Ari  Bogisich

Ari Bogisich

1591822860

How to use of DLLs to run C/C Code from Unity

In this article, I discuss the use of DLLs to run C/C++ Code from Unity. Plugins are used to include the code created outside the Unity platform. The aim behind this was to integrate C/C++ code with Unity in order to allow us to call C/C++ written functions from a Unity C# script. In addition to plugins, I will also explain the use of Dynamic Link Library (DLL). These libraries contain code and data that can be used by third-party applications such as Unity. Using a DLL, promotes code reuse and efficient memory usage. This technique also allows modularization of Unity programs into separate components that can each be used as needed. This article also presents a simple way of using an external compiler to compile my native C/C++ code then add the resulting DLL to the Unity project.

#cplusplus #csharp #programming-c #c

What is GEEK

Buddha Community

How to use of DLLs to run C/C   Code from Unity
Tyrique  Littel

Tyrique Littel

1604008800

Static Code Analysis: What It Is? How to Use It?

Static code analysis refers to the technique of approximating the runtime behavior of a program. In other words, it is the process of predicting the output of a program without actually executing it.

Lately, however, the term “Static Code Analysis” is more commonly used to refer to one of the applications of this technique rather than the technique itself — program comprehension — understanding the program and detecting issues in it (anything from syntax errors to type mismatches, performance hogs likely bugs, security loopholes, etc.). This is the usage we’d be referring to throughout this post.

“The refinement of techniques for the prompt discovery of error serves as well as any other as a hallmark of what we mean by science.”

  • J. Robert Oppenheimer

Outline

We cover a lot of ground in this post. The aim is to build an understanding of static code analysis and to equip you with the basic theory, and the right tools so that you can write analyzers on your own.

We start our journey with laying down the essential parts of the pipeline which a compiler follows to understand what a piece of code does. We learn where to tap points in this pipeline to plug in our analyzers and extract meaningful information. In the latter half, we get our feet wet, and write four such static analyzers, completely from scratch, in Python.

Note that although the ideas here are discussed in light of Python, static code analyzers across all programming languages are carved out along similar lines. We chose Python because of the availability of an easy to use ast module, and wide adoption of the language itself.

How does it all work?

Before a computer can finally “understand” and execute a piece of code, it goes through a series of complicated transformations:

static analysis workflow

As you can see in the diagram (go ahead, zoom it!), the static analyzers feed on the output of these stages. To be able to better understand the static analysis techniques, let’s look at each of these steps in some more detail:

Scanning

The first thing that a compiler does when trying to understand a piece of code is to break it down into smaller chunks, also known as tokens. Tokens are akin to what words are in a language.

A token might consist of either a single character, like (, or literals (like integers, strings, e.g., 7Bob, etc.), or reserved keywords of that language (e.g, def in Python). Characters which do not contribute towards the semantics of a program, like trailing whitespace, comments, etc. are often discarded by the scanner.

Python provides the tokenize module in its standard library to let you play around with tokens:

Python

1

import io

2

import tokenize

3

4

code = b"color = input('Enter your favourite color: ')"

5

6

for token in tokenize.tokenize(io.BytesIO(code).readline):

7

    print(token)

Python

1

TokenInfo(type=62 (ENCODING),  string='utf-8')

2

TokenInfo(type=1  (NAME),      string='color')

3

TokenInfo(type=54 (OP),        string='=')

4

TokenInfo(type=1  (NAME),      string='input')

5

TokenInfo(type=54 (OP),        string='(')

6

TokenInfo(type=3  (STRING),    string="'Enter your favourite color: '")

7

TokenInfo(type=54 (OP),        string=')')

8

TokenInfo(type=4  (NEWLINE),   string='')

9

TokenInfo(type=0  (ENDMARKER), string='')

(Note that for the sake of readability, I’ve omitted a few columns from the result above — metadata like starting index, ending index, a copy of the line on which a token occurs, etc.)

#code quality #code review #static analysis #static code analysis #code analysis #static analysis tools #code review tips #static code analyzer #static code analysis tool #static analyzer

Tamale  Moses

Tamale Moses

1624240146

How to Run C/C++ in Sublime Text?

C and C++ are the most powerful programming language in the world. Most of the super fast and complex libraries and algorithms are written in C or C++. Most powerful Kernel programs are also written in C. So, there is no way to skip it.

In programming competitions, most programmers prefer to write code in C or C++. Tourist is considered the worlds top programming contestant of all ages who write code in C++.

During programming competitions, programmers prefer to use a lightweight editor to focus on coding and algorithm designing. VimSublime Text, and Notepad++ are the most common editors for us. Apart from the competition, many software developers and professionals love to use Sublime Text just because of its flexibility.

I have discussed the steps we need to complete in this blog post before running a C/C++ code in Sublime Text. We will take the inputs from an input file and print outputs to an output file without using freopen file related functions in C/C++.

#cpp #c #c-programming #sublimetext #c++ #c/c++

Pass method as parameter using C# | Delegates in C# | C# Bangla Tutorial | Advanced C#

https://youtu.be/GfcTSJf5Rc8

#oop in c# #object oriented programming in c# #object oriented concept in c# #learn oop concept #advance c# #pass method as parameter using c#

Ari  Bogisich

Ari Bogisich

1591822860

How to use of DLLs to run C/C Code from Unity

In this article, I discuss the use of DLLs to run C/C++ Code from Unity. Plugins are used to include the code created outside the Unity platform. The aim behind this was to integrate C/C++ code with Unity in order to allow us to call C/C++ written functions from a Unity C# script. In addition to plugins, I will also explain the use of Dynamic Link Library (DLL). These libraries contain code and data that can be used by third-party applications such as Unity. Using a DLL, promotes code reuse and efficient memory usage. This technique also allows modularization of Unity programs into separate components that can each be used as needed. This article also presents a simple way of using an external compiler to compile my native C/C++ code then add the resulting DLL to the Unity project.

#cplusplus #csharp #programming-c #c

Ari  Bogisich

Ari Bogisich

1589816580

Using isdigit() in C/C++

In this article, we’ll take a look at using the isdigit() function in C/C++. This is a very simple way to check if any value is a digit or not. Let’s look at how to use this function, using some simple examples.

#c programming #c++ #c #c#