What is Sonar (PING) | What is Sonarplatform (PING) | What is PING token

In this article, we’ll discuss information about the Sonarplatform project and PING token

Sonar aims to bring complete, easy to use tracking and analytics tools for both the Binance Smart Chain and Ethereum networks. With several customizable features, Sonar aims to provide the community a streamlined way to generate data in information for trading analytics.

The next-gen crypto tracking dashboard

Meet the most complete and easy to use tracking and analytics tool for the BSC and ETH networks, packed with never before seen features and state of the art UX to streamline your crypto investing workflow.

Master the depths of crypto

Navigate the depths of crypto with ease and pleasure

Sonar is finally bringing all relevant data and crucial tools you need to DYOR under a single comprehensive solution.

We believe that your ability to take good investment decisions shouldn’t require you to waste precious time on digging into contracts or reddit and countless social channels.

So we designed a new breed of software to streamline your crypto workflow and keep you sane throughout your journey.

MODULAR INDICATORS

Customizable Dashboard

Cut through the noise and focus on the data that is most important for your personal investing strategy and style. Customize and streamline your data feed. Keep what you need, and hide what you don’t. Your dashboard, your choice.

COMMUNITY TRACKING

Having the complete picture is making a sound choice

Data drawn down from social media, influencers, and many other metadata sources are aggregated, compiled and scored to give you trade signals that are not available from any other platform.

CONTRACT ANALYSIS

Navigate with clarity

Our contract security scan searches for the latest known scam functions and exploits, and compiles a digestible report detecting an extensive list of security threats that can be found in scam contracts – or positive aspects.

MULTIPLATFORM

Optimized for every screen

SONAR WALLET

Keep your tokens secure with Sonar

Non-custodial

Keys and passwords are generated and stored locally, so you only can access your wallets.

Web3, NFTs and more

Discover the best trusted dapps or connect to your favorite ones, store and enjoy your NFTs in a sexy gallery.

TOKENOMICS

The $PING token

Our tokenomics have been designed to provide both stability and reward holders while sustaining the ecosystem development and growth.

A 10% transaction tax grants at the same time a constant increase of holdings for our investors, liquidity, and funding for our venture

Even more incentive to hold $PING

PING token holders have access to the advanced tracking features and take advantage of Sonar’s unique analytics platform.

Starting from 250,000 $PING

2%: back to holders
3%: funds development
3%: back to liquidity pool
2%: funds innovation

Tier Structure

PING token holders have access to the advanced tracking features and take advantge of Sonar’s unique analytics.

Tier 0

Access to basic features

Tier 1

  • Remove advertising banners
  • Token events tracking
  • Custom token dashboard
  • Portfolio auto-tracking

Tier 2

  • Advanced events tracking
  • Advanced notifications
  • Plot trades on chart
  • more

Roadmap

Q3 2021

Sonar Whitepaper
Platform Design & Prototyping
Website Design & Development
Unroll Marketing Plan
Pre-Sale On DxSale
Launch On Pancake Swap
Listing On CoinGecko
Listing On CoinMarketCap
Logo On Web3 Wallets And Pancake Swap
Listing On Blockfolio
Techrate Audit

Q4 2021

Ethereum Bridge
Expand Development Team
CertiK Contract Security Audit
Tier-1/Tier-2 CEX Listings
Enhanced Marketing Strategy Execution
Metadata Tracking Layer And Frontend UI Development
Asset Tracking Layer Development
Web3 Wallet App Development (Limited Trade Execution And P/L Functions)
Go!

Q1 2022

New Platform Features Unveil
AI Analysis Substrate Development
Continued R&D Of The Sonar Use Case In Sequence With The Ever Changing Crypto Intelligence Market
Security And NFT Technology Partnerships Announcements
Sonar Platform Open Beta Testing
Web3 Wallet App Launch
(Web App, IOs, Android)

How and Where to Buy PING token?

PING token is now live on the Binance mainnet. The token address for PING is 0x5546600f77eda1dcf2e8817ef4d617382e7f71f5. Be cautious not to purchase any other token with a smart contract different from this one (as this can be easily faked). We strongly advise to be vigilant and stay safe throughout the launch. Don’t let the excitement get the best of you.

Just be sure you have enough BNB in your wallet to cover the transaction fees.

Join To Get BNB (Binance Coin)! ☞ CLICK HERE

You will have to first buy one of the major cryptocurrencies, usually either Bitcoin (BTC), Ethereum (ETH), Tether (USDT), Binance (BNB)…

We will use Binance Exchange here as it is one of the largest crypto exchanges that accept fiat deposits.

Once you finished the KYC process. You will be asked to add a payment method. Here you can either choose to provide a credit/debit card or use a bank transfer, and buy one of the major cryptocurrencies, usually either Bitcoin (BTC), Ethereum (ETH), Tether (USDT), Binance (BNB)…

SIGN UP ON BINANCE

Step by Step Guide : What is Binance | How to Create an account on Binance (Updated 2021)

Next step

You need a wallet address to Connect to Pancakeswap Decentralized Exchange, we use Trust Wallet

If you don’t have a Trust Wallet, read this article and follow the steps

What is Trust Wallet | How to Create a wallet and Use

Transfer $BNB to your new Trust wallet from your existing wallet

Next step

Connect Metamask Wallet to Pancakeswap Decentralized Exchange and Buy, Swap PING token

Contract: 0x5546600f77eda1dcf2e8817ef4d617382e7f71f5

Read more: What is Pancakeswap | Beginner’s Guide on How to Use Pancakeswap

The top exchange for trading in PING token is currently Pancakeswap v2

Find more information PING

WebsiteExplorerWhitepaperSocial ChannelSocial Channel 2Social Channel 3Message BoardMessage Board 2Coinmarketcap

🔺DISCLAIMER: The Information in the post isn’t financial advice, is intended FOR GENERAL INFORMATION PURPOSES ONLY. Trading Cryptocurrency is VERY risky. Make sure you understand these risks and that you are responsible for what you do with your money.

🔥 If you’re a beginner. I believe the article below will be useful to you ☞ What You Should Know Before Investing in Cryptocurrency - For Beginner

⭐ ⭐ ⭐The project is of interest to the community. Join to Get free ‘GEEK coin’ (GEEKCASH coin)!

☞ **-----https://geekcash.org-----**⭐ ⭐ ⭐

Thank for visiting and reading this article! Please don’t forget to leave a like, comment and share!

#blockchain #bitcoin #ping #sonar

What is GEEK

Buddha Community

What is Sonar (PING) | What is Sonarplatform (PING) | What is PING token

What is Sonar (PING) | What is Sonarplatform (PING) | What is PING token

In this article, we’ll discuss information about the Sonarplatform project and PING token

Sonar aims to bring complete, easy to use tracking and analytics tools for both the Binance Smart Chain and Ethereum networks. With several customizable features, Sonar aims to provide the community a streamlined way to generate data in information for trading analytics.

The next-gen crypto tracking dashboard

Meet the most complete and easy to use tracking and analytics tool for the BSC and ETH networks, packed with never before seen features and state of the art UX to streamline your crypto investing workflow.

Master the depths of crypto

Navigate the depths of crypto with ease and pleasure

Sonar is finally bringing all relevant data and crucial tools you need to DYOR under a single comprehensive solution.

We believe that your ability to take good investment decisions shouldn’t require you to waste precious time on digging into contracts or reddit and countless social channels.

So we designed a new breed of software to streamline your crypto workflow and keep you sane throughout your journey.

MODULAR INDICATORS

Customizable Dashboard

Cut through the noise and focus on the data that is most important for your personal investing strategy and style. Customize and streamline your data feed. Keep what you need, and hide what you don’t. Your dashboard, your choice.

COMMUNITY TRACKING

Having the complete picture is making a sound choice

Data drawn down from social media, influencers, and many other metadata sources are aggregated, compiled and scored to give you trade signals that are not available from any other platform.

CONTRACT ANALYSIS

Navigate with clarity

Our contract security scan searches for the latest known scam functions and exploits, and compiles a digestible report detecting an extensive list of security threats that can be found in scam contracts – or positive aspects.

MULTIPLATFORM

Optimized for every screen

SONAR WALLET

Keep your tokens secure with Sonar

Non-custodial

Keys and passwords are generated and stored locally, so you only can access your wallets.

Web3, NFTs and more

Discover the best trusted dapps or connect to your favorite ones, store and enjoy your NFTs in a sexy gallery.

TOKENOMICS

The $PING token

Our tokenomics have been designed to provide both stability and reward holders while sustaining the ecosystem development and growth.

A 10% transaction tax grants at the same time a constant increase of holdings for our investors, liquidity, and funding for our venture

Even more incentive to hold $PING

PING token holders have access to the advanced tracking features and take advantage of Sonar’s unique analytics platform.

Starting from 250,000 $PING

2%: back to holders
3%: funds development
3%: back to liquidity pool
2%: funds innovation

Tier Structure

PING token holders have access to the advanced tracking features and take advantge of Sonar’s unique analytics.

Tier 0

Access to basic features

Tier 1

  • Remove advertising banners
  • Token events tracking
  • Custom token dashboard
  • Portfolio auto-tracking

Tier 2

  • Advanced events tracking
  • Advanced notifications
  • Plot trades on chart
  • more

Roadmap

Q3 2021

Sonar Whitepaper
Platform Design & Prototyping
Website Design & Development
Unroll Marketing Plan
Pre-Sale On DxSale
Launch On Pancake Swap
Listing On CoinGecko
Listing On CoinMarketCap
Logo On Web3 Wallets And Pancake Swap
Listing On Blockfolio
Techrate Audit

Q4 2021

Ethereum Bridge
Expand Development Team
CertiK Contract Security Audit
Tier-1/Tier-2 CEX Listings
Enhanced Marketing Strategy Execution
Metadata Tracking Layer And Frontend UI Development
Asset Tracking Layer Development
Web3 Wallet App Development (Limited Trade Execution And P/L Functions)
Go!

Q1 2022

New Platform Features Unveil
AI Analysis Substrate Development
Continued R&D Of The Sonar Use Case In Sequence With The Ever Changing Crypto Intelligence Market
Security And NFT Technology Partnerships Announcements
Sonar Platform Open Beta Testing
Web3 Wallet App Launch
(Web App, IOs, Android)

How and Where to Buy PING token?

PING token is now live on the Binance mainnet. The token address for PING is 0x5546600f77eda1dcf2e8817ef4d617382e7f71f5. Be cautious not to purchase any other token with a smart contract different from this one (as this can be easily faked). We strongly advise to be vigilant and stay safe throughout the launch. Don’t let the excitement get the best of you.

Just be sure you have enough BNB in your wallet to cover the transaction fees.

Join To Get BNB (Binance Coin)! ☞ CLICK HERE

You will have to first buy one of the major cryptocurrencies, usually either Bitcoin (BTC), Ethereum (ETH), Tether (USDT), Binance (BNB)…

We will use Binance Exchange here as it is one of the largest crypto exchanges that accept fiat deposits.

Once you finished the KYC process. You will be asked to add a payment method. Here you can either choose to provide a credit/debit card or use a bank transfer, and buy one of the major cryptocurrencies, usually either Bitcoin (BTC), Ethereum (ETH), Tether (USDT), Binance (BNB)…

SIGN UP ON BINANCE

Step by Step Guide : What is Binance | How to Create an account on Binance (Updated 2021)

Next step

You need a wallet address to Connect to Pancakeswap Decentralized Exchange, we use Trust Wallet

If you don’t have a Trust Wallet, read this article and follow the steps

What is Trust Wallet | How to Create a wallet and Use

Transfer $BNB to your new Trust wallet from your existing wallet

Next step

Connect Metamask Wallet to Pancakeswap Decentralized Exchange and Buy, Swap PING token

Contract: 0x5546600f77eda1dcf2e8817ef4d617382e7f71f5

Read more: What is Pancakeswap | Beginner’s Guide on How to Use Pancakeswap

The top exchange for trading in PING token is currently Pancakeswap v2

Find more information PING

WebsiteExplorerWhitepaperSocial ChannelSocial Channel 2Social Channel 3Message BoardMessage Board 2Coinmarketcap

🔺DISCLAIMER: The Information in the post isn’t financial advice, is intended FOR GENERAL INFORMATION PURPOSES ONLY. Trading Cryptocurrency is VERY risky. Make sure you understand these risks and that you are responsible for what you do with your money.

🔥 If you’re a beginner. I believe the article below will be useful to you ☞ What You Should Know Before Investing in Cryptocurrency - For Beginner

⭐ ⭐ ⭐The project is of interest to the community. Join to Get free ‘GEEK coin’ (GEEKCASH coin)!

☞ **-----https://geekcash.org-----**⭐ ⭐ ⭐

Thank for visiting and reading this article! Please don’t forget to leave a like, comment and share!

#blockchain #bitcoin #ping #sonar

Royce  Reinger

Royce Reinger

1658068560

WordsCounted: A Ruby Natural Language Processor

WordsCounted

We are all in the gutter, but some of us are looking at the stars.

-- Oscar Wilde

WordsCounted is a Ruby NLP (natural language processor). WordsCounted lets you implement powerful tokensation strategies with a very flexible tokeniser class.

Features

  • Out of the box, get the following data from any string or readable file, or URL:
    • Token count and unique token count
    • Token densities, frequencies, and lengths
    • Char count and average chars per token
    • The longest tokens and their lengths
    • The most frequent tokens and their frequencies.
  • A flexible way to exclude tokens from the tokeniser. You can pass a string, regexp, symbol, lambda, or an array of any combination of those types for powerful tokenisation strategies.
  • Pass your own regexp rules to the tokeniser if you prefer. The default regexp filters special characters but keeps hyphens and apostrophes. It also plays nicely with diacritics (UTF and unicode characters): Bayrūt is treated as ["Bayrūt"] and not ["Bayr", "ū", "t"], for example.
  • Opens and reads files. Pass in a file path or a url instead of a string.

Installation

Add this line to your application's Gemfile:

gem 'words_counted'

And then execute:

$ bundle

Or install it yourself as:

$ gem install words_counted

Usage

Pass in a string or a file path, and an optional filter and/or regexp.

counter = WordsCounted.count(
  "We are all in the gutter, but some of us are looking at the stars."
)

# Using a file
counter = WordsCounted.from_file("path/or/url/to/my/file.txt")

.count and .from_file are convenience methods that take an input, tokenise it, and return an instance of WordsCounted::Counter initialized with the tokens. The WordsCounted::Tokeniser and WordsCounted::Counter classes can be used alone, however.

API

WordsCounted

WordsCounted.count(input, options = {})

Tokenises input and initializes a WordsCounted::Counter object with the resulting tokens.

counter = WordsCounted.count("Hello Beirut!")

Accepts two options: exclude and regexp. See Excluding tokens from the analyser and Passing in a custom regexp respectively.

WordsCounted.from_file(path, options = {})

Reads and tokenises a file, and initializes a WordsCounted::Counter object with the resulting tokens.

counter = WordsCounted.from_file("hello_beirut.txt")

Accepts the same options as .count.

Tokeniser

The tokeniser allows you to tokenise text in a variety of ways. You can pass in your own rules for tokenisation, and apply a powerful filter with any combination of rules as long as they can boil down into a lambda.

Out of the box the tokeniser includes only alpha chars. Hyphenated tokens and tokens with apostrophes are considered a single token.

#tokenise([pattern: TOKEN_REGEXP, exclude: nil])

tokeniser = WordsCounted::Tokeniser.new("Hello Beirut!").tokenise

# With `exclude`
tokeniser = WordsCounted::Tokeniser.new("Hello Beirut!").tokenise(exclude: "hello")

# With `pattern`
tokeniser = WordsCounted::Tokeniser.new("I <3 Beirut!").tokenise(pattern: /[a-z]/i)

See Excluding tokens from the analyser and Passing in a custom regexp for more information.

Counter

The WordsCounted::Counter class allows you to collect various statistics from an array of tokens.

#token_count

Returns the token count of a given string.

counter.token_count #=> 15

#token_frequency

Returns a sorted (unstable) two-dimensional array where each element is a token and its frequency. The array is sorted by frequency in descending order.

counter.token_frequency

[
  ["the", 2],
  ["are", 2],
  ["we",  1],
  # ...
  ["all", 1]
]

#most_frequent_tokens

Returns a hash where each key-value pair is a token and its frequency.

counter.most_frequent_tokens

{ "are" => 2, "the" => 2 }

#token_lengths

Returns a sorted (unstable) two-dimentional array where each element contains a token and its length. The array is sorted by length in descending order.

counter.token_lengths

[
  ["looking", 7],
  ["gutter",  6],
  ["stars",   5],
  # ...
  ["in",      2]
]

#longest_tokens

Returns a hash where each key-value pair is a token and its length.

counter.longest_tokens

{ "looking" => 7 }

#token_density([ precision: 2 ])

Returns a sorted (unstable) two-dimentional array where each element contains a token and its density as a float, rounded to a precision of two. The array is sorted by density in descending order. It accepts a precision argument, which must be a float.

counter.token_density

[
  ["are",     0.13],
  ["the",     0.13],
  ["but",     0.07 ],
  # ...
  ["we",      0.07 ]
]

#char_count

Returns the char count of tokens.

counter.char_count #=> 76

#average_chars_per_token([ precision: 2 ])

Returns the average char count per token rounded to two decimal places. Accepts a precision argument which defaults to two. Precision must be a float.

counter.average_chars_per_token #=> 4

#uniq_token_count

Returns the number of unique tokens.

counter.uniq_token_count #=> 13

Excluding tokens from the tokeniser

You can exclude anything you want from the input by passing the exclude option. The exclude option accepts a variety of filters and is extremely flexible.

  1. A space-delimited string. The filter will normalise the string.
  2. A regular expression.
  3. A lambda.
  4. A symbol that names a predicate method. For example :odd?.
  5. An array of any combination of the above.
tokeniser =
  WordsCounted::Tokeniser.new(
    "Magnificent! That was magnificent, Trevor."
  )

# Using a string
tokeniser.tokenise(exclude: "was magnificent")
# => ["that", "trevor"]

# Using a regular expression
tokeniser.tokenise(exclude: /trevor/)
# => ["magnificent", "that", "was", "magnificent"]

# Using a lambda
tokeniser.tokenise(exclude: ->(t) { t.length < 4 })
# => ["magnificent", "that", "magnificent", "trevor"]

# Using symbol
tokeniser = WordsCounted::Tokeniser.new("Hello! محمد")
tokeniser.tokenise(exclude: :ascii_only?)
# => ["محمد"]

# Using an array
tokeniser = WordsCounted::Tokeniser.new(
  "Hello! اسماءنا هي محمد، كارولينا، سامي، وداني"
)
tokeniser.tokenise(
  exclude: [:ascii_only?, /محمد/, ->(t) { t.length > 6}, "و"]
)
# => ["هي", "سامي", "وداني"]

Passing in a custom regexp

The default regexp accounts for letters, hyphenated tokens, and apostrophes. This means twenty-one is treated as one token. So is Mohamad's.

/[\p{Alpha}\-']+/

You can pass your own criteria as a Ruby regular expression to split your string as desired.

For example, if you wanted to include numbers, you can override the regular expression:

counter = WordsCounted.count("Numbers 1, 2, and 3", pattern: /[\p{Alnum}\-']+/)
counter.tokens
#=> ["numbers", "1", "2", "and", "3"]

Opening and reading files

Use the from_file method to open files. from_file accepts the same options as .count. The file path can be a URL.

counter = WordsCounted.from_file("url/or/path/to/file.text")

Gotchas

A hyphen used in leu of an em or en dash will form part of the token. This affects the tokeniser algorithm.

counter = WordsCounted.count("How do you do?-you are well, I see.")
counter.token_frequency

[
  ["do",   2],
  ["how",  1],
  ["you",  1],
  ["-you", 1], # WTF, mate!
  ["are",  1],
  # ...
]

In this example -you and you are separate tokens. Also, the tokeniser does not include numbers by default. Remember that you can pass your own regular expression if the default behaviour does not fit your needs.

A note on case sensitivity

The program will normalise (downcase) all incoming strings for consistency and filters.

Roadmap

Ability to open URLs

def self.from_url
  # open url and send string here after removing html
end

Are you using WordsCounted to do something interesting? Please tell me about it.

Gem Version 

RubyDoc documentation.

Demo

Visit this website for one example of what you can do with WordsCounted.


Contributors

See contributors.

Contributing

  1. Fork it
  2. Create your feature branch (git checkout -b my-new-feature)
  3. Commit your changes (git commit -am 'Add some feature')
  4. Push to the branch (git push origin my-new-feature)
  5. Create new Pull Request

Author: Abitdodgy
Source Code: https://github.com/abitdodgy/words_counted 
License: MIT license

#ruby #nlp 

Words Counted: A Ruby Natural Language Processor.

WordsCounted

We are all in the gutter, but some of us are looking at the stars.

-- Oscar Wilde

WordsCounted is a Ruby NLP (natural language processor). WordsCounted lets you implement powerful tokensation strategies with a very flexible tokeniser class.

Are you using WordsCounted to do something interesting? Please tell me about it.

 

Demo

Visit this website for one example of what you can do with WordsCounted.

Features

  • Out of the box, get the following data from any string or readable file, or URL:
    • Token count and unique token count
    • Token densities, frequencies, and lengths
    • Char count and average chars per token
    • The longest tokens and their lengths
    • The most frequent tokens and their frequencies.
  • A flexible way to exclude tokens from the tokeniser. You can pass a string, regexp, symbol, lambda, or an array of any combination of those types for powerful tokenisation strategies.
  • Pass your own regexp rules to the tokeniser if you prefer. The default regexp filters special characters but keeps hyphens and apostrophes. It also plays nicely with diacritics (UTF and unicode characters): Bayrūt is treated as ["Bayrūt"] and not ["Bayr", "ū", "t"], for example.
  • Opens and reads files. Pass in a file path or a url instead of a string.

Installation

Add this line to your application's Gemfile:

gem 'words_counted'

And then execute:

$ bundle

Or install it yourself as:

$ gem install words_counted

Usage

Pass in a string or a file path, and an optional filter and/or regexp.

counter = WordsCounted.count(
  "We are all in the gutter, but some of us are looking at the stars."
)

# Using a file
counter = WordsCounted.from_file("path/or/url/to/my/file.txt")

.count and .from_file are convenience methods that take an input, tokenise it, and return an instance of WordsCounted::Counter initialized with the tokens. The WordsCounted::Tokeniser and WordsCounted::Counter classes can be used alone, however.

API

WordsCounted

WordsCounted.count(input, options = {})

Tokenises input and initializes a WordsCounted::Counter object with the resulting tokens.

counter = WordsCounted.count("Hello Beirut!")

Accepts two options: exclude and regexp. See Excluding tokens from the analyser and Passing in a custom regexp respectively.

WordsCounted.from_file(path, options = {})

Reads and tokenises a file, and initializes a WordsCounted::Counter object with the resulting tokens.

counter = WordsCounted.from_file("hello_beirut.txt")

Accepts the same options as .count.

Tokeniser

The tokeniser allows you to tokenise text in a variety of ways. You can pass in your own rules for tokenisation, and apply a powerful filter with any combination of rules as long as they can boil down into a lambda.

Out of the box the tokeniser includes only alpha chars. Hyphenated tokens and tokens with apostrophes are considered a single token.

#tokenise([pattern: TOKEN_REGEXP, exclude: nil])

tokeniser = WordsCounted::Tokeniser.new("Hello Beirut!").tokenise

# With `exclude`
tokeniser = WordsCounted::Tokeniser.new("Hello Beirut!").tokenise(exclude: "hello")

# With `pattern`
tokeniser = WordsCounted::Tokeniser.new("I <3 Beirut!").tokenise(pattern: /[a-z]/i)

See Excluding tokens from the analyser and Passing in a custom regexp for more information.

Counter

The WordsCounted::Counter class allows you to collect various statistics from an array of tokens.

#token_count

Returns the token count of a given string.

counter.token_count #=> 15

#token_frequency

Returns a sorted (unstable) two-dimensional array where each element is a token and its frequency. The array is sorted by frequency in descending order.

counter.token_frequency

[
  ["the", 2],
  ["are", 2],
  ["we",  1],
  # ...
  ["all", 1]
]

#most_frequent_tokens

Returns a hash where each key-value pair is a token and its frequency.

counter.most_frequent_tokens

{ "are" => 2, "the" => 2 }

#token_lengths

Returns a sorted (unstable) two-dimentional array where each element contains a token and its length. The array is sorted by length in descending order.

counter.token_lengths

[
  ["looking", 7],
  ["gutter",  6],
  ["stars",   5],
  # ...
  ["in",      2]
]

#longest_tokens

Returns a hash where each key-value pair is a token and its length.

counter.longest_tokens

{ "looking" => 7 }

#token_density([ precision: 2 ])

Returns a sorted (unstable) two-dimentional array where each element contains a token and its density as a float, rounded to a precision of two. The array is sorted by density in descending order. It accepts a precision argument, which must be a float.

counter.token_density

[
  ["are",     0.13],
  ["the",     0.13],
  ["but",     0.07 ],
  # ...
  ["we",      0.07 ]
]

#char_count

Returns the char count of tokens.

counter.char_count #=> 76

#average_chars_per_token([ precision: 2 ])

Returns the average char count per token rounded to two decimal places. Accepts a precision argument which defaults to two. Precision must be a float.

counter.average_chars_per_token #=> 4

#uniq_token_count

Returns the number of unique tokens.

counter.uniq_token_count #=> 13

Excluding tokens from the tokeniser

You can exclude anything you want from the input by passing the exclude option. The exclude option accepts a variety of filters and is extremely flexible.

  1. A space-delimited string. The filter will normalise the string.
  2. A regular expression.
  3. A lambda.
  4. A symbol that names a predicate method. For example :odd?.
  5. An array of any combination of the above.
tokeniser =
  WordsCounted::Tokeniser.new(
    "Magnificent! That was magnificent, Trevor."
  )

# Using a string
tokeniser.tokenise(exclude: "was magnificent")
# => ["that", "trevor"]

# Using a regular expression
tokeniser.tokenise(exclude: /trevor/)
# => ["magnificent", "that", "was", "magnificent"]

# Using a lambda
tokeniser.tokenise(exclude: ->(t) { t.length < 4 })
# => ["magnificent", "that", "magnificent", "trevor"]

# Using symbol
tokeniser = WordsCounted::Tokeniser.new("Hello! محمد")
tokeniser.tokenise(exclude: :ascii_only?)
# => ["محمد"]

# Using an array
tokeniser = WordsCounted::Tokeniser.new(
  "Hello! اسماءنا هي محمد، كارولينا، سامي، وداني"
)
tokeniser.tokenise(
  exclude: [:ascii_only?, /محمد/, ->(t) { t.length > 6}, "و"]
)
# => ["هي", "سامي", "وداني"]

Passing in a custom regexp

The default regexp accounts for letters, hyphenated tokens, and apostrophes. This means twenty-one is treated as one token. So is Mohamad's.

/[\p{Alpha}\-']+/

You can pass your own criteria as a Ruby regular expression to split your string as desired.

For example, if you wanted to include numbers, you can override the regular expression:

counter = WordsCounted.count("Numbers 1, 2, and 3", pattern: /[\p{Alnum}\-']+/)
counter.tokens
#=> ["numbers", "1", "2", "and", "3"]

Opening and reading files

Use the from_file method to open files. from_file accepts the same options as .count. The file path can be a URL.

counter = WordsCounted.from_file("url/or/path/to/file.text")

Gotchas

A hyphen used in leu of an em or en dash will form part of the token. This affects the tokeniser algorithm.

counter = WordsCounted.count("How do you do?-you are well, I see.")
counter.token_frequency

[
  ["do",   2],
  ["how",  1],
  ["you",  1],
  ["-you", 1], # WTF, mate!
  ["are",  1],
  # ...
]

In this example -you and you are separate tokens. Also, the tokeniser does not include numbers by default. Remember that you can pass your own regular expression if the default behaviour does not fit your needs.

A note on case sensitivity

The program will normalise (downcase) all incoming strings for consistency and filters.

Roadmap

Ability to open URLs

def self.from_url
  # open url and send string here after removing html
end

Contributors

See contributors.

Contributing

  1. Fork it
  2. Create your feature branch (git checkout -b my-new-feature)
  3. Commit your changes (git commit -am 'Add some feature')
  4. Push to the branch (git push origin my-new-feature)
  5. Create new Pull Request

Author: abitdodgy
Source code: https://github.com/abitdodgy/words_counted
License: MIT license

#ruby  #ruby-on-rails 

aaron silva

aaron silva

1622197808

SafeMoon Clone | Create A DeFi Token Like SafeMoon | DeFi token like SafeMoon

SafeMoon is a decentralized finance (DeFi) token. This token consists of RFI tokenomics and auto-liquidity generating protocol. A DeFi token like SafeMoon has reached the mainstream standards under the Binance Smart Chain. Its success and popularity have been immense, thus, making the majority of the business firms adopt this style of cryptocurrency as an alternative.

A DeFi token like SafeMoon is almost similar to the other crypto-token, but the only difference being that it charges a 10% transaction fee from the users who sell their tokens, in which 5% of the fee is distributed to the remaining SafeMoon owners. This feature rewards the owners for holding onto their tokens.

Read More @ https://bit.ly/3oFbJoJ

#create a defi token like safemoon #defi token like safemoon #safemoon token #safemoon token clone #defi token

aaron silva

aaron silva

1621844791

SafeMoon Clone | SafeMoon Token Clone | SafeMoon Token Clone Development

The SafeMoon Token Clone Development is the new trendsetter in the digital world that brought significant changes to benefit the growth of investors’ business in a short period. The SafeMoon token clone is the most widely discussed topic among global users for its value soaring high in the marketplace. The SafeMoon token development is a combination of RFI tokenomics and the auto-liquidity generating process. The SafeMoon token is a replica of decentralized finance (DeFi) tokens that are highly scalable and implemented with tamper-proof security.

The SafeMoon tokens execute efficient functionalities like RFI Static Rewards, Automated Liquidity Provisions, and Automatic Token Burns. The SafeMoon token is considered the most advanced stable coin in the crypto market. It gained global audience attention for managing the stability of asset value without any fluctuations in the marketplace. The SafeMoon token clone is completely decentralized that eliminates the need for intermediaries and benefits the users with less transaction fee and wait time to overtake the traditional banking process.

Reasons to invest in SafeMoon Token Clone :

  • The SafeMoon token clone benefits the investors with Automated Liquidity Pool as a unique feature since it adds more revenue for their business growth in less time. The traders can experience instant trade round the clock for reaping profits with less investment towards the SafeMoon token.
  • It is integrated with high-end security protocols like two-factor authentication and signature process to prevent various hacks and vulnerable activities. The Smart Contract system in SafeMoon token development manages the overall operation of transactions without any delay,
  • The users can obtain a reward amount based on the volume of SafeMoon tokens traded in the marketplace. The efficient trading mechanism allows the users to trade the SafeMoon tokens at the best price for farming. The user can earn higher rewards based on the staking volume of tokens by users in the trade market.
  • It allows the token holders to gain complete ownership over their SafeMoon tokens after purchasing from DeFi exchanges. The SafeMoon community governs the token distribution, price fluctuations, staking, and every other token activity. The community boosts the value of SafeMoon tokens.
  • The Automated Burning tokens result in the community no longer having control over the SafeMoon tokens. Instead, the community can control the burn of the tokens efficiently for promoting its value in the marketplace. The transaction of SafeMoon tokens on the blockchain platform is fast, safe, and secure.

The SafeMoon Token Clone Development is a promising future for upcoming investors and startups to increase their business revenue in less time. The SafeMoon token clone has great demand in the real world among millions of users for its value in the market. Investors can contact leading Infinite Block Tech to gain proper assistance in developing a world-class SafeMoon token clone that increases the business growth in less time.

#safemoon token #safemoon token clone #safemoon token clone development #defi token