sure that they will be able to move on with the project analysis. And you should be ready to answer these questions.

Yury Shamrei CEO, SumatoSoft

Technical expert/developer

coding a project

Technical experts don’t do any documentation, but it’s almost impossible to build a quality software product without consultation with technical experts, like SEO specialists, backend/ front-end developers. Their expertise is priceless and opens the door to build robust and effective systems. 

UX/UI designer (optional) 

Usually, projects require preparing prototypes and wireframes. Often this work can be done by the analyst, but sometimes the team also connects a separate UX/UI specialist. 

Software architect (optional)

While working with the most complex project it’s possible to attract software architects to make high-level decisions about the optimal stack of technologies to use in the development. 

Duration and Price of a Discovery Phase of a Project

Duration and Price of a Discovery Phase

These two parameters vary from project to project. A comprehensive project Discovery Phase for huge international companies can cost 100.000$+ and last for a year. After 9 years of experience in the software development market we can give the following figures: 

The duration: from 1 to 3 months. 

The price: from 15,000$ to 25,000$.

This is a reasonable price for high-quality research. We have to admit that lower values don’t imply the worse quality of research since there are a lot of variables that influence the discovery costs. But that means you take additional risks of possibly hiring unskilled specialists. Figures that exceed the values above are likely overpriced – ask such companies to explain the cost of their services. 

That is all for the first Part. Now you are aware of the key theoretical concepts about the Discovery Phase of a project. It’s time to set eyes on the discovery process itself. 

Part 2: How We Run a Discovery Phase For Our Clients

We describe all steps in the project Discovery phase and the tools we use in this section. However, every step should have some purpose, otherwise, its necessity is called into question. So we also mention the set of goals we want to achieve in every step. 

5 Steps in The Discovery Phase of a Project

5 steps in the discovery Phase of a Project - infographics

Step #1: The Initial interview. Requirements elicitation. 

interviewing

Goals: 

  • To gather high-level business requirements
  • To gather the info on the project from stakeholders
  • To make a project overview from a business point of view
  • To roughly evaluate the scope of work

To produce a relevant software solution we find out the initial business goals and high-level business requirements. All business requirements should be exhaustive, measurable, and prioritized. It’s also necessary to gather requirements and needs from every person who has an interest in the project, not only talk with top management. To make an optimal solution it’s also required to take into account the peculiarities of the industry where the solution will be implemented. 

Once the information on the project is gathered, we compile it in one place and analyze to make a primary overview of the project. Then we visually display all the collected data in the form of a mind map.

This step is not only about requirements identification. Most importantly, it helps to discuss business needs and goals and match them with the appropriate tech solution and implementation.

Yulia Kamotskaja, the Head of PM and BA.

Step #2: The discovery of users and their needs

Goals: 

  • To elicit users who will interact with the product
  • To elicit the challenges users want to solve
  • To validate the product-market fit
  • To check that there are no missed important requirements

Our business analyst identifies actors (people or systems) who will use this or that feature. We make a user profile that contains such information about users as gender, age, occupation, hobbies, challenges, etc. For example, any website has at least two actors: a non-registered user and an administrator. 

The final Discovery Phase report includes a set of key use cases. They are descriptions of the interactions between the system and the actors. For example, actions described as “adding an item to a customer’s order” are a use case. This step is important as it clearly explains the way real users are going to use the system. It leads to less vagueness in requirements development. 

One more staff to mention here is a customer journey map. It is a visual representation of the customer experience while communicating with the product. 

Step #3: Writing of the Vision and Scope document 

Writing of the Vision and Scope document

Goals: 

  • To capture the most important information in one place
  • To share the vision of the project across all stakeholders
  • To set the scope of work

In this step the SumatoSoft team makes a description of the optimal solution after brainstorming and several rounds of analysis. It breads the Vision and Scope document which becomes the basis of the project. It contains the description of goals, challenges, users, stakeholders, constraints, solution overview with key features, priorities, risks, and much more. 

This document establishes clear expectations, reduces risks, and becomes a guarantee that the final product will meet the business’s and user’s needs and requirements. 

Step #4: Prototyping 

Prototyping

Goals: 

  • Test the hypothesis about how to solve users’ challenges
  • Gather more accurate and detailed requirements

By creating wireframes and prototypes, our team allows users to interact with potential products and try to solve their challenges. After that, we can determine what aspects do their job and which ones need refining. 

Step #5: Documentation of Software Requirement Specification (SRS) 

Documentation of Software Requirement Specification (SRS)

 

Goals: 

  • To split use cases into components to develop
  • To reduce later redesign risks
  • To reduce the chances of requirement creep
  • To prepare the documents to make a precise budget and timeline estimation

The more detailed functional requirements and business rules are logically derived from the use cases. An example of such a functional requirement is “the system shall allow users to log in using one of the following social profiles: Facebook, Google+, LinkedIn”. Making a use-cases-based list of software requirements allows for fewer missed requirements. 

 

Tools We Use During a Discovery Phase Of a Project

There is an extensive set of tools that we actively use during the Discovery Phase:

  • Mind Map – a very useful tool to visually structure any set of ideas. We use it to find, describe, and examine some concepts and solutions.
  • User Story – one of the artifacts that are created during the Discovery Phase of a project. It explains how the system should work from the perspective of the end-user. QA engineers then use user stories to check the correctness of work after the development.
  • Use case model – helps us to illustrate how different types of users interact with the system to solve a problem.
  • BPMN Charts (business process modeling notation chart) – this tool can be used to display the process flow, the document flow, the status changes, and more. It’s an indispensable tool when we work with complex systems.
  • Request-Response Model – the title explains the value of this model. It reveals where and why the system gets/sends requests and how it can handle them.
  • Wireframes software

 

Part 3: What Clients Get as a Result of The Discovery Phase

discovery phase process

 

What are Deliverables Of the Discovery Phase Of a Project

Product Vision and Scope 

What is: A document with the description of high-level business requirements (goals, challenges, stakeholder profiles, success metrics), users portrait, project constraints, the vision of a future product, priorities of feature development, risks assessment. 

What for: Necessary to ensure the final product meets business needs. 

Software requirements specification (SRS) 

What is: A document with a nuanced description of the software product. It includes functional requirements, text about integration, recommended tech stack, described architecture, use cases. 

What for: The basis for SRS is the Product Vision and Scope and SRS, in turn, will become the main document during the coding and testing stages. 

Prototype designed at a high level 

What is: Visual user interfaces (quite often they are interactive) with the representation of all features of the product. 

What for: Prototype and SRS give a complete feel and understanding of the future product. 

Development roadmap with timeline and budget

product roadmap

What is: The final plan of the development is based on three previous deliverables. The budget and timeline are very precise and can be changed only in case of serious scope and requirement changes during the development. 

What for: That final deliverable gives a complete picture of how much effort, time, and money it will take to develop a project. 

With these discovery phase deliverables, a business can ask any company to build the product. You can also choose the SumatoSoft company because there is a bunch of reasons for that choice. 

 

Top 8 Benefits of a Discovery Phase

Benefit #1: Reduce development costs as much as 50% 

The project Discovery Phase decreases the chances to find a missed requirement during the development or after the release. The development of new vital features after the deployment can cost several times higher than it would cost at the beginning of the project. Besides, the Discovery Phase of a project helps to avoid expensive alterations of existing features. 

Benefit #2: Validate your business/product idea

The relevance of building a new piece of software or additional system is a big question. The Discovery Phase of a project identifies the product’s possibilities to satisfy users’ needs as well as to meet business needs. 

Benefit #3: Increase financing options 

The developed documentation, wireframes, market research increase the chances to attract financing. 

Benefit #4: Accurate estimation 

If a software development company makes a business proposal with timeframes and budget after the Discovery Phase of a project, the estimation is likely not to be altered later. But be sure that you choose the right software development company.  

Benefit #5: Create a shared vision among all stakeholders

A vision of a final solution is stored in documents and everybody can view it. It significantly reduces the odds of confusion within the team on what they build.

Benefit #6: Cut time-to-market by 20% 

As a result of the precise budget, timeframe, and clearly defined amount of work the time-to-market is cut up to 20%.  

Cut time-to-market by 20%

Benefit #7: Create a great user experience 

The team forms the most optimal solution to create a user experience so they would love to use the product. 

Benefit #8: Improve requirement management

The BA watches over the process of translating business requirements through functional requirements to a solution specification so that every requirement is understood, interpreted, and realized by all parties the right way. 

 

SumatoSoft Is a Reliable Partner For to Run the Discovery Phase 

Process of Business Analysis

Every project we undertake starts from a nuanced business analysis. We have more than 100 successful projects in various industries like eCommerce, Elearning, Finance, Real Estate, Transport, Travel, and more. After more than 9 years of work, we have established a flexible Discovery process for different time and budget limitations. 

  • Our clients’ satisfaction rate is 98% thanks to our strong commitment to deadlines and their needs
  • We use the latest knowledge about business analysis in our work
  • We have a deep expertise that allows us to develop the right solutions
  • We are a member of The Council for Inclusive Capitalism
  • We are recognized as top software developers by leading analyst agencies like techreviewer, clutch, goodfirms
  • We are ready to offer your excellent results for a reasonable price
  • We are the right team for your project

Get in touch with us for a free consultation. Let’s build a new product together. 

Final words

The Discovery Phase of a project helps businesses and developers to make documents that become a guiding start during the development. There are numerous benefits this phase brings as well as it significantly reduces risks and uncertainty in the project. 

Unfortunately, the DIscovery Phase does not guarantee that the project will be successful. But the truth is that nothing can guarantee this. And yet, running a discovery phase of a project will significantly increase the chances of success and that the project will be delivered on time and within budget, and will also bring real value to final users.

Thanks for reading!