1659497832
Object-hash mapping library for Redis.
Ohm is a library for storing objects in Redis, a persistent key-value database. It has very good performance.
Join the mailing list: http://groups.google.com/group/ohm-ruby
Meet us on IRC: #ohm on freenode.net
These are libraries in other languages that were inspired by Ohm.
Install Redis. On most platforms it's as easy as grabbing the sources, running make and then putting the redis-server
binary in the PATH.
Once you have it installed, you can execute redis-server
and it will run on localhost:6379
by default. Check the redis.conf
file that comes with the sources if you want to change some settings.
If you don't have Ohm, try this:
$ [sudo] gem install ohm
Or you can grab the code from http://github.com/soveran/ohm.
Now, in an irb session you can test the Redis adapter directly:
>> require "ohm"
=> true
>> Ohm.redis.call "SET", "Foo", "Bar"
=> "OK"
>> Ohm.redis.call "GET", "Foo"
=> "Bar"
Ohm uses a lightweight Redis client called Redic. To connect to a Redis database, you will need to set an instance of Redic
, with an URL of the form redis://:<passwd>@<host>:<port>/<db>
, through the Ohm.redis=
method, e.g.
require "ohm"
Ohm.redis = Redic.new("redis://127.0.0.1:6379")
Ohm.redis.call "SET", "Foo", "Bar"
Ohm.redis.call "GET", "Foo"
# => "Bar"
Ohm defaults to a Redic connection to "redis://127.0.0.1:6379". The example above could be rewritten as:
require "ohm"
Ohm.redis.call "SET", "Foo", "Bar"
Ohm.redis.call "GET", "Foo"
# => "Bar"
All Ohm models inherit the same connection settings from Ohm.redis
. For cases where certain models need to connect to different databases, they simple have to override that, i.e.
require "ohm"
Ohm.redis = Redic.new(ENV["REDIS_URL1"])
class User < Ohm::Model
end
User.redis = Redic.new(ENV["REDIS_URL2"])
Ohm's purpose in life is to map objects to a key value datastore. It doesn't need migrations or external schema definitions. Take a look at the example below:
class Event < Ohm::Model
attribute :name
reference :venue, :Venue
set :participants, :Person
counter :votes
index :name
end
class Venue < Ohm::Model
attribute :name
collection :events, :Event
end
class Person < Ohm::Model
attribute :name
end
All models have the id
attribute built in, you don't need to declare it.
This is how you interact with IDs:
event = Event.create :name => "Ohm Worldwide Conference 2031"
event.id
# => 1
# Find an event by id
event == Event[1]
# => true
# Update an event
event.update :name => "Ohm Worldwide Conference 2032"
# => #<Event:0x007fb4c35e2458 @attributes={:name=>"Ohm Worldwide Conference"}, @_memo={}, @id="1">
# Trying to find a non existent event
Event[2]
# => nil
# Finding all the events
Event.all.to_a
# => [<Event:1 name='Ohm Worldwide Conference 2032'>]
This example shows some basic features, like attribute declarations and querying. Keep reading to find out what you can do with models.
Ohm::Model provides 4 attribute types:
Ohm::Model.attribute
,Ohm::Model.set
Ohm::Model.list
Ohm::Model.counter
and 2 meta types:
Ohm::Model.reference
Ohm::Model.collection
.An attribute
is just any value that can be stored as a string. In the example above, we used this field to store the event's name
. You can use it to store numbers, but be aware that Redis will return a string when you retrieve the value.
A set
in Redis is an unordered list, with an external behavior similar to that of Ruby arrays, but optimized for faster membership lookups. It's used internally by Ohm to keep track of the instances of each model and for generating and maintaining indexes.
A list
is like an array in Ruby. It's perfectly suited for queues and for keeping elements in order.
A counter
is like a regular attribute, but the direct manipulation of the value is not allowed. You can retrieve, increase or decrease the value, but you can not assign it. In the example above, we used a counter attribute for tracking votes. As the increment
and decrement
operations are atomic, you can rest assured a vote won't be counted twice.
It's a special kind of attribute that references another model. Internally, Ohm will keep a pointer to the model (its ID), but you get accessors that give you real instances. You can think of it as the model containing the foreign key to another model.
Provides an accessor to search for all models that reference
the current model.
Besides the provided attribute types, it is possible to instruct Ohm to track arbitrary keys and tie them to the object's lifecycle.
For example:
class Log < Ohm::Model
track :text
def append(msg)
redis.call("APPEND", key[:text], msg)
end
def tail(n = 100)
redis.call("GETRANGE", key[:text], -(n), -1)
end
end
log = Log.create
log.append("hello\n")
assert_equal "hello\n", log.tail
log.append("world\n")
assert_equal "world\n", log.tail(6)
When the log
object is deleted, the :text
key will be deleted too. Note that the key is scoped to that particular instance of Log
, so if log.id
is 42
then the key will be Log:42:text
.
The attributes declared with attribute
are only persisted after calling save
.
Operations on attributes of type list
, set
and counter
are possible only after the object is created (when it has an assigned id
). Any operation on these kinds of attributes is performed immediately. This design yields better performance than buffering the operations and waiting for a call to save
.
For most use cases, this pattern doesn't represent a problem. If you are saving the object, this will suffice:
if event.save
event.comments.add(Comment.create(body: "Wonderful event!"))
end
Given the following model declaration:
class Event < Ohm::Model
attribute :name
set :attendees, :Person
end
You can add instances of Person
to the set of attendees with the add
method:
event.attendees.add(Person.create(name: "Albert"))
# And now...
event.attendees.each do |person|
# ...do what you want with this person.
end
Since attendees
is a Ohm::Model::Set
, it exposes two sorting methods: Ohm::Model::Collection#sort
returns the elements ordered by id
, and Ohm::Model::Collection#sort_by
receives a parameter with an attribute name, which will determine the sorting order. Both methods receive an options hash which is explained below:
Order direction and strategy. You can pass in any of the following:
It defaults to ASC
.
Important Note: Starting with Redis 2.6, ASC
and DESC
only work with integers or floating point data types. If you need to sort by an alphanumeric field, add the ALPHA
keyword.
The offset and limit from which we should start with. Note that this is 0-indexed. It defaults to 0
.
Example:
limit: [0, 10]
will get the first 10 entries starting from offset 0.
Key or Hash key with which to sort by. An important distinction with using Ohm::Model::Collection#sort
and Ohm::Model::Collection#sort_by
is that sort_by
automatically converts the passed argument with the assumption that it is a hash key and it's within the current model you are sorting.
Post.all.sort_by(:title) # SORT Post:all BY Post:*->title
Post.all.sort(by: :title) # SORT Post:all BY title
Tip: Unless you absolutely know what you're doing, use sort
when you want to sort your models by their id
, and use sort_by
otherwise.
A key pattern to return, e.g. Post:*->title
. As is the case with the :by
option, using Ohm::Model::Collection#sort
and Ohm::Model::Collection#sort_by
has distinct differences in that sort_by
does much of the hand-coding for you.
Post.all.sort_by(:title, get: :title)
# SORT Post:all BY Post:*->title GET Post:*->title
Post.all.sort(by: :title, get: :title)
# SORT Post:all BY title GET title
Ohm lets you declare references
and collections
to represent associations.
class Post < Ohm::Model
attribute :title
attribute :body
collection :comments, :Comment
end
class Comment < Ohm::Model
attribute :body
reference :post, :Post
end
After this, every time you refer to post.comments
you will be talking about instances of the model Comment
. If you want to get a list of IDs you can use post.comments.ids
.
Doing a Ohm::Model.reference
is actually just a shortcut for the following:
# Redefining our model above
class Comment < Ohm::Model
attribute :body
attribute :post_id
index :post_id
def post=(post)
self.post_id = post.id
end
def post
Post[post_id]
end
end
The only difference with the actual implementation is that the model is memoized.
The net effect here is we can conveniently set and retrieve Post
objects, and also search comments using the post_id
index.
Comment.find(post_id: 1)
The reason a Ohm::Model.reference
and a Ohm::Model.collection
go hand in hand, is that a collection is just a macro that defines a finder for you, and we know that to find a model by a field requires an Ohm::Model.index
to be defined for the field you want to search.
# Redefining our post above
class Post < Ohm::Model
attribute :title
attribute :body
def comments
Comment.find(post_id: self.id)
end
end
The only "magic" happening is with the inference of the index
that was used in the other model. The following all produce the same effect:
# easiest, with the basic assumption that the index is `:post_id`
collection :comments, :Comment
# we can explicitly declare this as follows too:
collection :comments, :Comment, :post
# finally, we can use the default argument for the third parameter which
# is `to_reference`.
collection :comments, :Comment, to_reference
# exploring `to_reference` reveals a very interesting and simple concept:
Post.to_reference == :post
# => true
If your models are defined inside a module, you will have to define the references and collections as in the following example:
module SomeNamespace
class Foo < Ohm::Model
attribute :name
end
class Bar < Ohm::Model
reference :foo, 'SomeNamespace::Foo'
end
end
An Ohm::Model.index
is a set that's handled automatically by Ohm. For any index declared, Ohm maintains different sets of objects IDs for quick lookups.
In the Event
example, the index on the name attribute will allow for searches like Event.find(name: "some value")
.
Note that the methods Ohm::Model::Set#find
and Ohm::Model::Set#except
need a corresponding index in order to work.
You can find a collection of records with the find
method:
# This returns a collection of users with the username "Albert"
User.find(username: "Albert")
# Find all users from Argentina
User.find(country: "Argentina")
# Find all active users from Argentina
User.find(country: "Argentina", status: "active")
# Find all active users from Argentina and Uruguay
User.find(status: "active").combine(country: ["Argentina", "Uruguay"])
# Find all users from Argentina, except those with a suspended account.
User.find(country: "Argentina").except(status: "suspended")
# Find all users both from Argentina and Uruguay
User.find(country: "Argentina").union(country: "Uruguay")
Note that calling these methods results in new sets being created on the fly. This is important so that you can perform further operations before reading the items to the client.
For more information, see SINTERSTORE, SDIFFSTORE and SUNIONSTORE
Uniques are similar to indices except that there can only be one record per entry. The canonical example of course would be the email of your user, e.g.
class User < Ohm::Model
attribute :email
unique :email
end
u = User.create(email: "foo@bar.com")
u == User.with(:email, "foo@bar.com")
# => true
User.create(email: "foo@bar.com")
# => raises Ohm::UniqueIndexViolation
Ohm Extensions
Ohm is rather small and can be extended in many ways.
A lot of amazing contributions are available at Ohm Contrib make sure to check them if you need to extend Ohm's functionality.
Upgrading
Ohm 2 breaks the compatibility with previous versions. If you're upgrading an existing application, it's nice to have a good test coverage before going in. To know about fixes and changes, please refer to the CHANGELOG file.
Author: soveran
Source code: https://github.com/soveran/ohm
License: MIT license
1650636000
Port of deeplearning4j to clojure
Contact info
If you have any questions,
NOT YET RELEASED TO CLOJARS
If using Maven add the following repository definition to your pom.xml:
<repository>
<id>clojars.org</id>
<url>http://clojars.org/repo</url>
</repository>
With Leiningen:
n/a
With Maven:
n/a
<dependency>
<groupId>_</groupId>
<artifactId>_</artifactId>
<version>_</version>
</dependency>
All functions for creating dl4j objects return code by default
API functions return code when all args are provided as code
API functions return the value of calling the wrapped method when args are provided as a mixture of objects and code or just objects
The tests are there to help clarify behavior, if you are unsure of how to use a fn, search the tests
(ns my.ns
(:require [dl4clj.nn.conf.builders.layers :as l]))
;; as code (the default)
(l/dense-layer-builder
:activation-fn :relu
:learning-rate 0.006
:weight-init :xavier
:layer-name "example layer"
:n-in 10
:n-out 1)
;; =>
(doto
(org.deeplearning4j.nn.conf.layers.DenseLayer$Builder.)
(.nOut 1)
(.activation (dl4clj.constants/value-of {:activation-fn :relu}))
(.weightInit (dl4clj.constants/value-of {:weight-init :xavier}))
(.nIn 10)
(.name "example layer")
(.learningRate 0.006))
;; as an object
(l/dense-layer-builder
:activation-fn :relu
:learning-rate 0.006
:weight-init :xavier
:layer-name "example layer"
:n-in 10
:n-out 1
:as-code? false)
;; =>
#object[org.deeplearning4j.nn.conf.layers.DenseLayer 0x69d7d160 "DenseLayer(super=FeedForwardLayer(super=Layer(layerName=example layer, activationFn=relu, weightInit=XAVIER, biasInit=NaN, dist=null, learningRate=0.006, biasLearningRate=NaN, learningRateSchedule=null, momentum=NaN, momentumSchedule=null, l1=NaN, l2=NaN, l1Bias=NaN, l2Bias=NaN, dropOut=NaN, updater=null, rho=NaN, epsilon=NaN, rmsDecay=NaN, adamMeanDecay=NaN, adamVarDecay=NaN, gradientNormalization=null, gradientNormalizationThreshold=NaN), nIn=10, nOut=1))"]
Loading data from a file (here its a csv)
(ns my.ns
(:require [dl4clj.datasets.input-splits :as s]
[dl4clj.datasets.record-readers :as rr]
[dl4clj.datasets.api.record-readers :refer :all]
[dl4clj.datasets.iterators :as ds-iter]
[dl4clj.datasets.api.iterators :refer :all]
[dl4clj.helpers :refer [data-from-iter]]))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; file splits (convert the data to records)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def poker-path "resources/poker-hand-training.csv")
;; this is not a complete dataset, it is just here to sever as an example
(def file-split (s/new-filesplit :path poker-path))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; record readers, (read the records created by the file split)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def csv-rr (initialize-rr! :rr (rr/new-csv-record-reader :skip-n-lines 0 :delimiter ",")
:input-split file-split))
;; lets look at some data
(println (next-record! :rr csv-rr :as-code? false))
;; => #object[java.util.ArrayList 0x2473e02d [1, 10, 1, 11, 1, 13, 1, 12, 1, 1, 9]]
;; this is our first line from the csv
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; record readers dataset iterators (turn our writables into a dataset)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def rr-ds-iter (ds-iter/new-record-reader-dataset-iterator
:record-reader csv-rr
:batch-size 1
:label-idx 10
:n-possible-labels 10))
;; we use our record reader created above
;; we want to see one example per dataset obj returned (:batch-size = 1)
;; we know our label is at the last index, so :label-idx = 10
;; there are 10 possible types of poker hands so :n-possible-labels = 10
;; you can also set :label-idx to -1 to use the last index no matter the size of the seq
(def other-rr-ds-iter (ds-iter/new-record-reader-dataset-iterator
:record-reader csv-rr
:batch-size 1
:label-idx -1
:n-possible-labels 10))
(str (next-example! :iter rr-ds-iter :as-code? false))
;; =>
;;===========INPUT===================
;;[1.00, 10.00, 1.00, 11.00, 1.00, 13.00, 1.00, 12.00, 1.00, 1.00]
;;=================OUTPUT==================
;;[0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00]
;; and to show that :label-idx = -1 gives us the same output
(= (next-example! :iter rr-ds-iter :as-code? false)
(next-example! :iter other-rr-ds-iter :as-code? false)) ;; => true
(ns my.ns
(:require [nd4clj.linalg.factory.nd4j :refer [vec->indarray matrix->indarray
indarray-of-zeros indarray-of-ones
indarray-of-rand vec-or-matrix->indarray]]
[dl4clj.datasets.new-datasets :refer [new-ds]]
[dl4clj.datasets.api.datasets :refer [as-list]]
[dl4clj.datasets.iterators :refer [new-existing-dataset-iterator]]
[dl4clj.datasets.api.iterators :refer :all]
[dl4clj.datasets.pre-processors :as ds-pp]
[dl4clj.datasets.api.pre-processors :refer :all]
[dl4clj.core :as c]))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; INDArray creation
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;TODO: consider defaulting to code
;; can create from a vector
(vec->indarray [1 2 3 4])
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0x269df212 [1.00, 2.00, 3.00, 4.00]]
;; or from a matrix
(matrix->indarray [[1 2 3 4] [2 4 6 8]])
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0x20aa7fe1
;; [[1.00, 2.00, 3.00, 4.00], [2.00, 4.00, 6.00, 8.00]]]
;; will fill in spareness with zeros
(matrix->indarray [[1 2 3 4] [2 4 6 8] [10 12]])
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0x8b7796c
;;[[1.00, 2.00, 3.00, 4.00],
;; [2.00, 4.00, 6.00, 8.00],
;; [10.00, 12.00, 0.00, 0.00]]]
;; can create an indarray of all zeros with specified shape
;; defaults to :rows = 1 :columns = 1
(indarray-of-zeros :rows 3 :columns 2)
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0x6f586a7e
;;[[0.00, 0.00],
;; [0.00, 0.00],
;; [0.00, 0.00]]]
(indarray-of-zeros) ;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0xe59ffec 0.00]
;; and if only one is supplied, will get a vector of specified length
(indarray-of-zeros :rows 2)
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0x2899d974 [0.00, 0.00]]
(indarray-of-zeros :columns 2)
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0xa5b9782 [0.00, 0.00]]
;; same considerations/defaults for indarray-of-ones and indarray-of-rand
(indarray-of-ones :rows 2 :columns 3)
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0x54f08662 [[1.00, 1.00, 1.00], [1.00, 1.00, 1.00]]]
(indarray-of-rand :rows 2 :columns 3)
;; all values are greater than 0 but less than 1
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0x2f20293b [[0.85, 0.86, 0.13], [0.94, 0.04, 0.36]]]
;; vec-or-matrix->indarray is built into all functions which require INDArrays
;; so that you can use clojure data structures
;; but you still have the option of passing existing INDArrays
(def example-array (vec-or-matrix->indarray [1 2 3 4]))
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0x5c44c71f [1.00, 2.00, 3.00, 4.00]]
(vec-or-matrix->indarray example-array)
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0x607b03b0 [1.00, 2.00, 3.00, 4.00]]
(vec-or-matrix->indarray (indarray-of-rand :rows 2))
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0x49143b08 [0.76, 0.92]]
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; data-set creation
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def ds-with-single-example (new-ds :input [1 2 3 4]
:output [0.0 1.0 0.0]))
(as-list :ds ds-with-single-example :as-code? false)
;; =>
;; #object[java.util.ArrayList 0x5d703d12
;;[===========INPUT===================
;;[1.00, 2.00, 3.00, 4.00]
;;=================OUTPUT==================
;;[0.00, 1.00, 0.00]]]
(def ds-with-multiple-examples (new-ds
:input [[1 2 3 4] [2 4 6 8]]
:output [[0.0 1.0 0.0] [0.0 0.0 1.0]]))
(as-list :ds ds-with-multiple-examples :as-code? false)
;; =>
;;#object[java.util.ArrayList 0x29c7a9e2
;;[===========INPUT===================
;;[1.00, 2.00, 3.00, 4.00]
;;=================OUTPUT==================
;;[0.00, 1.00, 0.00],
;;===========INPUT===================
;;[2.00, 4.00, 6.00, 8.00]
;;=================OUTPUT==================
;;[0.00, 0.00, 1.00]]]
;; we can create a dataset iterator from the code which creates datasets
;; and set the labels for our outputs (optional)
(def ds-with-multiple-examples
(new-ds
:input [[1 2 3 4] [2 4 6 8]]
:output [[0.0 1.0 0.0] [0.0 0.0 1.0]]))
;; iterator
(def training-rr-ds-iter
(new-existing-dataset-iterator
:dataset ds-with-multiple-examples
:labels ["foo" "baz" "foobaz"]))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; data-set normalization
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; this gathers statistics on the dataset and normalizes the data
;; and applies the transformation to all dataset objects in the iterator
(def train-iter-normalized
(c/normalize-iter! :iter training-rr-ds-iter
:normalizer (ds-pp/new-standardize-normalization-ds-preprocessor)
:as-code? false))
;; above returns the normalized iterator
;; to get fit normalizer
(def the-normalizer
(get-pre-processor train-iter-normalized))
Creating a neural network configuration with singe and multiple layers
(ns my.ns
(:require [dl4clj.nn.conf.builders.layers :as l]
[dl4clj.nn.conf.builders.nn :as nn]
[dl4clj.nn.conf.distributions :as dist]
[dl4clj.nn.conf.input-pre-processor :as pp]
[dl4clj.nn.conf.step-fns :as s-fn]))
;; nn/builder has 3 types of args
;; 1) args which set network configuration params
;; 2) args which set default values for layers
;; 3) args which set multi layer network configuration params
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; single layer nn configuration
;; here we are setting network configuration
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(nn/builder :optimization-algo :stochastic-gradient-descent
:seed 123
:iterations 1
:minimize? true
:use-drop-connect? false
:lr-score-based-decay-rate 0.002
:regularization? false
:step-fn :default-step-fn
:layers {:dense-layer {:activation-fn :relu
:updater :adam
:adam-mean-decay 0.2
:adam-var-decay 0.1
:learning-rate 0.006
:weight-init :xavier
:layer-name "single layer model example"
:n-in 10
:n-out 20}})
;; there are several options within a nn-conf map which can be configuration maps
;; or calls to fns
;; It doesn't matter which option you choose and you don't have to stay consistent
;; the list of params which can be passed as config maps or fn calls will
;; be enumerated at a later date
(nn/builder :optimization-algo :stochastic-gradient-descent
:seed 123
:iterations 1
:minimize? true
:use-drop-connect? false
:lr-score-based-decay-rate 0.002
:regularization? false
:step-fn (s-fn/new-default-step-fn)
:build? true
;; dont need to specify layer order, theres only one
:layers (l/dense-layer-builder
:activation-fn :relu
:updater :adam
:adam-mean-decay 0.2
:adam-var-decay 0.1
:dist (dist/new-normal-distribution :mean 0 :std 1)
:learning-rate 0.006
:weight-init :xavier
:layer-name "single layer model example"
:n-in 10
:n-out 20))
;; these configurations are the same
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; multi-layer configuration
;; here we are also setting layer defaults
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; defaults will apply to layers which do not specify those value in their config
(nn/builder
:optimization-algo :stochastic-gradient-descent
:seed 123
:iterations 1
:minimize? true
:use-drop-connect? false
:lr-score-based-decay-rate 0.002
:regularization? false
:default-activation-fn :sigmoid
:default-weight-init :uniform
;; we need to specify the layer order
:layers {0 (l/activation-layer-builder
:activation-fn :relu
:updater :adam
:adam-mean-decay 0.2
:adam-var-decay 0.1
:learning-rate 0.006
:weight-init :xavier
:layer-name "example first layer"
:n-in 10
:n-out 20)
1 {:output-layer {:n-in 20
:n-out 2
:loss-fn :mse
:layer-name "example output layer"}}})
;; specifying multi-layer config params
(nn/builder
;; network args
:optimization-algo :stochastic-gradient-descent
:seed 123
:iterations 1
:minimize? true
:use-drop-connect? false
:lr-score-based-decay-rate 0.002
:regularization? false
;; layer defaults
:default-activation-fn :sigmoid
:default-weight-init :uniform
;; the layers
:layers {0 (l/activation-layer-builder
:activation-fn :relu
:updater :adam
:adam-mean-decay 0.2
:adam-var-decay 0.1
:learning-rate 0.006
:weight-init :xavier
:layer-name "example first layer"
:n-in 10
:n-out 20)
1 {:output-layer {:n-in 20
:n-out 2
:loss-fn :mse
:layer-name "example output layer"}}}
;; multi layer network args
:backprop? true
:backprop-type :standard
:pretrain? false
:input-pre-processors {0 (pp/new-zero-mean-pre-pre-processor)
1 {:unit-variance-processor {}}})
Multi Layer models
(ns my.ns
(:require [dl4clj.datasets.iterators :as iter]
[dl4clj.datasets.input-splits :as split]
[dl4clj.datasets.record-readers :as rr]
[dl4clj.optimize.listeners :as listener]
[dl4clj.nn.conf.builders.nn :as nn]
[dl4clj.nn.multilayer.multi-layer-network :as mln]
[dl4clj.nn.api.model :refer [init! set-listeners!]]
[dl4clj.nn.api.multi-layer-network :refer [evaluate-classification]]
[dl4clj.datasets.api.record-readers :refer [initialize-rr!]]
[dl4clj.eval.api.eval :refer [get-stats get-accuracy]]
[dl4clj.core :as c]))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; nn-conf -> multi-layer-network
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def nn-conf
(nn/builder
;; network args
:optimization-algo :stochastic-gradient-descent
:seed 123 :iterations 1 :regularization? true
;; setting layer defaults
:default-activation-fn :relu :default-l2 7.5e-6
:default-weight-init :xavier :default-learning-rate 0.0015
:default-updater :nesterovs :default-momentum 0.98
;; setting layer configuration
:layers {0 {:dense-layer
{:layer-name "example first layer"
:n-in 784 :n-out 500}}
1 {:dense-layer
{:layer-name "example second layer"
:n-in 500 :n-out 100}}
2 {:output-layer
{:n-in 100 :n-out 10
;; layer specific params
:loss-fn :negativeloglikelihood
:activation-fn :softmax
:layer-name "example output layer"}}}
;; multi layer args
:backprop? true
:pretrain? false))
(def multi-layer-network (c/model-from-conf nn-conf))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; local cpu training with dl4j pre-built iterators
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; lets use the pre-built Mnist data set iterator
(def train-mnist-iter
(iter/new-mnist-data-set-iterator
:batch-size 64
:train? true
:seed 123))
(def test-mnist-iter
(iter/new-mnist-data-set-iterator
:batch-size 64
:train? false
:seed 123))
;; and lets set a listener so we can know how training is going
(def score-listener (listener/new-score-iteration-listener :print-every-n 5))
;; and attach it to our model
;; TODO: listeners are broken, look into log4j warnning
(def mln-with-listener (set-listeners! :model multi-layer-network
:listeners [score-listener]))
(def trained-mln (mln/train-mln-with-ds-iter! :mln mln-with-listener
:iter train-mnist-iter
:n-epochs 15
:as-code? false))
;; training happens because :as-code? = false
;; if it was true, we would still just have a data structure
;; we now have a trained model that has seen the training dataset 15 times
;; time to evaluate our model
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;Create an evaluation object
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def eval-obj (evaluate-classification :mln trained-mln
:iter test-mnist-iter))
;; always remember that these objects are stateful, dont use the same eval-obj
;; to eval two different networks
;; we trained the model on a training dataset. We evaluate on a test set
(println (get-stats :evaler eval-obj))
;; this will print the stats to standard out for each feature/label pair
;;Examples labeled as 0 classified by model as 0: 968 times
;;Examples labeled as 0 classified by model as 1: 1 times
;;Examples labeled as 0 classified by model as 2: 1 times
;;Examples labeled as 0 classified by model as 3: 1 times
;;Examples labeled as 0 classified by model as 5: 1 times
;;Examples labeled as 0 classified by model as 6: 3 times
;;Examples labeled as 0 classified by model as 7: 1 times
;;Examples labeled as 0 classified by model as 8: 2 times
;;Examples labeled as 0 classified by model as 9: 2 times
;;Examples labeled as 1 classified by model as 1: 1126 times
;;Examples labeled as 1 classified by model as 2: 2 times
;;Examples labeled as 1 classified by model as 3: 1 times
;;Examples labeled as 1 classified by model as 5: 1 times
;;Examples labeled as 1 classified by model as 6: 2 times
;;Examples labeled as 1 classified by model as 7: 1 times
;;Examples labeled as 1 classified by model as 8: 2 times
;;Examples labeled as 2 classified by model as 0: 3 times
;;Examples labeled as 2 classified by model as 1: 2 times
;;Examples labeled as 2 classified by model as 2: 1006 times
;;Examples labeled as 2 classified by model as 3: 2 times
;;Examples labeled as 2 classified by model as 4: 3 times
;;Examples labeled as 2 classified by model as 6: 3 times
;;Examples labeled as 2 classified by model as 7: 7 times
;;Examples labeled as 2 classified by model as 8: 6 times
;;Examples labeled as 3 classified by model as 2: 4 times
;;Examples labeled as 3 classified by model as 3: 990 times
;;Examples labeled as 3 classified by model as 5: 3 times
;;Examples labeled as 3 classified by model as 7: 3 times
;;Examples labeled as 3 classified by model as 8: 3 times
;;Examples labeled as 3 classified by model as 9: 7 times
;;Examples labeled as 4 classified by model as 2: 2 times
;;Examples labeled as 4 classified by model as 3: 1 times
;;Examples labeled as 4 classified by model as 4: 967 times
;;Examples labeled as 4 classified by model as 6: 4 times
;;Examples labeled as 4 classified by model as 7: 1 times
;;Examples labeled as 4 classified by model as 9: 7 times
;;Examples labeled as 5 classified by model as 0: 2 times
;;Examples labeled as 5 classified by model as 3: 6 times
;;Examples labeled as 5 classified by model as 4: 1 times
;;Examples labeled as 5 classified by model as 5: 874 times
;;Examples labeled as 5 classified by model as 6: 3 times
;;Examples labeled as 5 classified by model as 7: 1 times
;;Examples labeled as 5 classified by model as 8: 3 times
;;Examples labeled as 5 classified by model as 9: 2 times
;;Examples labeled as 6 classified by model as 0: 4 times
;;Examples labeled as 6 classified by model as 1: 3 times
;;Examples labeled as 6 classified by model as 3: 2 times
;;Examples labeled as 6 classified by model as 4: 4 times
;;Examples labeled as 6 classified by model as 5: 4 times
;;Examples labeled as 6 classified by model as 6: 939 times
;;Examples labeled as 6 classified by model as 7: 1 times
;;Examples labeled as 6 classified by model as 8: 1 times
;;Examples labeled as 7 classified by model as 1: 7 times
;;Examples labeled as 7 classified by model as 2: 4 times
;;Examples labeled as 7 classified by model as 3: 3 times
;;Examples labeled as 7 classified by model as 7: 1005 times
;;Examples labeled as 7 classified by model as 8: 2 times
;;Examples labeled as 7 classified by model as 9: 7 times
;;Examples labeled as 8 classified by model as 0: 3 times
;;Examples labeled as 8 classified by model as 2: 3 times
;;Examples labeled as 8 classified by model as 3: 2 times
;;Examples labeled as 8 classified by model as 4: 4 times
;;Examples labeled as 8 classified by model as 5: 3 times
;;Examples labeled as 8 classified by model as 6: 2 times
;;Examples labeled as 8 classified by model as 7: 4 times
;;Examples labeled as 8 classified by model as 8: 947 times
;;Examples labeled as 8 classified by model as 9: 6 times
;;Examples labeled as 9 classified by model as 0: 2 times
;;Examples labeled as 9 classified by model as 1: 2 times
;;Examples labeled as 9 classified by model as 3: 4 times
;;Examples labeled as 9 classified by model as 4: 8 times
;;Examples labeled as 9 classified by model as 6: 1 times
;;Examples labeled as 9 classified by model as 7: 4 times
;;Examples labeled as 9 classified by model as 8: 2 times
;;Examples labeled as 9 classified by model as 9: 986 times
;;==========================Scores========================================
;; Accuracy: 0.9808
;; Precision: 0.9808
;; Recall: 0.9807
;; F1 Score: 0.9807
;;========================================================================
;; can get the stats that are printed via fns in the evaluation namespace
;; after running eval-model-whole-ds
(get-accuracy :evaler evaler-with-stats) ;; => 0.9808
Early Stopping (controlling training)
it is recommened you start here when designing models
using dl4clj.core
(ns my.ns
(:require [dl4clj.earlystopping.termination-conditions :refer :all]
[dl4clj.earlystopping.model-saver :refer [new-in-memory-saver]]
[dl4clj.nn.api.multi-layer-network :refer [evaluate-classification]]
[dl4clj.eval.api.eval :refer [get-stats]]
[dl4clj.nn.conf.builders.nn :as nn]
[dl4clj.datasets.iterators :as iter]
[dl4clj.core :as c]))
(def nn-conf
(nn/builder
;; network args
:optimization-algo :stochastic-gradient-descent
:seed 123
:iterations 1
:regularization? true
;; setting layer defaults
:default-activation-fn :relu
:default-l2 7.5e-6
:default-weight-init :xavier
:default-learning-rate 0.0015
:default-updater :nesterovs
:default-momentum 0.98
;; setting layer configuration
:layers {0 {:dense-layer
{:layer-name "example first layer"
:n-in 784 :n-out 500}}
1 {:dense-layer
{:layer-name "example second layer"
:n-in 500 :n-out 100}}
2 {:output-layer
{:n-in 100 :n-out 10
;; layer specific params
:loss-fn :negativeloglikelihood
:activation-fn :softmax
:layer-name "example output layer"}}}
;; multi layer args
:backprop? true
:pretrain? false))
(def train-iter
(iter/new-mnist-data-set-iterator
:batch-size 64
:train? true
:seed 123))
(def test-iter
(iter/new-mnist-data-set-iterator
:batch-size 64
:train? false
:seed 123))
(def invalid-score-condition (new-invalid-score-iteration-termination-condition))
(def max-score-condition (new-max-score-iteration-termination-condition
:max-score 20.0))
(def max-time-condition (new-max-time-iteration-termination-condition
:max-time-val 10
:max-time-unit :minutes))
(def score-doesnt-improve-condition (new-score-improvement-epoch-termination-condition
:max-n-epoch-no-improve 5))
(def target-score-condition (new-best-score-epoch-termination-condition
:best-expected-score 0.009))
(def max-number-epochs-condition (new-max-epochs-termination-condition :max-n 20))
(def in-mem-saver (new-in-memory-saver))
(def trained-mln
;; defaults to returning the model
(c/train-with-early-stopping
:nn-conf nn-conf
:training-iter train-mnist-iter
:testing-iter test-mnist-iter
:eval-every-n-epochs 1
:iteration-termination-conditions [invalid-score-condition
max-score-condition
max-time-condition]
:epoch-termination-conditions [score-doesnt-improve-condition
target-score-condition
max-number-epochs-condition]
:save-last-model? true
:model-saver in-mem-saver
:as-code? false))
(def model-evaler
(evaluate-classification :mln trained-mln :iter test-mnist-iter))
(println (get-stats :evaler model-evaler))
(ns my.ns
(:require [dl4clj.earlystopping.early-stopping-config :refer [new-early-stopping-config]]
[dl4clj.earlystopping.termination-conditions :refer :all]
[dl4clj.earlystopping.model-saver :refer [new-in-memory-saver new-local-file-model-saver]]
[dl4clj.earlystopping.score-calc :refer [new-ds-loss-calculator]]
[dl4clj.earlystopping.early-stopping-trainer :refer [new-early-stopping-trainer]]
[dl4clj.earlystopping.api.early-stopping-trainer :refer [fit-trainer!]]
[dl4clj.nn.conf.builders.nn :as nn]
[dl4clj.nn.multilayer.multi-layer-network :as mln]
[dl4clj.utils :refer [load-model!]]
[dl4clj.datasets.iterators :as iter]
[dl4clj.core :as c]))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; start with our network config
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def nn-conf
(nn/builder
;; network args
:optimization-algo :stochastic-gradient-descent
:seed 123 :iterations 1 :regularization? true
;; setting layer defaults
:default-activation-fn :relu :default-l2 7.5e-6
:default-weight-init :xavier :default-learning-rate 0.0015
:default-updater :nesterovs :default-momentum 0.98
;; setting layer configuration
:layers {0 {:dense-layer
{:layer-name "example first layer"
:n-in 784 :n-out 500}}
1 {:dense-layer
{:layer-name "example second layer"
:n-in 500 :n-out 100}}
2 {:output-layer
{:n-in 100 :n-out 10
;; layer specific params
:loss-fn :negativeloglikelihood
:activation-fn :softmax
:layer-name "example output layer"}}}
;; multi layer args
:backprop? true
:pretrain? false))
(def mln (c/model-from-conf nn-conf))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; the training/testing data
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def train-iter
(iter/new-mnist-data-set-iterator
:batch-size 64
:train? true
:seed 123))
(def test-iter
(iter/new-mnist-data-set-iterator
:batch-size 64
:train? false
:seed 123))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; we are going to need termination conditions
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; these allow us to control when we exit training
;; this can be based off of iterations or epochs
;; iteration termination conditions
(def invalid-score-condition (new-invalid-score-iteration-termination-condition))
(def max-score-condition (new-max-score-iteration-termination-condition
:max-score 20.0))
(def max-time-condition (new-max-time-iteration-termination-condition
:max-time-val 10
:max-time-unit :minutes))
;; epoch termination conditions
(def score-doesnt-improve-condition (new-score-improvement-epoch-termination-condition
:max-n-epoch-no-improve 5))
(def target-score-condition (new-best-score-epoch-termination-condition :best-expected-score 0.009))
(def max-number-epochs-condition (new-max-epochs-termination-condition :max-n 20))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; we also need a way to save our model
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; can be in memory or to a local directory
(def in-mem-saver (new-in-memory-saver))
(def local-file-saver (new-local-file-model-saver :directory "resources/tmp/readme/"))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; set up your score calculator
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def score-calcer (new-ds-loss-calculator :iter test-iter
:average? true))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; create an early stopping configuration
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; termination conditions
;; a way to save our model
;; a way to calculate the score of our model on the dataset
(def early-stopping-conf
(new-early-stopping-config
:epoch-termination-conditions [score-doesnt-improve-condition
target-score-condition
max-number-epochs-condition]
:iteration-termination-conditions [invalid-score-condition
max-score-condition
max-time-condition]
:eval-every-n-epochs 5
:model-saver local-file-saver
:save-last-model? true
:score-calculator score-calcer))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; create an early stopping trainer from our data, model and early stopping conf
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def es-trainer (new-early-stopping-trainer :early-stopping-conf early-stopping-conf
:mln mln
:iter train-iter))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; fit and use our early stopping trainer
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def es-trainer-fitted (fit-trainer! es-trainer :as-code? false))
;; when the trainer terminates, you will see something like this
;;[nREPL-worker-24] BaseEarlyStoppingTrainer INFO Completed training epoch 14
;;[nREPL-worker-24] BaseEarlyStoppingTrainer INFO New best model: score = 0.005225599372851298,
;; epoch = 14 (previous: score = 0.018243224899038346, epoch = 7)
;;[nREPL-worker-24] BaseEarlyStoppingTrainer INFO Hit epoch termination condition at epoch 14.
;; Details: BestScoreEpochTerminationCondition(0.009)
;; and if we look at the es-trainer-fitted object we see
;;#object[org.deeplearning4j.earlystopping.EarlyStoppingResult 0x5ab74f27 EarlyStoppingResult
;;(terminationReason=EpochTerminationCondition,details=BestScoreEpochTerminationCondition(0.009),
;; bestModelEpoch=14,bestModelScore=0.005225599372851298,totalEpochs=15)]
;; and our model has been saved to /resources/tmp/readme/bestModel.bin
;; there we have our model config, model params and our updater state
;; we can then load this model to use it or continue refining it
(def loaded-model (load-model! :path "resources/tmp/readme/bestModel.bin"
:load-updater? true))
Transfer Learning (freezing layers)
;; TODO: need to write up examples
dl4j Spark usage
How it is done in dl4clj
(ns my.ns
(:require [dl4clj.nn.conf.builders.layers :as l]
[dl4clj.nn.conf.builders.nn :as nn]
[dl4clj.datasets.iterators :refer [new-iris-data-set-iterator]]
[dl4clj.eval.api.eval :refer [get-stats]]
[dl4clj.spark.masters.param-avg :as master]
[dl4clj.spark.data.java-rdd :refer [new-java-spark-context
java-rdd-from-iter]]
[dl4clj.spark.api.dl4j-multi-layer :refer [eval-classification-spark-mln
get-spark-context]]
[dl4clj.core :as c]))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 1, create your model config
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def mln-conf
(nn/builder
:optimization-algo :stochastic-gradient-descent
:default-learning-rate 0.006
:layers {0 (l/dense-layer-builder :n-in 4 :n-out 2 :activation-fn :relu)
1 {:output-layer
{:loss-fn :negativeloglikelihood
:n-in 2 :n-out 3
:activation-fn :soft-max
:weight-init :xavier}}}
:backprop? true
:backprop-type :standard))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 2, training master
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def training-master
(master/new-parameter-averaging-training-master
:build? true
:rdd-n-examples 10
:n-workers 4
:averaging-freq 10
:batch-size-per-worker 2
:export-dir "resources/spark/master/"
:rdd-training-approach :direct
:repartition-data :always
:repartition-strategy :balanced
:seed 1234
:save-updater? true
:storage-level :none))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 3, spark context
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def your-spark-context
(new-java-spark-context :app-name "example app"))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 4, training data
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def iris-iter
(new-iris-data-set-iterator
:batch-size 1
:n-examples 5))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 5, spark mln
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def fitted-spark-mln
(c/train-with-spark :spark-context your-spark-context
:mln-conf mln-conf
:training-master training-master
:iter iris-iter
:n-epochs 1
:as-code? false))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 5, use spark context from spark-mln to create rdd
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; TODO: eliminate this step
(def our-rdd
(let [sc (get-spark-context fitted-spark-mln :as-code? false)]
(java-rdd-from-iter :spark-context sc
:iter iris-iter)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 6, evaluation model and print stats (poor performance of model expected)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def eval-obj
(eval-classification-spark-mln
:spark-mln fitted-spark-mln
:rdd our-rdd))
(println (get-stats :evaler eval-obj))
(ns my.ns
(:require [dl4clj.nn.conf.builders.layers :as l]
[dl4clj.nn.conf.builders.nn :as nn]
[dl4clj.datasets.iterators :refer [new-iris-data-set-iterator]]
[dl4clj.eval.api.eval :refer [get-stats]]
[dl4clj.spark.masters.param-avg :as master]
[dl4clj.spark.data.java-rdd :refer [new-java-spark-context java-rdd-from-iter]]
[dl4clj.spark.dl4j-multi-layer :as spark-mln]
[dl4clj.spark.api.dl4j-multi-layer :refer [fit-spark-mln!
eval-classification-spark-mln]]))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 1, create your model
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def mln-conf
(nn/builder
:optimization-algo :stochastic-gradient-descent
:default-learning-rate 0.006
:layers {0 (l/dense-layer-builder :n-in 4 :n-out 2 :activation-fn :relu)
1 {:output-layer
{:loss-fn :negativeloglikelihood
:n-in 2 :n-out 3
:activation-fn :soft-max
:weight-init :xavier}}}
:backprop? true
:as-code? false
:backprop-type :standard))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 2, create a training master
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; not all options specified, but most are
(def training-master
(master/new-parameter-averaging-training-master
:build? true
:rdd-n-examples 10
:n-workers 4
:averaging-freq 10
:batch-size-per-worker 2
:export-dir "resources/spark/master/"
:rdd-training-approach :direct
:repartition-data :always
:repartition-strategy :balanced
:seed 1234
:as-code? false
:save-updater? true
:storage-level :none))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 3, create a Spark Multi Layer Network
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def your-spark-context
(new-java-spark-context :app-name "example app" :as-code? false))
;; new-java-spark-context will turn an existing spark-configuration into a java spark context
;; or create a new java spark context with master set to "local[*]" and the app name
;; set to :app-name
(def spark-mln
(spark-mln/new-spark-multi-layer-network
:spark-context your-spark-context
:mln mln-conf
:training-master training-master
:as-code? false))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 4, load your data
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; one way is via a dataset-iterator
;; can make one directly from a dataset (iterator data-set)
;; see: nd4clj.linalg.dataset.api.data-set and nd4clj.linalg.dataset.data-set
;; we are going to use a pre-built one
(def iris-iter
(new-iris-data-set-iterator
:batch-size 1
:n-examples 5
:as-code? false))
;; now lets convert the data into a javaRDD
(def our-rdd
(java-rdd-from-iter :spark-context your-spark-context
:iter iris-iter))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 5, fit and evaluate the model
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def fitted-spark-mln
(fit-spark-mln!
:spark-mln spark-mln
:rdd our-rdd
:n-epochs 1))
;; this fn also has the option to supply :path-to-data instead of :rdd
;; that path should point to a directory containing a number of dataset objects
(def eval-obj
(eval-classification-spark-mln
:spark-mln fitted-spark-mln
:rdd our-rdd))
;; we would want to have different testing and training rdd's but here we are using
;; the data we trained on
;; lets get the stats for how our model performed
(println (get-stats :evaler eval-obj))
Coming soon
Implement ComputationGraphs and the classes which use them
NLP
Parallelism
TSNE
UI
Author: yetanalytics
Source Code: https://github.com/yetanalytics/dl4clj
License: BSD-2-Clause License
1591611780
How can I find the correct ulimit values for a user account or process on Linux systems?
For proper operation, we must ensure that the correct ulimit values set after installing various software. The Linux system provides means of restricting the number of resources that can be used. Limits set for each Linux user account. However, system limits are applied separately to each process that is running for that user too. For example, if certain thresholds are too low, the system might not be able to server web pages using Nginx/Apache or PHP/Python app. System resource limits viewed or set with the NA command. Let us see how to use the ulimit that provides control over the resources available to the shell and processes.
#[object object] #[object object] #[object object] #[object object] #[object object] #[object object] #[object object] #[object object] #[object object] #[object object]
1591993440
We are going to build a full stack Todo App using the MEAN (MongoDB, ExpressJS, AngularJS and NodeJS). This is the last part of three-post series tutorial.
MEAN Stack tutorial series:
AngularJS tutorial for beginners (Part I)
Creating RESTful APIs with NodeJS and MongoDB Tutorial (Part II)
MEAN Stack Tutorial: MongoDB, ExpressJS, AngularJS and NodeJS (Part III) 👈 you are here
Before completing the app, let’s cover some background about the this stack. If you rather jump to the hands-on part click here to get started.
#[object object] #[object object] #[object object] #[object object] #[object object] #[object object] #[object object] #[object object]
1592595480
Is there is a command to print list all failed units or services when using systemd on Linux? Can you tell me the systemctl command to list all failed services on Linux?
This quick tutorial explains how to find/list all failed systemd services/units on Linux operating systems using the systemctl command.
#[object object] #[object object] #[object object] #[object object] #[object object] #[object object] #[object object]
1598195340
How do I configure Amazon SES With Postfix mail server to send email under a CentOS/RHEL/Fedora/Ubuntu/Debian Linux server?
Amazon Simple Email Service (SES) is a hosted email service for you to send and receive email using your email addresses and domains. Typically SES used for sending bulk email or routing emails without hosting MTA. We can use Perl/Python/PHP APIs to send an email via SES. Another option is to configure Linux or Unix box running Postfix to route all outgoing emails via SES.
Before getting started with Amazon SES and Postfix, you need to sign up for AWS, including SES. You need to verify your email address and other settings. Make sure you create a user for SES access and download credentials too.
If sendmail installed remove it. Debian/Ubuntu Linux user type the following apt command/apt-get command:
$`` sudo apt --purge remove sendmail
CentOS/RHEL user type the following yum command or dnf command on Fedora/CentOS/RHEL 8.x:
$`` sudo yum remove sendmail
$`` sudo dnf remove sendmail
Sample outputs from CentOS 8 server:
Dependencies resolved.
===============================================================================
Package Architecture Version Repository Size
===============================================================================
Removing:
sendmail x86_64 8.15.2-32.el8 @AppStream 2.4 M
Removing unused dependencies:
cyrus-sasl x86_64 2.1.27-1.el8 @BaseOS 160 k
procmail x86_64 3.22-47.el8 @AppStream 369 k
Transaction Summary
===============================================================================
Remove 3 Packages
Freed space: 2.9 M
Is this ok [y/N]: y
#[object object] #[object object] #[object object] #[object object] #[object object] #[object object] #[object object]