Nico Jonsson

Nico Jonsson

1604558289

3 Hardest Parts of Learning Angular

What makes Angular different?

Angular is one of the most popular JavaScript frameworks. Developed and maintained by Google, it is used to build modern Single-Page Application’s (SPA’s), and Progressive Web Application’s (PWA’s).

As a complete framework,** it has everything you need for a JavaScript web application.**

It provides opinionated architecture enabling full separation of concerns by dividing application structure between components, services, directives, pipes & modules. These are different types of class that provides unique characteristics and functionality. This architecture enables development that scales & works well in a large team.

It provides the full MVC of web development. It provides built-in components and templates that enable advanced dynamic rendering, in addition to modules with the capability to use lazy loading to split bundle size & reduce the upfront main bundle size.

As a web developer, using Angular you inherit solutions to the most common problems faced. These solutions are built into the framework. This is what sets it apart from React and other ‘view-focused’ libraries.

The most important and valuable features that Angular provides out-of-the-box are the Angular CLI, intelligent IDE tooling, dynamic rendering, templates, dependency injection, AOT-JIT, routing, animations, Universal Server-Side Rendering (SSR), testing, accessibility, internationalization, security functionality, PWA support, Web-Workers, and much more.

These built-in features and tools demonstrate and encourage the Angular way to do things. These are all things that you’ll have to learn to take full advantage of the framework.

TypeScript adds complexity

Angular’s conceptual approach to web development is achieved through high-level abstractions over common useful JavaScript patterns. For the web developer using Angular, this involves learning the syntactic sugar that results from these abstractions.

For those who aren’t familiar with TypeScript, or those who haven’t yet learned it, TypeScript contributes massively to the steep learning curve.

The combination of Angular and TypeScript makes it feel as though it is its’ own programming language sometimes.

It uses experimental decorators to provide annotation for its NgModules and class types as part of its architecture. In Angular, decorators are what give classes its’ purpose within the application. Every supported class type in Angular is decorated with its’ name (e.g. @Component ).

#angular #software-engineering #javascript

What is GEEK

Buddha Community

3 Hardest Parts of Learning Angular

A Wrapper for Sembast and SQFlite to Enable Easy

FHIR_DB

This is really just a wrapper around Sembast_SQFLite - so all of the heavy lifting was done by Alex Tekartik. I highly recommend that if you have any questions about working with this package that you take a look at Sembast. He's also just a super nice guy, and even answered a question for me when I was deciding which sembast version to use. As usual, ResoCoder also has a good tutorial.

I have an interest in low-resource settings and thus a specific reason to be able to store data offline. To encourage this use, there are a number of other packages I have created based around the data format FHIR. FHIR® is the registered trademark of HL7 and is used with the permission of HL7. Use of the FHIR trademark does not constitute endorsement of this product by HL7.

Using the Db

So, while not absolutely necessary, I highly recommend that you use some sort of interface class. This adds the benefit of more easily handling errors, plus if you change to a different database in the future, you don't have to change the rest of your app, just the interface.

I've used something like this in my projects:

class IFhirDb {
  IFhirDb();
  final ResourceDao resourceDao = ResourceDao();

  Future<Either<DbFailure, Resource>> save(Resource resource) async {
    Resource resultResource;
    try {
      resultResource = await resourceDao.save(resource);
    } catch (error) {
      return left(DbFailure.unableToSave(error: error.toString()));
    }
    return right(resultResource);
  }

  Future<Either<DbFailure, List<Resource>>> returnListOfSingleResourceType(
      String resourceType) async {
    List<Resource> resultList;
    try {
      resultList =
          await resourceDao.getAllSortedById(resourceType: resourceType);
    } catch (error) {
      return left(DbFailure.unableToObtainList(error: error.toString()));
    }
    return right(resultList);
  }

  Future<Either<DbFailure, List<Resource>>> searchFunction(
      String resourceType, String searchString, String reference) async {
    List<Resource> resultList;
    try {
      resultList =
          await resourceDao.searchFor(resourceType, searchString, reference);
    } catch (error) {
      return left(DbFailure.unableToObtainList(error: error.toString()));
    }
    return right(resultList);
  }
}

I like this because in case there's an i/o error or something, it won't crash your app. Then, you can call this interface in your app like the following:

final patient = Patient(
    resourceType: 'Patient',
    name: [HumanName(text: 'New Patient Name')],
    birthDate: Date(DateTime.now()),
);

final saveResult = await IFhirDb().save(patient);

This will save your newly created patient to the locally embedded database.

IMPORTANT: this database will expect that all previously created resources have an id. When you save a resource, it will check to see if that resource type has already been stored. (Each resource type is saved in it's own store in the database). It will then check if there is an ID. If there's no ID, it will create a new one for that resource (along with metadata on version number and creation time). It will save it, and return the resource. If it already has an ID, it will copy the the old version of the resource into a _history store. It will then update the metadata of the new resource and save that version into the appropriate store for that resource. If, for instance, we have a previously created patient:

{
    "resourceType": "Patient",
    "id": "fhirfli-294057507-6811107",
    "meta": {
        "versionId": "1",
        "lastUpdated": "2020-10-16T19:41:28.054369Z"
    },
    "name": [
        {
            "given": ["New"],
            "family": "Patient"
        }
    ],
    "birthDate": "2020-10-16"
}

And we update the last name to 'Provider'. The above version of the patient will be kept in _history, while in the 'Patient' store in the db, we will have the updated version:

{
    "resourceType": "Patient",
    "id": "fhirfli-294057507-6811107",
    "meta": {
        "versionId": "2",
        "lastUpdated": "2020-10-16T19:45:07.316698Z"
    },
    "name": [
        {
            "given": ["New"],
            "family": "Provider"
        }
    ],
    "birthDate": "2020-10-16"
}

This way we can keep track of all previous version of all resources (which is obviously important in medicine).

For most of the interactions (saving, deleting, etc), they work the way you'd expect. The only difference is search. Because Sembast is NoSQL, we can search on any of the fields in a resource. If in our interface class, we have the following function:

  Future<Either<DbFailure, List<Resource>>> searchFunction(
      String resourceType, String searchString, String reference) async {
    List<Resource> resultList;
    try {
      resultList =
          await resourceDao.searchFor(resourceType, searchString, reference);
    } catch (error) {
      return left(DbFailure.unableToObtainList(error: error.toString()));
    }
    return right(resultList);
  }

You can search for all immunizations of a certain patient:

searchFunction(
        'Immunization', 'patient.reference', 'Patient/$patientId');

This function will search through all entries in the 'Immunization' store. It will look at all 'patient.reference' fields, and return any that match 'Patient/$patientId'.

The last thing I'll mention is that this is a password protected db, using AES-256 encryption (although it can also use Salsa20). Anytime you use the db, you have the option of using a password for encryption/decryption. Remember, if you setup the database using encryption, you will only be able to access it using that same password. When you're ready to change the password, you will need to call the update password function. If we again assume we created a change password method in our interface, it might look something like this:

class IFhirDb {
  IFhirDb();
  final ResourceDao resourceDao = ResourceDao();
  ...
    Future<Either<DbFailure, Unit>> updatePassword(String oldPassword, String newPassword) async {
    try {
      await resourceDao.updatePw(oldPassword, newPassword);
    } catch (error) {
      return left(DbFailure.unableToUpdatePassword(error: error.toString()));
    }
    return right(Unit);
  }

You don't have to use a password, and in that case, it will save the db file as plain text. If you want to add a password later, it will encrypt it at that time.

General Store

After using this for a while in an app, I've realized that it needs to be able to store data apart from just FHIR resources, at least on occasion. For this, I've added a second class for all versions of the database called GeneralDao. This is similar to the ResourceDao, but fewer options. So, in order to save something, it would look like this:

await GeneralDao().save('password', {'new':'map'});
await GeneralDao().save('password', {'new':'map'}, 'key');

The difference between these two options is that the first one will generate a key for the map being stored, while the second will store the map using the key provided. Both will return the key after successfully storing the map.

Other functions available include:

// deletes everything in the general store
await GeneralDao().deleteAllGeneral('password'); 

// delete specific entry
await GeneralDao().delete('password','key'); 

// returns map with that key
await GeneralDao().find('password', 'key'); 

FHIR® is a registered trademark of Health Level Seven International (HL7) and its use does not constitute an endorsement of products by HL7®

Use this package as a library

Depend on it

Run this command:

With Flutter:

 $ flutter pub add fhir_db

This will add a line like this to your package's pubspec.yaml (and run an implicit flutter pub get):

dependencies:
  fhir_db: ^0.4.3

Alternatively, your editor might support or flutter pub get. Check the docs for your editor to learn more.

Import it

Now in your Dart code, you can use:

import 'package:fhir_db/dstu2.dart';
import 'package:fhir_db/dstu2/fhir_db.dart';
import 'package:fhir_db/dstu2/general_dao.dart';
import 'package:fhir_db/dstu2/resource_dao.dart';
import 'package:fhir_db/encrypt/aes.dart';
import 'package:fhir_db/encrypt/salsa.dart';
import 'package:fhir_db/r4.dart';
import 'package:fhir_db/r4/fhir_db.dart';
import 'package:fhir_db/r4/general_dao.dart';
import 'package:fhir_db/r4/resource_dao.dart';
import 'package:fhir_db/r5.dart';
import 'package:fhir_db/r5/fhir_db.dart';
import 'package:fhir_db/r5/general_dao.dart';
import 'package:fhir_db/r5/resource_dao.dart';
import 'package:fhir_db/stu3.dart';
import 'package:fhir_db/stu3/fhir_db.dart';
import 'package:fhir_db/stu3/general_dao.dart';
import 'package:fhir_db/stu3/resource_dao.dart'; 

example/lib/main.dart

import 'package:fhir/r4.dart';
import 'package:fhir_db/r4.dart';
import 'package:flutter/material.dart';
import 'package:test/test.dart';

Future<void> main() async {
  WidgetsFlutterBinding.ensureInitialized();

  final resourceDao = ResourceDao();

  // await resourceDao.updatePw('newPw', null);
  await resourceDao.deleteAllResources(null);

  group('Playing with passwords', () {
    test('Playing with Passwords', () async {
      final patient = Patient(id: Id('1'));

      final saved = await resourceDao.save(null, patient);

      await resourceDao.updatePw(null, 'newPw');
      final search1 = await resourceDao.find('newPw',
          resourceType: R4ResourceType.Patient, id: Id('1'));
      expect(saved, search1[0]);

      await resourceDao.updatePw('newPw', 'newerPw');
      final search2 = await resourceDao.find('newerPw',
          resourceType: R4ResourceType.Patient, id: Id('1'));
      expect(saved, search2[0]);

      await resourceDao.updatePw('newerPw', null);
      final search3 = await resourceDao.find(null,
          resourceType: R4ResourceType.Patient, id: Id('1'));
      expect(saved, search3[0]);

      await resourceDao.deleteAllResources(null);
    });
  });

  final id = Id('12345');
  group('Saving Things:', () {
    test('Save Patient', () async {
      final humanName = HumanName(family: 'Atreides', given: ['Duke']);
      final patient = Patient(id: id, name: [humanName]);
      final saved = await resourceDao.save(null, patient);

      expect(saved.id, id);

      expect((saved as Patient).name?[0], humanName);
    });

    test('Save Organization', () async {
      final organization = Organization(id: id, name: 'FhirFli');
      final saved = await resourceDao.save(null, organization);

      expect(saved.id, id);

      expect((saved as Organization).name, 'FhirFli');
    });

    test('Save Observation1', () async {
      final observation1 = Observation(
        id: Id('obs1'),
        code: CodeableConcept(text: 'Observation #1'),
        effectiveDateTime: FhirDateTime(DateTime(1981, 09, 18)),
      );
      final saved = await resourceDao.save(null, observation1);

      expect(saved.id, Id('obs1'));

      expect((saved as Observation).code.text, 'Observation #1');
    });

    test('Save Observation1 Again', () async {
      final observation1 = Observation(
          id: Id('obs1'),
          code: CodeableConcept(text: 'Observation #1 - Updated'));
      final saved = await resourceDao.save(null, observation1);

      expect(saved.id, Id('obs1'));

      expect((saved as Observation).code.text, 'Observation #1 - Updated');

      expect(saved.meta?.versionId, Id('2'));
    });

    test('Save Observation2', () async {
      final observation2 = Observation(
        id: Id('obs2'),
        code: CodeableConcept(text: 'Observation #2'),
        effectiveDateTime: FhirDateTime(DateTime(1981, 09, 18)),
      );
      final saved = await resourceDao.save(null, observation2);

      expect(saved.id, Id('obs2'));

      expect((saved as Observation).code.text, 'Observation #2');
    });

    test('Save Observation3', () async {
      final observation3 = Observation(
        id: Id('obs3'),
        code: CodeableConcept(text: 'Observation #3'),
        effectiveDateTime: FhirDateTime(DateTime(1981, 09, 18)),
      );
      final saved = await resourceDao.save(null, observation3);

      expect(saved.id, Id('obs3'));

      expect((saved as Observation).code.text, 'Observation #3');
    });
  });

  group('Finding Things:', () {
    test('Find 1st Patient', () async {
      final search = await resourceDao.find(null,
          resourceType: R4ResourceType.Patient, id: id);
      final humanName = HumanName(family: 'Atreides', given: ['Duke']);

      expect(search.length, 1);

      expect((search[0] as Patient).name?[0], humanName);
    });

    test('Find 3rd Observation', () async {
      final search = await resourceDao.find(null,
          resourceType: R4ResourceType.Observation, id: Id('obs3'));

      expect(search.length, 1);

      expect(search[0].id, Id('obs3'));

      expect((search[0] as Observation).code.text, 'Observation #3');
    });

    test('Find All Observations', () async {
      final search = await resourceDao.getResourceType(
        null,
        resourceTypes: [R4ResourceType.Observation],
      );

      expect(search.length, 3);

      final idList = [];
      for (final obs in search) {
        idList.add(obs.id.toString());
      }

      expect(idList.contains('obs1'), true);

      expect(idList.contains('obs2'), true);

      expect(idList.contains('obs3'), true);
    });

    test('Find All (non-historical) Resources', () async {
      final search = await resourceDao.getAll(null);

      expect(search.length, 5);
      final patList = search.toList();
      final orgList = search.toList();
      final obsList = search.toList();
      patList.retainWhere(
          (resource) => resource.resourceType == R4ResourceType.Patient);
      orgList.retainWhere(
          (resource) => resource.resourceType == R4ResourceType.Organization);
      obsList.retainWhere(
          (resource) => resource.resourceType == R4ResourceType.Observation);

      expect(patList.length, 1);

      expect(orgList.length, 1);

      expect(obsList.length, 3);
    });
  });

  group('Deleting Things:', () {
    test('Delete 2nd Observation', () async {
      await resourceDao.delete(
          null, null, R4ResourceType.Observation, Id('obs2'), null, null);

      final search = await resourceDao.getResourceType(
        null,
        resourceTypes: [R4ResourceType.Observation],
      );

      expect(search.length, 2);

      final idList = [];
      for (final obs in search) {
        idList.add(obs.id.toString());
      }

      expect(idList.contains('obs1'), true);

      expect(idList.contains('obs2'), false);

      expect(idList.contains('obs3'), true);
    });

    test('Delete All Observations', () async {
      await resourceDao.deleteSingleType(null,
          resourceType: R4ResourceType.Observation);

      final search = await resourceDao.getAll(null);

      expect(search.length, 2);

      final patList = search.toList();
      final orgList = search.toList();
      patList.retainWhere(
          (resource) => resource.resourceType == R4ResourceType.Patient);
      orgList.retainWhere(
          (resource) => resource.resourceType == R4ResourceType.Organization);

      expect(patList.length, 1);

      expect(patList.length, 1);
    });

    test('Delete All Resources', () async {
      await resourceDao.deleteAllResources(null);

      final search = await resourceDao.getAll(null);

      expect(search.length, 0);
    });
  });

  group('Password - Saving Things:', () {
    test('Save Patient', () async {
      await resourceDao.updatePw(null, 'newPw');
      final humanName = HumanName(family: 'Atreides', given: ['Duke']);
      final patient = Patient(id: id, name: [humanName]);
      final saved = await resourceDao.save('newPw', patient);

      expect(saved.id, id);

      expect((saved as Patient).name?[0], humanName);
    });

    test('Save Organization', () async {
      final organization = Organization(id: id, name: 'FhirFli');
      final saved = await resourceDao.save('newPw', organization);

      expect(saved.id, id);

      expect((saved as Organization).name, 'FhirFli');
    });

    test('Save Observation1', () async {
      final observation1 = Observation(
        id: Id('obs1'),
        code: CodeableConcept(text: 'Observation #1'),
        effectiveDateTime: FhirDateTime(DateTime(1981, 09, 18)),
      );
      final saved = await resourceDao.save('newPw', observation1);

      expect(saved.id, Id('obs1'));

      expect((saved as Observation).code.text, 'Observation #1');
    });

    test('Save Observation1 Again', () async {
      final observation1 = Observation(
          id: Id('obs1'),
          code: CodeableConcept(text: 'Observation #1 - Updated'));
      final saved = await resourceDao.save('newPw', observation1);

      expect(saved.id, Id('obs1'));

      expect((saved as Observation).code.text, 'Observation #1 - Updated');

      expect(saved.meta?.versionId, Id('2'));
    });

    test('Save Observation2', () async {
      final observation2 = Observation(
        id: Id('obs2'),
        code: CodeableConcept(text: 'Observation #2'),
        effectiveDateTime: FhirDateTime(DateTime(1981, 09, 18)),
      );
      final saved = await resourceDao.save('newPw', observation2);

      expect(saved.id, Id('obs2'));

      expect((saved as Observation).code.text, 'Observation #2');
    });

    test('Save Observation3', () async {
      final observation3 = Observation(
        id: Id('obs3'),
        code: CodeableConcept(text: 'Observation #3'),
        effectiveDateTime: FhirDateTime(DateTime(1981, 09, 18)),
      );
      final saved = await resourceDao.save('newPw', observation3);

      expect(saved.id, Id('obs3'));

      expect((saved as Observation).code.text, 'Observation #3');
    });
  });

  group('Password - Finding Things:', () {
    test('Find 1st Patient', () async {
      final search = await resourceDao.find('newPw',
          resourceType: R4ResourceType.Patient, id: id);
      final humanName = HumanName(family: 'Atreides', given: ['Duke']);

      expect(search.length, 1);

      expect((search[0] as Patient).name?[0], humanName);
    });

    test('Find 3rd Observation', () async {
      final search = await resourceDao.find('newPw',
          resourceType: R4ResourceType.Observation, id: Id('obs3'));

      expect(search.length, 1);

      expect(search[0].id, Id('obs3'));

      expect((search[0] as Observation).code.text, 'Observation #3');
    });

    test('Find All Observations', () async {
      final search = await resourceDao.getResourceType(
        'newPw',
        resourceTypes: [R4ResourceType.Observation],
      );

      expect(search.length, 3);

      final idList = [];
      for (final obs in search) {
        idList.add(obs.id.toString());
      }

      expect(idList.contains('obs1'), true);

      expect(idList.contains('obs2'), true);

      expect(idList.contains('obs3'), true);
    });

    test('Find All (non-historical) Resources', () async {
      final search = await resourceDao.getAll('newPw');

      expect(search.length, 5);
      final patList = search.toList();
      final orgList = search.toList();
      final obsList = search.toList();
      patList.retainWhere(
          (resource) => resource.resourceType == R4ResourceType.Patient);
      orgList.retainWhere(
          (resource) => resource.resourceType == R4ResourceType.Organization);
      obsList.retainWhere(
          (resource) => resource.resourceType == R4ResourceType.Observation);

      expect(patList.length, 1);

      expect(orgList.length, 1);

      expect(obsList.length, 3);
    });
  });

  group('Password - Deleting Things:', () {
    test('Delete 2nd Observation', () async {
      await resourceDao.delete(
          'newPw', null, R4ResourceType.Observation, Id('obs2'), null, null);

      final search = await resourceDao.getResourceType(
        'newPw',
        resourceTypes: [R4ResourceType.Observation],
      );

      expect(search.length, 2);

      final idList = [];
      for (final obs in search) {
        idList.add(obs.id.toString());
      }

      expect(idList.contains('obs1'), true);

      expect(idList.contains('obs2'), false);

      expect(idList.contains('obs3'), true);
    });

    test('Delete All Observations', () async {
      await resourceDao.deleteSingleType('newPw',
          resourceType: R4ResourceType.Observation);

      final search = await resourceDao.getAll('newPw');

      expect(search.length, 2);

      final patList = search.toList();
      final orgList = search.toList();
      patList.retainWhere(
          (resource) => resource.resourceType == R4ResourceType.Patient);
      orgList.retainWhere(
          (resource) => resource.resourceType == R4ResourceType.Organization);

      expect(patList.length, 1);

      expect(patList.length, 1);
    });

    test('Delete All Resources', () async {
      await resourceDao.deleteAllResources('newPw');

      final search = await resourceDao.getAll('newPw');

      expect(search.length, 0);

      await resourceDao.updatePw('newPw', null);
    });
  });
} 

Download Details:

Author: MayJuun

Source Code: https://github.com/MayJuun/fhir/tree/main/fhir_db

#sqflite  #dart  #flutter 

Christa  Stehr

Christa Stehr

1598940617

Install Angular - Angular Environment Setup Process

Angular is a TypeScript based framework that works in synchronization with HTML, CSS, and JavaScript. To work with angular, domain knowledge of these 3 is required.

  1. Installing Node.js and npm
  2. Installing Angular CLI
  3. Creating workspace
  4. Deploying your First App

In this article, you will get to know about the Angular Environment setup process. After reading this article, you will be able to install, setup, create, and launch your own application in Angular. So let’s start!!!

Angular environment setup

Install Angular in Easy Steps

For Installing Angular on your Machine, there are 2 prerequisites:

  • Node.js
  • npm Package Manager
Node.js

First you need to have Node.js installed as Angular require current, active LTS or maintenance LTS version of Node.js

Download and Install Node.js version suitable for your machine’s operating system.

Npm Package Manager

Angular, Angular CLI and Angular applications are dependent on npm packages. By installing Node.js, you have automatically installed the npm Package manager which will be the base for installing angular in your system. To check the presence of npm client and Angular version check of npm client, run this command:

  1. npm -v

Installing Angular CLI

  • Open Terminal/Command Prompt
  • To install Angular CLI, run the below command:
  1. npm install -g @angular/cli

installing angular CLI

· After executing the command, Angular CLI will get installed within some time. You can check it using the following command

  1. ng --version

Workspace Creation

Now as your Angular CLI is installed, you need to create a workspace to work upon your application. Methods for it are:

  • Using CLI
  • Using Visual Studio Code
1. Using CLI

To create a workspace:

  • Navigate to the desired directory where you want to create your workspace using cd command in the Terminal/Command prompt
  • Then in the directory write this command on your terminal and provide the name of the app which you want to create. In my case I have mentioned DataFlair:
  1. Ng new YourAppName

create angular workspace

  • After running this command, it will prompt you to select from various options about the CSS and other functionalities.

angular CSS options

  • To leave everything to default, simply press the Enter or the Return key.

angular setup

#angular tutorials #angular cli install #angular environment setup #angular version check #download angular #install angular #install angular cli

Roberta  Ward

Roberta Ward

1593184320

Basics of Angular: Part-1

What is Angular? What it does? How we implement it in a project? So, here are some basics of angular to let you learn more about angular.

Angular is a Typescript-based open-source front-end web application platform. The Angular Team at Google and a community of individuals and corporations lead it. Angular lets you extend HTML’s syntax to express your apps’ components clearly. The angular resolves challenges while developing a single page and cross-platform applications. So, here the meaning of the single-page applications in angular is that the index.html file serves the app. And, the index.html file links other files to it.

We build angular applications with basic concepts which are NgModules. It provides a compilation context for components. At the beginning of an angular project, the command-line interface provides a built-in component which is the root component. But, NgModule can add a number of additional components. These can be created through a template or loaded from a router. This is what a compilation context about.

What is a Component in Angular?

Components are key features in Angular. It controls a patch of the screen called a view. A couple of components that we create on our own helps to build a whole application. In the end, the root component or the app component holds our entire application. The component has its business logic that it does to support the view inside the class. The class interacts with the view through an API of properties and methods. All the components added by us in the application are not linked to the index.html. But, they link to the app.component.html through the selectors. A component can be a component and not only a typescript class by adding a decorator @Component. Then, for further access, a class can import it. The decorator contains some metadata like selector, template, and style. Here’s an example of how a component decorator looks like:

@Component({
    selector: 'app-root',
    templateUrl: 'app.component.html',
    styleUrls: ['app.component.scss']
})

Role of App Module

Modules are the package of functionalities of our app. It gives Angular the information about which features does my app has and what feature it uses. It is an empty Typescript class, but we transform it by adding a decorator @NgModule. So, we have four properties that we set up on the object pass to @NgModule. The four properties are declarations, imports, providers, and bootstrap. All the built-in new components add up to the declarations array in @NgModule.

@NgModule({
declarations: [
  AppComponent,
],
imports: [
  BrowserModule,
  HttpClientModule,
  AppRoutingModule,
  FormsModule
],
bootstrap: [AppComponent]
})

What is Data Binding?

Data Binding is the communication between the Typescript code of the component and the template. So, we have different kinds of data binding given below:

  • When there is a requirement to output data from our Typescript code in the HTML template. String interpolation handles this purpose like {{data}} in HTML file. Property Binding is also used for this purpose like [property] = “data”.
  • When we want to trigger any event like clicking a button. Event Binding works while we react to user events like (event) = “expression”.
  • When we can react to user events and output something at the same time. Two-way Binding is used like [(ngModel)] = “data”.

image for understanding data binding

#angular #javascript #tech blogs #user interface (ui) #angular #angular fundamentals #angular tutorial #basics of angular

Roberta  Ward

Roberta Ward

1595344320

Wondering how to upgrade your skills in the pandemic? Here's a simple way you can do it.

Corona Virus Pandemic has brought the world to a standstill.

Countries are on a major lockdown. Schools, colleges, theatres, gym, clubs, and all other public places are shut down, the country’s economy is suffering, human health is on stake, people are losing their jobs and nobody knows how worse it can get.

Since most of the places are on lockdown, and you are working from home or have enough time to nourish your skills, then you should use this time wisely! We always complain that we want some ‘time’ to learn and upgrade our knowledge but don’t get it due to our ‘busy schedules’. So, now is the time to make a ‘list of skills’ and learn and upgrade your skills at home!

And for the technology-loving people like us, Knoldus Techhub has already helped us a lot in doing it in a short span of time!

If you are still not aware of it, don’t worry as Georgia Byng has well said,

“No time is better than the present”

– Georgia Byng, a British children’s writer, illustrator, actress and film producer.

No matter if you are a developer (be it front-end or back-end) or a data scientisttester, or a DevOps person, or, a learner who has a keen interest in technology, Knoldus Techhub has brought it all for you under one common roof.

From technologies like Scala, spark, elastic-search to angular, go, machine learning, it has a total of 20 technologies with some recently added ones i.e. DAML, test automation, snowflake, and ionic.

How to upgrade your skills?

Every technology in Tech-hub has n number of templates. Once you click on any specific technology you’ll be able to see all the templates of that technology. Since these templates are downloadable, you need to provide your email to get the template downloadable link in your mail.

These templates helps you learn the practical implementation of a topic with so much of ease. Using these templates you can learn and kick-start your development in no time.

Apart from your learning, there are some out of the box templates, that can help provide the solution to your business problem that has all the basic dependencies/ implementations already plugged in. Tech hub names these templates as xlr8rs (pronounced as accelerators).

xlr8rs make your development real fast by just adding your core business logic to the template.

If you are looking for a template that’s not available, you can also request a template may be for learning or requesting for a solution to your business problem and tech-hub will connect with you to provide you the solution. Isn’t this helpful 🙂

Confused with which technology to start with?

To keep you updated, the Knoldus tech hub provides you with the information on the most trending technology and the most downloaded templates at present. This you’ll be informed and learn the one that’s most trending.

Since we believe:

“There’s always a scope of improvement“

If you still feel like it isn’t helping you in learning and development, you can provide your feedback in the feedback section in the bottom right corner of the website.

#ai #akka #akka-http #akka-streams #amazon ec2 #angular 6 #angular 9 #angular material #apache flink #apache kafka #apache spark #api testing #artificial intelligence #aws #aws services #big data and fast data #blockchain #css #daml #devops #elasticsearch #flink #functional programming #future #grpc #html #hybrid application development #ionic framework #java #java11 #kubernetes #lagom #microservices #ml # ai and data engineering #mlflow #mlops #mobile development #mongodb #non-blocking #nosql #play #play 2.4.x #play framework #python #react #reactive application #reactive architecture #reactive programming #rust #scala #scalatest #slick #software #spark #spring boot #sql #streaming #tech blogs #testing #user interface (ui) #web #web application #web designing #angular #coronavirus #daml #development #devops #elasticsearch #golang #ionic #java #kafka #knoldus #lagom #learn #machine learning #ml #pandemic #play framework #scala #skills #snowflake #spark streaming #techhub #technology #test automation #time management #upgrade

Roberta  Ward

Roberta Ward

1595337024

Tutorial: Nx-style monorepo workspace with Angular CLI: Part 3

In Part 3 of this tutorial, we create the passenger info and flight search feature libraries. We use the generate project tool to create the mobile booking application and its test project. Finally, we create a mobile version of the flight search component template.

This tutorial is part of the Angular Architectural Patterns series.

In Part 2 of this tutorial, we used the generate project tool to generate the booking data access and shared data access workspace libraries with NgRx Store and Effects. We extracted a shared environments library and hooked everything up to the booking feature shell library.

In this part of the tutorial, we’re going to create the passenger info and flight search feature libraries, each with a routed component. After that, we’ll create the mobile booking application project and its end-to-end test project. Finally, we’ll use builder file replacement to create a mobile version of the flight search component template.

THIS AD MAKES CONTENT FREE. HIDE

Passenger info feature library#

Let’s create our first feature library, the passenger info feature which is part of the booking domain.

npm run generate-project -- library feature feature-passenger-info --scope=booking --npm-scope=nrwl-airlines
# or
yarn generate-project library feature feature-passenger-info --scope=booking --npm-scope=nrwl-airlines
<>

Generate passenger info feature library.

After generating the project using the previous commands and parameters, we get this file and folder structure.

libs/booking/feature-passenger-info
├── src
│   ├── lib
│   │   ├── passenger-info
│   │   │   ├── passenger-info.component.css
│   │   │   ├── passenger-info.component.html
│   │   │   ├── passenger-info.component.spec.ts
│   │   │   └── passenger-info.component.ts
│   │   ├── booking-feature-passenger-info.module.spec.ts
│   │   └── booking-feature-passenger-info.module.ts
│   ├── index.ts
│   └── test.ts
├── README.md
├── karma.conf.js
├── tsconfig.lib.json
├── tsconfig.spec.json
└── tslint.json
<>

The file and folder structure of the booking passenger info feature library.

This looks a little different from a feature shell library and a data access library.

After the generate project tool has created the workspace library with an entry point Angular module, it runs the commands in the next listing.

The generate project tool also removed the --no-common-module flag from the ng generate module command we saw earlier, since this Angular module will be declaring components.

ng generate component passenger-info --project=booking-feature-passenger-info --module=booking-feature-passenger-info.module.ts --display-block
<>

Generate component command run when generating a feature library.

Let’s look at the Angular module our tool has generated.

// booking-feature-passenger-info.module.ts
import { CommonModule } from '@angular/common';
import { NgModule } from '@angular/core';

import {
  PassengerInfoComponent,
} from './passenger-info/passenger-info.component';

@NgModule({
  declarations: [PassengerInfoComponent],
  imports: [
    CommonModule,
  ],
})
export class BookingFeaturePassengerInfoModule {}
<>

Initial entry point Angular module in the passenger info feature library.

The entry point Angular module shown in the previous listing is a good starting point. We need to set up the feature routing for our component though. This is done in the next listing.

// booking-feature-passenger-info.module.ts
import { CommonModule } from '@angular/common';
import { NgModule } from '@angular/core';
import { RouterModule, Routes } from '@angular/router';

import {
  PassengerInfoComponent,
} from './passenger-info/passenger-info.component';

const routes: Routes = [
  {
    path: '',
    pathMatch: 'full',
    component: PassengerInfoComponent,
  },
];

@NgModule({
  declarations: [PassengerInfoComponent],
  imports: [
    RouterModule.forChild(routes),
    CommonModule,
  ],
})
export class BookingFeaturePassengerInfoModule {}
<>

Passenger info feature Angular module with route configuration for its entry point component.

Nice! Now we’ve prepared our feature library to be hooked up to the feature shell library’s routing configuration.

The generated component is what you’d expect. What it’d display in a real booking application is not really important for the purpose of this article.

Let’s hook up this feature to the booking application’s routing by adding a route configuration to the booking feature shell Angular module as seen here.

#angular #angular-cli #angular-workspace #monorepo #nx #series-angular-architectural-patterns