Zander  Herzog

Zander Herzog

1596793260

Secure HTTPS servers in Go

In this article, we are going to look at some of the basic APIs of the http package to create and initialize HTTPS servers in Go.

Image for post

(source: unsplash.com)

In the “Simple Hello World Server” lesson, we learned about net/http package, how to create routes and how [ServeMux](https://golang.org/pkg/net/http/#ServeMux) works. In the “Running multiple HTTP servers” lesson, we learned about [Server](https://golang.org/pkg/net/http/#Server) structure and how to run multiple HTTP servers concurrently.

In this lesson, we are going to create an HTTPS server using both Go’s standard server configuration and custom configuration (using [_Server_](https://golang.org/pkg/net/http/#Server) structure). But before this, we need to know what HTTPS really is?

HTTPS is a big topic of discussion in itself. Hence while writing this lesson, I published an article just on “How HTTPS works?”. I advise you to read this lesson first before continuing this article. In this article, I’ve also described the encryption paradigm and SSL certificates generation process.


If we recall the simplest HTTP server example from previous lessons, we only need http.``[ListenAndServe](https://golang.org/pkg/net/http/#ListenAndServe) function to start an HTTP server and http.``[HandleFunc](https://golang.org/pkg/net/http/#HandleFunc) to register a response handler for a particular endpoint.

Image for post

(https://play.golang.org/p/t3sOenOYAzS)

In the example above, when we run the command go run server.go , it will start an HTTP server on port 9000. By visiting http://localhost:9000 URL in a browser, you will be able to see a Hello World! message on the screen.

Image for post

(http://localhost:9000)

As we know, the nil argument to ListenAndServe() call invokes Go to use the [DefaultServeMux](https://golang.org/pkg/net/http/#DefaultServeMux) response multiplexer, which is the default instance of ServeMux structure provided globally by the Go. The HandleFunc() call adds a response handler for a specific route on the multiplexer instance.

The http.ListenAndServe() call uses the Go’s standard HTTP server configuration, however, in the previous lesson, how we can customize a server using [Server](https://golang.org/pkg/net/http/#Server) structure type.

To start an HTTPS server, all we need do is to call ServerAndListenTLS method with some configuration. Just like ServeAndListen method, this method is available on both the http package and the Server structure.

The http.``[ServeAndListenTLS](https://golang.org/pkg/net/http/#ListenAndServeTLS) method uses the Go’s standard server implementation, however, both [Server](https://golang.org/pkg/net/http/#Server) instance and Server.``[ServeAndListenTLS](https://golang.org/pkg/net/http/#Server.ListenAndServeTLS) method can be configured for our needs.

#go-programming-language #go #golang-tutorial #go-programming #golang

What is GEEK

Buddha Community

Secure HTTPS servers in Go
Wilford  Pagac

Wilford Pagac

1596789120

Best Custom Web & Mobile App Development Company

Everything around us has become smart, like smart infrastructures, smart cities, autonomous vehicles, to name a few. The innovation of smart devices makes it possible to achieve these heights in science and technology. But, data is vulnerable, there is a risk of attack by cybercriminals. To get started, let’s know about IoT devices.

What are IoT devices?

The Internet Of Things(IoT) is a system that interrelates computer devices like sensors, software, and actuators, digital machines, etc. They are linked together with particular objects that work through the internet and transfer data over devices without humans interference.

Famous examples are Amazon Alexa, Apple SIRI, Interconnected baby monitors, video doorbells, and smart thermostats.

How could your IoT devices be vulnerable?

When technologies grow and evolve, risks are also on the high stakes. Ransomware attacks are on the continuous increase; securing data has become the top priority.

When you think your smart home won’t fudge a thing against cybercriminals, you should also know that they are vulnerable. When cybercriminals access our smart voice speakers like Amazon Alexa or Apple Siri, it becomes easy for them to steal your data.

Cybersecurity report 2020 says popular hacking forums expose 770 million email addresses and 21 million unique passwords, 620 million accounts have been compromised from 16 hacked websites.

The attacks are likely to increase every year. To help you secure your data of IoT devices, here are some best tips you can implement.

Tips to secure your IoT devices

1. Change Default Router Name

Your router has the default name of make and model. When we stick with the manufacturer name, attackers can quickly identify our make and model. So give the router name different from your addresses, without giving away personal information.

2. Know your connected network and connected devices

If your devices are connected to the internet, these connections are vulnerable to cyber attacks when your devices don’t have the proper security. Almost every web interface is equipped with multiple devices, so it’s hard to track the device. But, it’s crucial to stay aware of them.

3. Change default usernames and passwords

When we use the default usernames and passwords, it is attackable. Because the cybercriminals possibly know the default passwords come with IoT devices. So use strong passwords to access our IoT devices.

4. Manage strong, Unique passwords for your IoT devices and accounts

Use strong or unique passwords that are easily assumed, such as ‘123456’ or ‘password1234’ to protect your accounts. Give strong and complex passwords formed by combinations of alphabets, numeric, and not easily bypassed symbols.

Also, change passwords for multiple accounts and change them regularly to avoid attacks. We can also set several attempts to wrong passwords to set locking the account to safeguard from the hackers.

5. Do not use Public WI-FI Networks

Are you try to keep an eye on your IoT devices through your mobile devices in different locations. I recommend you not to use the public WI-FI network to access them. Because they are easily accessible through for everyone, you are still in a hurry to access, use VPN that gives them protection against cyber-attacks, giving them privacy and security features, for example, using Express VPN.

6. Establish firewalls to discover the vulnerabilities

There are software and firewalls like intrusion detection system/intrusion prevention system in the market. This will be useful to screen and analyze the wire traffic of a network. You can identify the security weakness by the firewall scanners within the network structure. Use these firewalls to get rid of unwanted security issues and vulnerabilities.

7. Reconfigure your device settings

Every smart device comes with the insecure default settings, and sometimes we are not able to change these default settings configurations. These conditions need to be assessed and need to reconfigure the default settings.

8. Authenticate the IoT applications

Nowadays, every smart app offers authentication to secure the accounts. There are many types of authentication methods like single-factor authentication, two-step authentication, and multi-factor authentication. Use any one of these to send a one time password (OTP) to verify the user who logs in the smart device to keep our accounts from falling into the wrong hands.

9. Update the device software up to date

Every smart device manufacturer releases updates to fix bugs in their software. These security patches help us to improve our protection of the device. Also, update the software on the smartphone, which we are used to monitoring the IoT devices to avoid vulnerabilities.

10. Track the smartphones and keep them safe

When we connect the smart home to the smartphone and control them via smartphone, you need to keep them safe. If you miss the phone almost, every personal information is at risk to the cybercriminals. But sometimes it happens by accident, makes sure that you can clear all the data remotely.

However, securing smart devices is essential in the world of data. There are still cybercriminals bypassing the securities. So make sure to do the safety measures to avoid our accounts falling out into the wrong hands. I hope these steps will help you all to secure your IoT devices.

If you have any, feel free to share them in the comments! I’d love to know them.

Are you looking for more? Subscribe to weekly newsletters that can help your stay updated IoT application developments.

#iot #enterprise iot security #how iot can be used to enhance security #how to improve iot security #how to protect iot devices from hackers #how to secure iot devices #iot security #iot security devices #iot security offerings #iot security technologies iot security plus #iot vulnerable devices #risk based iot security program

Fannie  Zemlak

Fannie Zemlak

1599854400

What's new in the go 1.15

Go announced Go 1.15 version on 11 Aug 2020. Highlighted updates and features include Substantial improvements to the Go linker, Improved allocation for small objects at high core counts, X.509 CommonName deprecation, GOPROXY supports skipping proxies that return errors, New embedded tzdata package, Several Core Library improvements and more.

As Go promise for maintaining backward compatibility. After upgrading to the latest Go 1.15 version, almost all existing Golang applications or programs continue to compile and run as older Golang version.

#go #golang #go 1.15 #go features #go improvement #go package #go new features

Zander  Herzog

Zander Herzog

1596793260

Secure HTTPS servers in Go

In this article, we are going to look at some of the basic APIs of the http package to create and initialize HTTPS servers in Go.

Image for post

(source: unsplash.com)

In the “Simple Hello World Server” lesson, we learned about net/http package, how to create routes and how [ServeMux](https://golang.org/pkg/net/http/#ServeMux) works. In the “Running multiple HTTP servers” lesson, we learned about [Server](https://golang.org/pkg/net/http/#Server) structure and how to run multiple HTTP servers concurrently.

In this lesson, we are going to create an HTTPS server using both Go’s standard server configuration and custom configuration (using [_Server_](https://golang.org/pkg/net/http/#Server) structure). But before this, we need to know what HTTPS really is?

HTTPS is a big topic of discussion in itself. Hence while writing this lesson, I published an article just on “How HTTPS works?”. I advise you to read this lesson first before continuing this article. In this article, I’ve also described the encryption paradigm and SSL certificates generation process.


If we recall the simplest HTTP server example from previous lessons, we only need http.``[ListenAndServe](https://golang.org/pkg/net/http/#ListenAndServe) function to start an HTTP server and http.``[HandleFunc](https://golang.org/pkg/net/http/#HandleFunc) to register a response handler for a particular endpoint.

Image for post

(https://play.golang.org/p/t3sOenOYAzS)

In the example above, when we run the command go run server.go , it will start an HTTP server on port 9000. By visiting http://localhost:9000 URL in a browser, you will be able to see a Hello World! message on the screen.

Image for post

(http://localhost:9000)

As we know, the nil argument to ListenAndServe() call invokes Go to use the [DefaultServeMux](https://golang.org/pkg/net/http/#DefaultServeMux) response multiplexer, which is the default instance of ServeMux structure provided globally by the Go. The HandleFunc() call adds a response handler for a specific route on the multiplexer instance.

The http.ListenAndServe() call uses the Go’s standard HTTP server configuration, however, in the previous lesson, how we can customize a server using [Server](https://golang.org/pkg/net/http/#Server) structure type.

To start an HTTPS server, all we need do is to call ServerAndListenTLS method with some configuration. Just like ServeAndListen method, this method is available on both the http package and the Server structure.

The http.``[ServeAndListenTLS](https://golang.org/pkg/net/http/#ListenAndServeTLS) method uses the Go’s standard server implementation, however, both [Server](https://golang.org/pkg/net/http/#Server) instance and Server.``[ServeAndListenTLS](https://golang.org/pkg/net/http/#Server.ListenAndServeTLS) method can be configured for our needs.

#go-programming-language #go #golang-tutorial #go-programming #golang

Security  IT

Security IT

1606927174

10 Cyber Security Tools to Watch Out for in 2021 - DZone Security

With an immense number of companies and entities climbing onto the digital bandwagon, cybersecurity considerations have come up as limelight. Besides, new technologies such as Big Data, IoT, and Artificial Intelligence/Machine Learning are gradually more making inroads into our everyday lives, the threats related to cybercrime are mounting as well. Additionally, the usage of mobile and web apps in transacting financial information has put the complete digital stuff exposed to cybersecurity breaches. The inherent risks and vulnerabilities found in such apps can be exploited by attackers or cybercriminals to draw off crucial information data counting money. Internationally, cyber-security breaches have caused a yearly loss of USD 20.38 million in 2019 (Source: Statista). Plus, cybercrime has led to a 0.80 percent loss of the entire world’s Gross domestic product, which sums up to approx. USD 2.1 trillion in the year 2019 alone (Source: Cybriant.com).

In this article, take a look at ten cyber security tools to watch out for in 2021, including NMap, Wireshark, Metasploit, and more!

#security #cyber security #security testing #security testing tools #cyber security tools

Ray  Patel

Ray Patel

1625843760

Python Packages in SQL Server – Get Started with SQL Server Machine Learning Services

Introduction

When installing Machine Learning Services in SQL Server by default few Python Packages are installed. In this article, we will have a look on how to get those installed python package information.

Python Packages

When we choose Python as Machine Learning Service during installation, the following packages are installed in SQL Server,

  • revoscalepy – This Microsoft Python package is used for remote compute contexts, streaming, parallel execution of rx functions for data import and transformation, modeling, visualization, and analysis.
  • microsoftml – This is another Microsoft Python package which adds machine learning algorithms in Python.
  • Anaconda 4.2 – Anaconda is an opensource Python package

#machine learning #sql server #executing python in sql server #machine learning using python #machine learning with sql server #ml in sql server using python #python in sql server ml #python packages #python packages for machine learning services #sql server machine learning services