Maryjane  Olson

Maryjane Olson

1625689440

Android Login Screen UI Design | Part 1

Hello guys in this tutorial we are going to learn how to design beautiful looking login screen in android studio

Resources Link -

https://drive.google.com/file/d/1rIBCrBAhULKM_iAaC6jx97bd-Cz8XCj2/view

#android

What is GEEK

Buddha Community

Android Login Screen UI Design | Part 1
Veronica  Roob

Veronica Roob

1653475560

A Pure PHP Implementation Of The MessagePack Serialization Format

msgpack.php

A pure PHP implementation of the MessagePack serialization format.

Features

Installation

The recommended way to install the library is through Composer:

composer require rybakit/msgpack

Usage

Packing

To pack values you can either use an instance of a Packer:

$packer = new Packer();
$packed = $packer->pack($value);

or call a static method on the MessagePack class:

$packed = MessagePack::pack($value);

In the examples above, the method pack automatically packs a value depending on its type. However, not all PHP types can be uniquely translated to MessagePack types. For example, the MessagePack format defines map and array types, which are represented by a single array type in PHP. By default, the packer will pack a PHP array as a MessagePack array if it has sequential numeric keys, starting from 0 and as a MessagePack map otherwise:

$mpArr1 = $packer->pack([1, 2]);               // MP array [1, 2]
$mpArr2 = $packer->pack([0 => 1, 1 => 2]);     // MP array [1, 2]
$mpMap1 = $packer->pack([0 => 1, 2 => 3]);     // MP map {0: 1, 2: 3}
$mpMap2 = $packer->pack([1 => 2, 2 => 3]);     // MP map {1: 2, 2: 3}
$mpMap3 = $packer->pack(['a' => 1, 'b' => 2]); // MP map {a: 1, b: 2}

However, sometimes you need to pack a sequential array as a MessagePack map. To do this, use the packMap method:

$mpMap = $packer->packMap([1, 2]); // {0: 1, 1: 2}

Here is a list of type-specific packing methods:

$packer->packNil();           // MP nil
$packer->packBool(true);      // MP bool
$packer->packInt(42);         // MP int
$packer->packFloat(M_PI);     // MP float (32 or 64)
$packer->packFloat32(M_PI);   // MP float 32
$packer->packFloat64(M_PI);   // MP float 64
$packer->packStr('foo');      // MP str
$packer->packBin("\x80");     // MP bin
$packer->packArray([1, 2]);   // MP array
$packer->packMap(['a' => 1]); // MP map
$packer->packExt(1, "\xaa");  // MP ext

Check the "Custom types" section below on how to pack custom types.

Packing options

The Packer object supports a number of bitmask-based options for fine-tuning the packing process (defaults are in bold):

NameDescription
FORCE_STRForces PHP strings to be packed as MessagePack UTF-8 strings
FORCE_BINForces PHP strings to be packed as MessagePack binary data
DETECT_STR_BINDetects MessagePack str/bin type automatically
  
FORCE_ARRForces PHP arrays to be packed as MessagePack arrays
FORCE_MAPForces PHP arrays to be packed as MessagePack maps
DETECT_ARR_MAPDetects MessagePack array/map type automatically
  
FORCE_FLOAT32Forces PHP floats to be packed as 32-bits MessagePack floats
FORCE_FLOAT64Forces PHP floats to be packed as 64-bits MessagePack floats

The type detection mode (DETECT_STR_BIN/DETECT_ARR_MAP) adds some overhead which can be noticed when you pack large (16- and 32-bit) arrays or strings. However, if you know the value type in advance (for example, you only work with UTF-8 strings or/and associative arrays), you can eliminate this overhead by forcing the packer to use the appropriate type, which will save it from running the auto-detection routine. Another option is to explicitly specify the value type. The library provides 2 auxiliary classes for this, Map and Bin. Check the "Custom types" section below for details.

Examples:

// detect str/bin type and pack PHP 64-bit floats (doubles) to MP 32-bit floats
$packer = new Packer(PackOptions::DETECT_STR_BIN | PackOptions::FORCE_FLOAT32);

// these will throw MessagePack\Exception\InvalidOptionException
$packer = new Packer(PackOptions::FORCE_STR | PackOptions::FORCE_BIN);
$packer = new Packer(PackOptions::FORCE_FLOAT32 | PackOptions::FORCE_FLOAT64);

Unpacking

To unpack data you can either use an instance of a BufferUnpacker:

$unpacker = new BufferUnpacker();

$unpacker->reset($packed);
$value = $unpacker->unpack();

or call a static method on the MessagePack class:

$value = MessagePack::unpack($packed);

If the packed data is received in chunks (e.g. when reading from a stream), use the tryUnpack method, which attempts to unpack data and returns an array of unpacked messages (if any) instead of throwing an InsufficientDataException:

while ($chunk = ...) {
    $unpacker->append($chunk);
    if ($messages = $unpacker->tryUnpack()) {
        return $messages;
    }
}

If you want to unpack from a specific position in a buffer, use seek:

$unpacker->seek(42); // set position equal to 42 bytes
$unpacker->seek(-8); // set position to 8 bytes before the end of the buffer

To skip bytes from the current position, use skip:

$unpacker->skip(10); // set position to 10 bytes ahead of the current position

To get the number of remaining (unread) bytes in the buffer:

$unreadBytesCount = $unpacker->getRemainingCount();

To check whether the buffer has unread data:

$hasUnreadBytes = $unpacker->hasRemaining();

If needed, you can remove already read data from the buffer by calling:

$releasedBytesCount = $unpacker->release();

With the read method you can read raw (packed) data:

$packedData = $unpacker->read(2); // read 2 bytes

Besides the above methods BufferUnpacker provides type-specific unpacking methods, namely:

$unpacker->unpackNil();   // PHP null
$unpacker->unpackBool();  // PHP bool
$unpacker->unpackInt();   // PHP int
$unpacker->unpackFloat(); // PHP float
$unpacker->unpackStr();   // PHP UTF-8 string
$unpacker->unpackBin();   // PHP binary string
$unpacker->unpackArray(); // PHP sequential array
$unpacker->unpackMap();   // PHP associative array
$unpacker->unpackExt();   // PHP MessagePack\Type\Ext object

Unpacking options

The BufferUnpacker object supports a number of bitmask-based options for fine-tuning the unpacking process (defaults are in bold):

NameDescription
BIGINT_AS_STRConverts overflowed integers to strings [1]
BIGINT_AS_GMPConverts overflowed integers to GMP objects [2]
BIGINT_AS_DECConverts overflowed integers to Decimal\Decimal objects [3]

1. The binary MessagePack format has unsigned 64-bit as its largest integer data type, but PHP does not support such integers, which means that an overflow can occur during unpacking.

2. Make sure the GMP extension is enabled.

3. Make sure the Decimal extension is enabled.

Examples:

$packedUint64 = "\xcf"."\xff\xff\xff\xff"."\xff\xff\xff\xff";

$unpacker = new BufferUnpacker($packedUint64);
var_dump($unpacker->unpack()); // string(20) "18446744073709551615"

$unpacker = new BufferUnpacker($packedUint64, UnpackOptions::BIGINT_AS_GMP);
var_dump($unpacker->unpack()); // object(GMP) {...}

$unpacker = new BufferUnpacker($packedUint64, UnpackOptions::BIGINT_AS_DEC);
var_dump($unpacker->unpack()); // object(Decimal\Decimal) {...}

Custom types

In addition to the basic types, the library provides functionality to serialize and deserialize arbitrary types. This can be done in several ways, depending on your use case. Let's take a look at them.

Type objects

If you need to serialize an instance of one of your classes into one of the basic MessagePack types, the best way to do this is to implement the CanBePacked interface in the class. A good example of such a class is the Map type class that comes with the library. This type is useful when you want to explicitly specify that a given PHP array should be packed as a MessagePack map without triggering an automatic type detection routine:

$packer = new Packer();

$packedMap = $packer->pack(new Map([1, 2, 3]));
$packedArray = $packer->pack([1, 2, 3]);

More type examples can be found in the src/Type directory.

Type transformers

As with type objects, type transformers are only responsible for serializing values. They should be used when you need to serialize a value that does not implement the CanBePacked interface. Examples of such values could be instances of built-in or third-party classes that you don't own, or non-objects such as resources.

A transformer class must implement the CanPack interface. To use a transformer, it must first be registered in the packer. Here is an example of how to serialize PHP streams into the MessagePack bin format type using one of the supplied transformers, StreamTransformer:

$packer = new Packer(null, [new StreamTransformer()]);

$packedBin = $packer->pack(fopen('/path/to/file', 'r+'));

More type transformer examples can be found in the src/TypeTransformer directory.

Extensions

In contrast to the cases described above, extensions are intended to handle extension types and are responsible for both serialization and deserialization of values (types).

An extension class must implement the Extension interface. To use an extension, it must first be registered in the packer and the unpacker.

The MessagePack specification divides extension types into two groups: predefined and application-specific. Currently, there is only one predefined type in the specification, Timestamp.

Timestamp

The Timestamp extension type is a predefined type. Support for this type in the library is done through the TimestampExtension class. This class is responsible for handling Timestamp objects, which represent the number of seconds and optional adjustment in nanoseconds:

$timestampExtension = new TimestampExtension();

$packer = new Packer();
$packer = $packer->extendWith($timestampExtension);

$unpacker = new BufferUnpacker();
$unpacker = $unpacker->extendWith($timestampExtension);

$packedTimestamp = $packer->pack(Timestamp::now());
$timestamp = $unpacker->reset($packedTimestamp)->unpack();

$seconds = $timestamp->getSeconds();
$nanoseconds = $timestamp->getNanoseconds();

When using the MessagePack class, the Timestamp extension is already registered:

$packedTimestamp = MessagePack::pack(Timestamp::now());
$timestamp = MessagePack::unpack($packedTimestamp);

Application-specific extensions

In addition, the format can be extended with your own types. For example, to make the built-in PHP DateTime objects first-class citizens in your code, you can create a corresponding extension, as shown in the example. Please note, that custom extensions have to be registered with a unique extension ID (an integer from 0 to 127).

More extension examples can be found in the examples/MessagePack directory.

To learn more about how extension types can be useful, check out this article.

Exceptions

If an error occurs during packing/unpacking, a PackingFailedException or an UnpackingFailedException will be thrown, respectively. In addition, an InsufficientDataException can be thrown during unpacking.

An InvalidOptionException will be thrown in case an invalid option (or a combination of mutually exclusive options) is used.

Tests

Run tests as follows:

vendor/bin/phpunit

Also, if you already have Docker installed, you can run the tests in a docker container. First, create a container:

./dockerfile.sh | docker build -t msgpack -

The command above will create a container named msgpack with PHP 8.1 runtime. You may change the default runtime by defining the PHP_IMAGE environment variable:

PHP_IMAGE='php:8.0-cli' ./dockerfile.sh | docker build -t msgpack -

See a list of various images here.

Then run the unit tests:

docker run --rm -v $PWD:/msgpack -w /msgpack msgpack

Fuzzing

To ensure that the unpacking works correctly with malformed/semi-malformed data, you can use a testing technique called Fuzzing. The library ships with a help file (target) for PHP-Fuzzer and can be used as follows:

php-fuzzer fuzz tests/fuzz_buffer_unpacker.php

Performance

To check performance, run:

php -n -dzend_extension=opcache.so \
-dpcre.jit=1 -dopcache.enable=1 -dopcache.enable_cli=1 \
tests/bench.php

Example output

Filter: MessagePack\Tests\Perf\Filter\ListFilter
Rounds: 3
Iterations: 100000

=============================================
Test/Target            Packer  BufferUnpacker
---------------------------------------------
nil .................. 0.0030 ........ 0.0139
false ................ 0.0037 ........ 0.0144
true ................. 0.0040 ........ 0.0137
7-bit uint #1 ........ 0.0052 ........ 0.0120
7-bit uint #2 ........ 0.0059 ........ 0.0114
7-bit uint #3 ........ 0.0061 ........ 0.0119
5-bit sint #1 ........ 0.0067 ........ 0.0126
5-bit sint #2 ........ 0.0064 ........ 0.0132
5-bit sint #3 ........ 0.0066 ........ 0.0135
8-bit uint #1 ........ 0.0078 ........ 0.0200
8-bit uint #2 ........ 0.0077 ........ 0.0212
8-bit uint #3 ........ 0.0086 ........ 0.0203
16-bit uint #1 ....... 0.0111 ........ 0.0271
16-bit uint #2 ....... 0.0115 ........ 0.0260
16-bit uint #3 ....... 0.0103 ........ 0.0273
32-bit uint #1 ....... 0.0116 ........ 0.0326
32-bit uint #2 ....... 0.0118 ........ 0.0332
32-bit uint #3 ....... 0.0127 ........ 0.0325
64-bit uint #1 ....... 0.0140 ........ 0.0277
64-bit uint #2 ....... 0.0134 ........ 0.0294
64-bit uint #3 ....... 0.0134 ........ 0.0281
8-bit int #1 ......... 0.0086 ........ 0.0241
8-bit int #2 ......... 0.0089 ........ 0.0225
8-bit int #3 ......... 0.0085 ........ 0.0229
16-bit int #1 ........ 0.0118 ........ 0.0280
16-bit int #2 ........ 0.0121 ........ 0.0270
16-bit int #3 ........ 0.0109 ........ 0.0274
32-bit int #1 ........ 0.0128 ........ 0.0346
32-bit int #2 ........ 0.0118 ........ 0.0339
32-bit int #3 ........ 0.0135 ........ 0.0368
64-bit int #1 ........ 0.0138 ........ 0.0276
64-bit int #2 ........ 0.0132 ........ 0.0286
64-bit int #3 ........ 0.0137 ........ 0.0274
64-bit int #4 ........ 0.0180 ........ 0.0285
64-bit float #1 ...... 0.0134 ........ 0.0284
64-bit float #2 ...... 0.0125 ........ 0.0275
64-bit float #3 ...... 0.0126 ........ 0.0283
fix string #1 ........ 0.0035 ........ 0.0133
fix string #2 ........ 0.0094 ........ 0.0216
fix string #3 ........ 0.0094 ........ 0.0222
fix string #4 ........ 0.0091 ........ 0.0241
8-bit string #1 ...... 0.0122 ........ 0.0301
8-bit string #2 ...... 0.0118 ........ 0.0304
8-bit string #3 ...... 0.0119 ........ 0.0315
16-bit string #1 ..... 0.0150 ........ 0.0388
16-bit string #2 ..... 0.1545 ........ 0.1665
32-bit string ........ 0.1570 ........ 0.1756
wide char string #1 .. 0.0091 ........ 0.0236
wide char string #2 .. 0.0122 ........ 0.0313
8-bit binary #1 ...... 0.0100 ........ 0.0302
8-bit binary #2 ...... 0.0123 ........ 0.0324
8-bit binary #3 ...... 0.0126 ........ 0.0327
16-bit binary ........ 0.0168 ........ 0.0372
32-bit binary ........ 0.1588 ........ 0.1754
fix array #1 ......... 0.0042 ........ 0.0131
fix array #2 ......... 0.0294 ........ 0.0367
fix array #3 ......... 0.0412 ........ 0.0472
16-bit array #1 ...... 0.1378 ........ 0.1596
16-bit array #2 ........... S ............. S
32-bit array .............. S ............. S
complex array ........ 0.1865 ........ 0.2283
fix map #1 ........... 0.0725 ........ 0.1048
fix map #2 ........... 0.0319 ........ 0.0405
fix map #3 ........... 0.0356 ........ 0.0665
fix map #4 ........... 0.0465 ........ 0.0497
16-bit map #1 ........ 0.2540 ........ 0.3028
16-bit map #2 ............. S ............. S
32-bit map ................ S ............. S
complex map .......... 0.2372 ........ 0.2710
fixext 1 ............. 0.0283 ........ 0.0358
fixext 2 ............. 0.0291 ........ 0.0371
fixext 4 ............. 0.0302 ........ 0.0355
fixext 8 ............. 0.0288 ........ 0.0384
fixext 16 ............ 0.0293 ........ 0.0359
8-bit ext ............ 0.0302 ........ 0.0439
16-bit ext ........... 0.0334 ........ 0.0499
32-bit ext ........... 0.1845 ........ 0.1888
32-bit timestamp #1 .. 0.0337 ........ 0.0547
32-bit timestamp #2 .. 0.0335 ........ 0.0560
64-bit timestamp #1 .. 0.0371 ........ 0.0575
64-bit timestamp #2 .. 0.0374 ........ 0.0542
64-bit timestamp #3 .. 0.0356 ........ 0.0533
96-bit timestamp #1 .. 0.0362 ........ 0.0699
96-bit timestamp #2 .. 0.0381 ........ 0.0701
96-bit timestamp #3 .. 0.0367 ........ 0.0687
=============================================
Total                  2.7618          4.0820
Skipped                     4               4
Failed                      0               0
Ignored                     0               0

With JIT:

php -n -dzend_extension=opcache.so \
-dpcre.jit=1 -dopcache.jit_buffer_size=64M -dopcache.jit=tracing -dopcache.enable=1 -dopcache.enable_cli=1 \
tests/bench.php

Example output

Filter: MessagePack\Tests\Perf\Filter\ListFilter
Rounds: 3
Iterations: 100000

=============================================
Test/Target            Packer  BufferUnpacker
---------------------------------------------
nil .................. 0.0005 ........ 0.0054
false ................ 0.0004 ........ 0.0059
true ................. 0.0004 ........ 0.0059
7-bit uint #1 ........ 0.0010 ........ 0.0047
7-bit uint #2 ........ 0.0010 ........ 0.0046
7-bit uint #3 ........ 0.0010 ........ 0.0046
5-bit sint #1 ........ 0.0025 ........ 0.0046
5-bit sint #2 ........ 0.0023 ........ 0.0046
5-bit sint #3 ........ 0.0024 ........ 0.0045
8-bit uint #1 ........ 0.0043 ........ 0.0081
8-bit uint #2 ........ 0.0043 ........ 0.0079
8-bit uint #3 ........ 0.0041 ........ 0.0080
16-bit uint #1 ....... 0.0064 ........ 0.0095
16-bit uint #2 ....... 0.0064 ........ 0.0091
16-bit uint #3 ....... 0.0064 ........ 0.0094
32-bit uint #1 ....... 0.0085 ........ 0.0114
32-bit uint #2 ....... 0.0077 ........ 0.0122
32-bit uint #3 ....... 0.0077 ........ 0.0120
64-bit uint #1 ....... 0.0085 ........ 0.0159
64-bit uint #2 ....... 0.0086 ........ 0.0157
64-bit uint #3 ....... 0.0086 ........ 0.0158
8-bit int #1 ......... 0.0042 ........ 0.0080
8-bit int #2 ......... 0.0042 ........ 0.0080
8-bit int #3 ......... 0.0042 ........ 0.0081
16-bit int #1 ........ 0.0065 ........ 0.0095
16-bit int #2 ........ 0.0065 ........ 0.0090
16-bit int #3 ........ 0.0056 ........ 0.0085
32-bit int #1 ........ 0.0067 ........ 0.0107
32-bit int #2 ........ 0.0066 ........ 0.0106
32-bit int #3 ........ 0.0063 ........ 0.0104
64-bit int #1 ........ 0.0072 ........ 0.0162
64-bit int #2 ........ 0.0073 ........ 0.0174
64-bit int #3 ........ 0.0072 ........ 0.0164
64-bit int #4 ........ 0.0077 ........ 0.0161
64-bit float #1 ...... 0.0053 ........ 0.0135
64-bit float #2 ...... 0.0053 ........ 0.0135
64-bit float #3 ...... 0.0052 ........ 0.0135
fix string #1 ....... -0.0002 ........ 0.0044
fix string #2 ........ 0.0035 ........ 0.0067
fix string #3 ........ 0.0035 ........ 0.0077
fix string #4 ........ 0.0033 ........ 0.0078
8-bit string #1 ...... 0.0059 ........ 0.0110
8-bit string #2 ...... 0.0063 ........ 0.0121
8-bit string #3 ...... 0.0064 ........ 0.0124
16-bit string #1 ..... 0.0099 ........ 0.0146
16-bit string #2 ..... 0.1522 ........ 0.1474
32-bit string ........ 0.1511 ........ 0.1483
wide char string #1 .. 0.0039 ........ 0.0084
wide char string #2 .. 0.0073 ........ 0.0123
8-bit binary #1 ...... 0.0040 ........ 0.0112
8-bit binary #2 ...... 0.0075 ........ 0.0123
8-bit binary #3 ...... 0.0077 ........ 0.0129
16-bit binary ........ 0.0096 ........ 0.0145
32-bit binary ........ 0.1535 ........ 0.1479
fix array #1 ......... 0.0008 ........ 0.0061
fix array #2 ......... 0.0121 ........ 0.0165
fix array #3 ......... 0.0193 ........ 0.0222
16-bit array #1 ...... 0.0607 ........ 0.0479
16-bit array #2 ........... S ............. S
32-bit array .............. S ............. S
complex array ........ 0.0749 ........ 0.0824
fix map #1 ........... 0.0329 ........ 0.0431
fix map #2 ........... 0.0161 ........ 0.0189
fix map #3 ........... 0.0205 ........ 0.0262
fix map #4 ........... 0.0252 ........ 0.0205
16-bit map #1 ........ 0.1016 ........ 0.0927
16-bit map #2 ............. S ............. S
32-bit map ................ S ............. S
complex map .......... 0.1096 ........ 0.1030
fixext 1 ............. 0.0157 ........ 0.0161
fixext 2 ............. 0.0175 ........ 0.0183
fixext 4 ............. 0.0156 ........ 0.0185
fixext 8 ............. 0.0163 ........ 0.0184
fixext 16 ............ 0.0164 ........ 0.0182
8-bit ext ............ 0.0158 ........ 0.0207
16-bit ext ........... 0.0203 ........ 0.0219
32-bit ext ........... 0.1614 ........ 0.1539
32-bit timestamp #1 .. 0.0195 ........ 0.0249
32-bit timestamp #2 .. 0.0188 ........ 0.0260
64-bit timestamp #1 .. 0.0207 ........ 0.0281
64-bit timestamp #2 .. 0.0212 ........ 0.0291
64-bit timestamp #3 .. 0.0207 ........ 0.0295
96-bit timestamp #1 .. 0.0222 ........ 0.0358
96-bit timestamp #2 .. 0.0228 ........ 0.0353
96-bit timestamp #3 .. 0.0210 ........ 0.0319
=============================================
Total                  1.6432          1.9674
Skipped                     4               4
Failed                      0               0
Ignored                     0               0

You may change default benchmark settings by defining the following environment variables:

NameDefault
MP_BENCH_TARGETSpure_p,pure_u, see a list of available targets
MP_BENCH_ITERATIONS100_000
MP_BENCH_DURATIONnot set
MP_BENCH_ROUNDS3
MP_BENCH_TESTS-@slow, see a list of available tests

For example:

export MP_BENCH_TARGETS=pure_p
export MP_BENCH_ITERATIONS=1000000
export MP_BENCH_ROUNDS=5
# a comma separated list of test names
export MP_BENCH_TESTS='complex array, complex map'
# or a group name
# export MP_BENCH_TESTS='-@slow' // @pecl_comp
# or a regexp
# export MP_BENCH_TESTS='/complex (array|map)/'

Another example, benchmarking both the library and the PECL extension:

MP_BENCH_TARGETS=pure_p,pure_u,pecl_p,pecl_u \
php -n -dextension=msgpack.so -dzend_extension=opcache.so \
-dpcre.jit=1 -dopcache.enable=1 -dopcache.enable_cli=1 \
tests/bench.php

Example output

Filter: MessagePack\Tests\Perf\Filter\ListFilter
Rounds: 3
Iterations: 100000

===========================================================================
Test/Target            Packer  BufferUnpacker  msgpack_pack  msgpack_unpack
---------------------------------------------------------------------------
nil .................. 0.0031 ........ 0.0141 ...... 0.0055 ........ 0.0064
false ................ 0.0039 ........ 0.0154 ...... 0.0056 ........ 0.0053
true ................. 0.0038 ........ 0.0139 ...... 0.0056 ........ 0.0044
7-bit uint #1 ........ 0.0061 ........ 0.0110 ...... 0.0059 ........ 0.0046
7-bit uint #2 ........ 0.0065 ........ 0.0119 ...... 0.0042 ........ 0.0029
7-bit uint #3 ........ 0.0054 ........ 0.0117 ...... 0.0045 ........ 0.0025
5-bit sint #1 ........ 0.0047 ........ 0.0103 ...... 0.0038 ........ 0.0022
5-bit sint #2 ........ 0.0048 ........ 0.0117 ...... 0.0038 ........ 0.0022
5-bit sint #3 ........ 0.0046 ........ 0.0102 ...... 0.0038 ........ 0.0023
8-bit uint #1 ........ 0.0063 ........ 0.0174 ...... 0.0039 ........ 0.0031
8-bit uint #2 ........ 0.0063 ........ 0.0167 ...... 0.0040 ........ 0.0029
8-bit uint #3 ........ 0.0063 ........ 0.0168 ...... 0.0039 ........ 0.0030
16-bit uint #1 ....... 0.0092 ........ 0.0222 ...... 0.0049 ........ 0.0030
16-bit uint #2 ....... 0.0096 ........ 0.0227 ...... 0.0042 ........ 0.0046
16-bit uint #3 ....... 0.0123 ........ 0.0274 ...... 0.0059 ........ 0.0051
32-bit uint #1 ....... 0.0136 ........ 0.0331 ...... 0.0060 ........ 0.0048
32-bit uint #2 ....... 0.0130 ........ 0.0336 ...... 0.0070 ........ 0.0048
32-bit uint #3 ....... 0.0127 ........ 0.0329 ...... 0.0051 ........ 0.0048
64-bit uint #1 ....... 0.0126 ........ 0.0268 ...... 0.0055 ........ 0.0049
64-bit uint #2 ....... 0.0135 ........ 0.0281 ...... 0.0052 ........ 0.0046
64-bit uint #3 ....... 0.0131 ........ 0.0274 ...... 0.0069 ........ 0.0044
8-bit int #1 ......... 0.0077 ........ 0.0236 ...... 0.0058 ........ 0.0044
8-bit int #2 ......... 0.0087 ........ 0.0244 ...... 0.0058 ........ 0.0048
8-bit int #3 ......... 0.0084 ........ 0.0241 ...... 0.0055 ........ 0.0049
16-bit int #1 ........ 0.0112 ........ 0.0271 ...... 0.0048 ........ 0.0045
16-bit int #2 ........ 0.0124 ........ 0.0292 ...... 0.0057 ........ 0.0049
16-bit int #3 ........ 0.0118 ........ 0.0270 ...... 0.0058 ........ 0.0050
32-bit int #1 ........ 0.0137 ........ 0.0366 ...... 0.0058 ........ 0.0051
32-bit int #2 ........ 0.0133 ........ 0.0366 ...... 0.0056 ........ 0.0049
32-bit int #3 ........ 0.0129 ........ 0.0350 ...... 0.0052 ........ 0.0048
64-bit int #1 ........ 0.0145 ........ 0.0254 ...... 0.0034 ........ 0.0025
64-bit int #2 ........ 0.0097 ........ 0.0214 ...... 0.0034 ........ 0.0025
64-bit int #3 ........ 0.0096 ........ 0.0287 ...... 0.0059 ........ 0.0050
64-bit int #4 ........ 0.0143 ........ 0.0277 ...... 0.0059 ........ 0.0046
64-bit float #1 ...... 0.0134 ........ 0.0281 ...... 0.0057 ........ 0.0052
64-bit float #2 ...... 0.0141 ........ 0.0281 ...... 0.0057 ........ 0.0050
64-bit float #3 ...... 0.0144 ........ 0.0282 ...... 0.0057 ........ 0.0050
fix string #1 ........ 0.0036 ........ 0.0143 ...... 0.0066 ........ 0.0053
fix string #2 ........ 0.0107 ........ 0.0222 ...... 0.0065 ........ 0.0068
fix string #3 ........ 0.0116 ........ 0.0245 ...... 0.0063 ........ 0.0069
fix string #4 ........ 0.0105 ........ 0.0253 ...... 0.0083 ........ 0.0077
8-bit string #1 ...... 0.0126 ........ 0.0318 ...... 0.0075 ........ 0.0088
8-bit string #2 ...... 0.0121 ........ 0.0295 ...... 0.0076 ........ 0.0086
8-bit string #3 ...... 0.0125 ........ 0.0293 ...... 0.0130 ........ 0.0093
16-bit string #1 ..... 0.0159 ........ 0.0368 ...... 0.0117 ........ 0.0086
16-bit string #2 ..... 0.1547 ........ 0.1686 ...... 0.1516 ........ 0.1373
32-bit string ........ 0.1558 ........ 0.1729 ...... 0.1511 ........ 0.1396
wide char string #1 .. 0.0098 ........ 0.0237 ...... 0.0066 ........ 0.0065
wide char string #2 .. 0.0128 ........ 0.0291 ...... 0.0061 ........ 0.0082
8-bit binary #1 ........... I ............. I ........... F ............. I
8-bit binary #2 ........... I ............. I ........... F ............. I
8-bit binary #3 ........... I ............. I ........... F ............. I
16-bit binary ............. I ............. I ........... F ............. I
32-bit binary ............. I ............. I ........... F ............. I
fix array #1 ......... 0.0040 ........ 0.0129 ...... 0.0120 ........ 0.0058
fix array #2 ......... 0.0279 ........ 0.0390 ...... 0.0143 ........ 0.0165
fix array #3 ......... 0.0415 ........ 0.0463 ...... 0.0162 ........ 0.0187
16-bit array #1 ...... 0.1349 ........ 0.1628 ...... 0.0334 ........ 0.0341
16-bit array #2 ........... S ............. S ........... S ............. S
32-bit array .............. S ............. S ........... S ............. S
complex array ............. I ............. I ........... F ............. F
fix map #1 ................ I ............. I ........... F ............. I
fix map #2 ........... 0.0345 ........ 0.0391 ...... 0.0143 ........ 0.0168
fix map #3 ................ I ............. I ........... F ............. I
fix map #4 ........... 0.0459 ........ 0.0473 ...... 0.0151 ........ 0.0163
16-bit map #1 ........ 0.2518 ........ 0.2962 ...... 0.0400 ........ 0.0490
16-bit map #2 ............. S ............. S ........... S ............. S
32-bit map ................ S ............. S ........... S ............. S
complex map .......... 0.2380 ........ 0.2682 ...... 0.0545 ........ 0.0579
fixext 1 .................. I ............. I ........... F ............. F
fixext 2 .................. I ............. I ........... F ............. F
fixext 4 .................. I ............. I ........... F ............. F
fixext 8 .................. I ............. I ........... F ............. F
fixext 16 ................. I ............. I ........... F ............. F
8-bit ext ................. I ............. I ........... F ............. F
16-bit ext ................ I ............. I ........... F ............. F
32-bit ext ................ I ............. I ........... F ............. F
32-bit timestamp #1 ....... I ............. I ........... F ............. F
32-bit timestamp #2 ....... I ............. I ........... F ............. F
64-bit timestamp #1 ....... I ............. I ........... F ............. F
64-bit timestamp #2 ....... I ............. I ........... F ............. F
64-bit timestamp #3 ....... I ............. I ........... F ............. F
96-bit timestamp #1 ....... I ............. I ........... F ............. F
96-bit timestamp #2 ....... I ............. I ........... F ............. F
96-bit timestamp #3 ....... I ............. I ........... F ............. F
===========================================================================
Total                  1.5625          2.3866        0.7735          0.7243
Skipped                     4               4             4               4
Failed                      0               0            24              17
Ignored                    24              24             0               7

With JIT:

MP_BENCH_TARGETS=pure_p,pure_u,pecl_p,pecl_u \
php -n -dextension=msgpack.so -dzend_extension=opcache.so \
-dpcre.jit=1 -dopcache.jit_buffer_size=64M -dopcache.jit=tracing -dopcache.enable=1 -dopcache.enable_cli=1 \
tests/bench.php

Example output

Filter: MessagePack\Tests\Perf\Filter\ListFilter
Rounds: 3
Iterations: 100000

===========================================================================
Test/Target            Packer  BufferUnpacker  msgpack_pack  msgpack_unpack
---------------------------------------------------------------------------
nil .................. 0.0001 ........ 0.0052 ...... 0.0053 ........ 0.0042
false ................ 0.0007 ........ 0.0060 ...... 0.0057 ........ 0.0043
true ................. 0.0008 ........ 0.0060 ...... 0.0056 ........ 0.0041
7-bit uint #1 ........ 0.0031 ........ 0.0046 ...... 0.0062 ........ 0.0041
7-bit uint #2 ........ 0.0021 ........ 0.0043 ...... 0.0062 ........ 0.0041
7-bit uint #3 ........ 0.0022 ........ 0.0044 ...... 0.0061 ........ 0.0040
5-bit sint #1 ........ 0.0030 ........ 0.0048 ...... 0.0062 ........ 0.0040
5-bit sint #2 ........ 0.0032 ........ 0.0046 ...... 0.0062 ........ 0.0040
5-bit sint #3 ........ 0.0031 ........ 0.0046 ...... 0.0062 ........ 0.0040
8-bit uint #1 ........ 0.0054 ........ 0.0079 ...... 0.0062 ........ 0.0050
8-bit uint #2 ........ 0.0051 ........ 0.0079 ...... 0.0064 ........ 0.0044
8-bit uint #3 ........ 0.0051 ........ 0.0082 ...... 0.0062 ........ 0.0044
16-bit uint #1 ....... 0.0077 ........ 0.0094 ...... 0.0065 ........ 0.0045
16-bit uint #2 ....... 0.0077 ........ 0.0094 ...... 0.0063 ........ 0.0045
16-bit uint #3 ....... 0.0077 ........ 0.0095 ...... 0.0064 ........ 0.0047
32-bit uint #1 ....... 0.0088 ........ 0.0119 ...... 0.0063 ........ 0.0043
32-bit uint #2 ....... 0.0089 ........ 0.0117 ...... 0.0062 ........ 0.0039
32-bit uint #3 ....... 0.0089 ........ 0.0118 ...... 0.0063 ........ 0.0044
64-bit uint #1 ....... 0.0097 ........ 0.0155 ...... 0.0063 ........ 0.0045
64-bit uint #2 ....... 0.0095 ........ 0.0153 ...... 0.0061 ........ 0.0045
64-bit uint #3 ....... 0.0096 ........ 0.0156 ...... 0.0063 ........ 0.0047
8-bit int #1 ......... 0.0053 ........ 0.0083 ...... 0.0062 ........ 0.0044
8-bit int #2 ......... 0.0052 ........ 0.0080 ...... 0.0062 ........ 0.0044
8-bit int #3 ......... 0.0052 ........ 0.0080 ...... 0.0062 ........ 0.0043
16-bit int #1 ........ 0.0089 ........ 0.0097 ...... 0.0069 ........ 0.0046
16-bit int #2 ........ 0.0075 ........ 0.0093 ...... 0.0063 ........ 0.0043
16-bit int #3 ........ 0.0075 ........ 0.0094 ...... 0.0062 ........ 0.0046
32-bit int #1 ........ 0.0086 ........ 0.0122 ...... 0.0063 ........ 0.0044
32-bit int #2 ........ 0.0087 ........ 0.0120 ...... 0.0066 ........ 0.0046
32-bit int #3 ........ 0.0086 ........ 0.0121 ...... 0.0060 ........ 0.0044
64-bit int #1 ........ 0.0096 ........ 0.0149 ...... 0.0060 ........ 0.0045
64-bit int #2 ........ 0.0096 ........ 0.0157 ...... 0.0062 ........ 0.0044
64-bit int #3 ........ 0.0096 ........ 0.0160 ...... 0.0063 ........ 0.0046
64-bit int #4 ........ 0.0097 ........ 0.0157 ...... 0.0061 ........ 0.0044
64-bit float #1 ...... 0.0079 ........ 0.0153 ...... 0.0056 ........ 0.0044
64-bit float #2 ...... 0.0079 ........ 0.0152 ...... 0.0057 ........ 0.0045
64-bit float #3 ...... 0.0079 ........ 0.0155 ...... 0.0057 ........ 0.0044
fix string #1 ........ 0.0010 ........ 0.0045 ...... 0.0071 ........ 0.0044
fix string #2 ........ 0.0048 ........ 0.0075 ...... 0.0070 ........ 0.0060
fix string #3 ........ 0.0048 ........ 0.0086 ...... 0.0068 ........ 0.0060
fix string #4 ........ 0.0050 ........ 0.0088 ...... 0.0070 ........ 0.0059
8-bit string #1 ...... 0.0081 ........ 0.0129 ...... 0.0069 ........ 0.0062
8-bit string #2 ...... 0.0086 ........ 0.0128 ...... 0.0069 ........ 0.0065
8-bit string #3 ...... 0.0086 ........ 0.0126 ...... 0.0115 ........ 0.0065
16-bit string #1 ..... 0.0105 ........ 0.0137 ...... 0.0128 ........ 0.0068
16-bit string #2 ..... 0.1510 ........ 0.1486 ...... 0.1526 ........ 0.1391
32-bit string ........ 0.1517 ........ 0.1475 ...... 0.1504 ........ 0.1370
wide char string #1 .. 0.0044 ........ 0.0085 ...... 0.0067 ........ 0.0057
wide char string #2 .. 0.0081 ........ 0.0125 ...... 0.0069 ........ 0.0063
8-bit binary #1 ........... I ............. I ........... F ............. I
8-bit binary #2 ........... I ............. I ........... F ............. I
8-bit binary #3 ........... I ............. I ........... F ............. I
16-bit binary ............. I ............. I ........... F ............. I
32-bit binary ............. I ............. I ........... F ............. I
fix array #1 ......... 0.0014 ........ 0.0059 ...... 0.0132 ........ 0.0055
fix array #2 ......... 0.0146 ........ 0.0156 ...... 0.0155 ........ 0.0148
fix array #3 ......... 0.0211 ........ 0.0229 ...... 0.0179 ........ 0.0180
16-bit array #1 ...... 0.0673 ........ 0.0498 ...... 0.0343 ........ 0.0388
16-bit array #2 ........... S ............. S ........... S ............. S
32-bit array .............. S ............. S ........... S ............. S
complex array ............. I ............. I ........... F ............. F
fix map #1 ................ I ............. I ........... F ............. I
fix map #2 ........... 0.0148 ........ 0.0180 ...... 0.0156 ........ 0.0179
fix map #3 ................ I ............. I ........... F ............. I
fix map #4 ........... 0.0252 ........ 0.0201 ...... 0.0214 ........ 0.0167
16-bit map #1 ........ 0.1027 ........ 0.0836 ...... 0.0388 ........ 0.0510
16-bit map #2 ............. S ............. S ........... S ............. S
32-bit map ................ S ............. S ........... S ............. S
complex map .......... 0.1104 ........ 0.1010 ...... 0.0556 ........ 0.0602
fixext 1 .................. I ............. I ........... F ............. F
fixext 2 .................. I ............. I ........... F ............. F
fixext 4 .................. I ............. I ........... F ............. F
fixext 8 .................. I ............. I ........... F ............. F
fixext 16 ................. I ............. I ........... F ............. F
8-bit ext ................. I ............. I ........... F ............. F
16-bit ext ................ I ............. I ........... F ............. F
32-bit ext ................ I ............. I ........... F ............. F
32-bit timestamp #1 ....... I ............. I ........... F ............. F
32-bit timestamp #2 ....... I ............. I ........... F ............. F
64-bit timestamp #1 ....... I ............. I ........... F ............. F
64-bit timestamp #2 ....... I ............. I ........... F ............. F
64-bit timestamp #3 ....... I ............. I ........... F ............. F
96-bit timestamp #1 ....... I ............. I ........... F ............. F
96-bit timestamp #2 ....... I ............. I ........... F ............. F
96-bit timestamp #3 ....... I ............. I ........... F ............. F
===========================================================================
Total                  0.9642          1.0909        0.8224          0.7213
Skipped                     4               4             4               4
Failed                      0               0            24              17
Ignored                    24              24             0               7

Note that the msgpack extension (v2.1.2) doesn't support ext, bin and UTF-8 str types.

License

The library is released under the MIT License. See the bundled LICENSE file for details.

Author: rybakit
Source Code: https://github.com/rybakit/msgpack.php
License: MIT License

#php 

Build an Android application with Kivy Python framework

If you’re a Python developer thinking about getting started with mobile development, then the Kivy framework is your best bet. With Kivy, you can develop platform-independent applications that compile for iOS, Android, Windows, macOS, and Linux. In this article, we’ll cover Android specifically because it is the most used.

We’ll build a simple random number generator app that you can install on your phone and test when you are done. To follow along with this article, you should be familiar with Python. Let’s get started!

Getting started with Kivy

First, you’ll need a new directory for your app. Make sure you have Python installed on your machine and open a new Python file. You’ll need to install the Kivy module from your terminal using either of the commands below. To avoid any package conflicts, be sure you’re installing Kivy in a virtual environment:

pip install kivy 
//
pip3 install kivy 

Once you have installed Kivy, you should see a success message from your terminal that looks like the screenshots below:

Kivy installation

Successful Kivy installation

 

Next, navigate into your project folder. In the main.py file, we’ll need to import the Kivy module and specify which version we want. You can use Kivy v2.0.0, but if you have a smartphone that is older than Android 8.0, I recommend using Kivy v1.9.0. You can mess around with the different versions during the build to see the differences in features and performance.

Add the version number right after the import kivy line as follows:

kivy.require('1.9.0')

Now, we’ll create a class that will basically define our app; I’ll name mine RandomNumber. This class will inherit the app class from Kivy. Therefore, you need to import the app by adding from kivy.app import App:

class RandomNumber(App): 

In the RandomNumber class, you’ll need to add a function called build, which takes a self parameter. To actually return the UI, we’ll use the build function. For now, I have it returned as a simple label. To do so, you’ll need to import Label using the line from kivy.uix.label import Label:

import kivy
from kivy.app import App
from kivy.uix.label import Label

class RandomNumber(App):
  def build(self):
    return Label(text="Random Number Generator")

Now, our app skeleton is complete! Before moving forward, you should create an instance of the RandomNumber class and run it in your terminal or IDE to see the interface:

import kivy from kivy.app import App from kivy.uix.label import Label class RandomNumber(App):  def build(self):    return Label(text="Random Number Generator") randomApp = RandomNumber() randomApp.run()

When you run the class instance with the text Random Number Generator, you should see a simple interface or window that looks like the screenshot below:

 

Simple interface after running the code

You won’t be able to run the text on Android until you’ve finished building the whole thing.

Outsourcing the interface

Next, we’ll need a way to outsource the interface. First, we’ll create a Kivy file in our directory that will house most of our design work. You’ll want to name this file the same name as your class using lowercase letters and a .kv extension. Kivy will automatically associate the class name and the file name, but it may not work on Android if they are exactly the same.

Inside that .kv file, you need to specify the layout for your app, including elements like the label, buttons, forms, etc. To keep this demonstration simple, I’ll add a label for the title Random Number, a label that will serve as a placeholder for the random number that is generated _, and a Generate button that calls the generate function.

My .kv file looks like the code below, but you can mess around with the different values to fit your requirements:

<boxLayout>:
    orientation: "vertical"
    Label:
        text: "Random Number"
        font_size: 30
        color: 0, 0.62, 0.96

    Label:
        text: "_"
        font_size: 30

    Button:
        text: "Generate"
        font_size: 15 

In the main.py file, you no longer need the Label import statement because the Kivy file takes care of your UI. However, you do need to import boxlayout, which you will use in the Kivy file.

In your main file, you need to add the import statement and edit your main.py file to read return BoxLayout() in the build method:

from kivy.uix.boxlayout import BoxLayout

If you run the command above, you should see a simple interface that has the random number title, the _ place holder, and the clickable generate button:

Random Number app rendered

Notice that you didn’t have to import anything for the Kivy file to work. Basically, when you run the app, it returns boxlayout by looking for a file inside the Kivy file with the same name as your class. Keep in mind, this is a simple interface, and you can make your app as robust as you want. Be sure to check out the Kv language documentation.

Generate the random number function

Now that our app is almost done, we’ll need a simple function to generate random numbers when a user clicks the generate button, then render that random number into the app interface. To do so, we’ll need to change a few things in our files.

First, we’ll import the module that we’ll use to generate a random number with import random. Then, we’ll create a function or method that calls the generated number. For this demonstration, I’ll use a range between 0 and 2000. Generating the random number is simple with the random.randint(0, 2000) command. We’ll add this into our code in a moment.

Next, we’ll create another class that will be our own version of the box layout. Our class will have to inherit the box layout class, which houses the method to generate random numbers and render them on the interface:

class MyRoot(BoxLayout):
    def __init__(self):
        super(MyRoot, self).__init__()

Within that class, we’ll create the generate method, which will not only generate random numbers but also manipulate the label that controls what is displayed as the random number in the Kivy file.

To accommodate this method, we’ll first need to make changes to the .kv file . Since the MyRoot class has inherited the box layout, you can make MyRoot the top level element in your .kv file:

<MyRoot>:
    BoxLayout:
        orientation: "vertical"
        Label:
            text: "Random Number"
            font_size: 30
            color: 0, 0.62, 0.96

        Label:
            text: "_"
            font_size: 30

        Button:
            text: "Generate"
            font_size: 15

Notice that you are still keeping all your UI specifications indented in the Box Layout. After this, you need to add an ID to the label that will hold the generated numbers, making it easy to manipulate when the generate function is called. You need to specify the relationship between the ID in this file and another in the main code at the top, just before the BoxLayout line:

<MyRoot>:
    random_label: random_label
    BoxLayout:
        orientation: "vertical"
        Label:
            text: "Random Number"
            font_size: 30
            color: 0, 0.62, 0.96

        Label:
            id: random_label
            text: "_"
            font_size: 30

        Button:
            text: "Generate"
            font_size: 15

The random_label: random_label line basically means that the label with the ID random_label will be mapped to random_label in the main.py file, meaning that any action that manipulates random_label will be mapped on the label with the specified name.

We can now create the method to generate the random number in the main file:

def generate_number(self):
    self.random_label.text = str(random.randint(0, 2000))

# notice how the class method manipulates the text attributre of the random label by a# ssigning it a new random number generate by the 'random.randint(0, 2000)' funcion. S# ince this the random number generated is an integer, typecasting is required to make # it a string otherwise you will get a typeError in your terminal when you run it.

The MyRoot class should look like the code below:

class MyRoot(BoxLayout):
    def __init__(self):
        super(MyRoot, self).__init__()

    def generate_number(self):
        self.random_label.text = str(random.randint(0, 2000))

Congratulations! You’re now done with the main file of the app. The only thing left to do is make sure that you call this function when the generate button is clicked. You need only add the line on_press: root.generate_number() to the button selection part of your .kv file:

<MyRoot>:
    random_label: random_label
    BoxLayout:
        orientation: "vertical"
        Label:
            text: "Random Number"
            font_size: 30
            color: 0, 0.62, 0.96

        Label:
            id: random_label
            text: "_"
            font_size: 30

        Button:
            text: "Generate"
            font_size: 15
            on_press: root.generate_number()

Now, you can run the app.

Compiling our app on Android

Before compiling our app on Android, I have some bad news for Windows users. You’ll need Linux or macOS to compile your Android application. However, you don’t need to have a separate Linux distribution, instead, you can use a virtual machine.

To compile and generate a full Android .apk application, we’ll use a tool called Buildozer. Let’s install Buildozer through our terminal using one of the commands below:

pip3 install buildozer
//
pip install buildozer

Now, we’ll install some of Buildozer’s required dependencies. I am on Linux Ergo, so I’ll use Linux-specific commands. You should execute these commands one by one:

sudo apt update
sudo apt install -y git zip unzip openjdk-13-jdk python3-pip autoconf libtool pkg-config zlib1g-dev libncurses5-dev libncursesw5-dev libtinfo5 cmake libffi-dev libssl-dev

pip3 install --upgrade Cython==0.29.19 virtualenv 

# add the following line at the end of your ~/.bashrc file
export PATH=$PATH:~/.local/bin/

After executing the specific commands, run buildozer init. You should see an output similar to the screenshot below:

Buildozer successful initialization

The command above creates a Buildozer .spec file, which you can use to make specifications to your app, including the name of the app, the icon, etc. The .spec file should look like the code block below:

[app]

# (str) Title of your application
title = My Application

# (str) Package name
package.name = myapp

# (str) Package domain (needed for android/ios packaging)
package.domain = org.test

# (str) Source code where the main.py live
source.dir = .

# (list) Source files to include (let empty to include all the files)
source.include_exts = py,png,jpg,kv,atlas

# (list) List of inclusions using pattern matching
#source.include_patterns = assets/*,images/*.png

# (list) Source files to exclude (let empty to not exclude anything)
#source.exclude_exts = spec

# (list) List of directory to exclude (let empty to not exclude anything)
#source.exclude_dirs = tests, bin

# (list) List of exclusions using pattern matching
#source.exclude_patterns = license,images/*/*.jpg

# (str) Application versioning (method 1)
version = 0.1

# (str) Application versioning (method 2)
# version.regex = __version__ = \['"\](.*)['"]
# version.filename = %(source.dir)s/main.py

# (list) Application requirements
# comma separated e.g. requirements = sqlite3,kivy
requirements = python3,kivy

# (str) Custom source folders for requirements
# Sets custom source for any requirements with recipes
# requirements.source.kivy = ../../kivy

# (list) Garden requirements
#garden_requirements =

# (str) Presplash of the application
#presplash.filename = %(source.dir)s/data/presplash.png

# (str) Icon of the application
#icon.filename = %(source.dir)s/data/icon.png

# (str) Supported orientation (one of landscape, sensorLandscape, portrait or all)
orientation = portrait

# (list) List of service to declare
#services = NAME:ENTRYPOINT_TO_PY,NAME2:ENTRYPOINT2_TO_PY

#
# OSX Specific
#

#
# author = © Copyright Info

# change the major version of python used by the app
osx.python_version = 3

# Kivy version to use
osx.kivy_version = 1.9.1

#
# Android specific
#

# (bool) Indicate if the application should be fullscreen or not
fullscreen = 0

# (string) Presplash background color (for new android toolchain)
# Supported formats are: #RRGGBB #AARRGGBB or one of the following names:
# red, blue, green, black, white, gray, cyan, magenta, yellow, lightgray,
# darkgray, grey, lightgrey, darkgrey, aqua, fuchsia, lime, maroon, navy,
# olive, purple, silver, teal.
#android.presplash_color = #FFFFFF

# (list) Permissions
#android.permissions = INTERNET

# (int) Target Android API, should be as high as possible.
#android.api = 27

# (int) Minimum API your APK will support.
#android.minapi = 21

# (int) Android SDK version to use
#android.sdk = 20

# (str) Android NDK version to use
#android.ndk = 19b

# (int) Android NDK API to use. This is the minimum API your app will support, it should usually match android.minapi.
#android.ndk_api = 21

# (bool) Use --private data storage (True) or --dir public storage (False)
#android.private_storage = True

# (str) Android NDK directory (if empty, it will be automatically downloaded.)
#android.ndk_path =

# (str) Android SDK directory (if empty, it will be automatically downloaded.)
#android.sdk_path =

# (str) ANT directory (if empty, it will be automatically downloaded.)
#android.ant_path =

# (bool) If True, then skip trying to update the Android sdk
# This can be useful to avoid excess Internet downloads or save time
# when an update is due and you just want to test/build your package
# android.skip_update = False

# (bool) If True, then automatically accept SDK license
# agreements. This is intended for automation only. If set to False,
# the default, you will be shown the license when first running
# buildozer.
# android.accept_sdk_license = False

# (str) Android entry point, default is ok for Kivy-based app
#android.entrypoint = org.renpy.android.PythonActivity

# (str) Android app theme, default is ok for Kivy-based app
# android.apptheme = "@android:style/Theme.NoTitleBar"

# (list) Pattern to whitelist for the whole project
#android.whitelist =

# (str) Path to a custom whitelist file
#android.whitelist_src =

# (str) Path to a custom blacklist file
#android.blacklist_src =

# (list) List of Java .jar files to add to the libs so that pyjnius can access
# their classes. Don't add jars that you do not need, since extra jars can slow
# down the build process. Allows wildcards matching, for example:
# OUYA-ODK/libs/*.jar
#android.add_jars = foo.jar,bar.jar,path/to/more/*.jar

# (list) List of Java files to add to the android project (can be java or a
# directory containing the files)
#android.add_src =

# (list) Android AAR archives to add (currently works only with sdl2_gradle
# bootstrap)
#android.add_aars =

# (list) Gradle dependencies to add (currently works only with sdl2_gradle
# bootstrap)
#android.gradle_dependencies =

# (list) add java compile options
# this can for example be necessary when importing certain java libraries using the 'android.gradle_dependencies' option
# see https://developer.android.com/studio/write/java8-support for further information
# android.add_compile_options = "sourceCompatibility = 1.8", "targetCompatibility = 1.8"

# (list) Gradle repositories to add {can be necessary for some android.gradle_dependencies}
# please enclose in double quotes 
# e.g. android.gradle_repositories = "maven { url 'https://kotlin.bintray.com/ktor' }"
#android.add_gradle_repositories =

# (list) packaging options to add 
# see https://google.github.io/android-gradle-dsl/current/com.android.build.gradle.internal.dsl.PackagingOptions.html
# can be necessary to solve conflicts in gradle_dependencies
# please enclose in double quotes 
# e.g. android.add_packaging_options = "exclude 'META-INF/common.kotlin_module'", "exclude 'META-INF/*.kotlin_module'"
#android.add_gradle_repositories =

# (list) Java classes to add as activities to the manifest.
#android.add_activities = com.example.ExampleActivity

# (str) OUYA Console category. Should be one of GAME or APP
# If you leave this blank, OUYA support will not be enabled
#android.ouya.category = GAME

# (str) Filename of OUYA Console icon. It must be a 732x412 png image.
#android.ouya.icon.filename = %(source.dir)s/data/ouya_icon.png

# (str) XML file to include as an intent filters in <activity> tag
#android.manifest.intent_filters =

# (str) launchMode to set for the main activity
#android.manifest.launch_mode = standard

# (list) Android additional libraries to copy into libs/armeabi
#android.add_libs_armeabi = libs/android/*.so
#android.add_libs_armeabi_v7a = libs/android-v7/*.so
#android.add_libs_arm64_v8a = libs/android-v8/*.so
#android.add_libs_x86 = libs/android-x86/*.so
#android.add_libs_mips = libs/android-mips/*.so

# (bool) Indicate whether the screen should stay on
# Don't forget to add the WAKE_LOCK permission if you set this to True
#android.wakelock = False

# (list) Android application meta-data to set (key=value format)
#android.meta_data =

# (list) Android library project to add (will be added in the
# project.properties automatically.)
#android.library_references =

# (list) Android shared libraries which will be added to AndroidManifest.xml using <uses-library> tag
#android.uses_library =

# (str) Android logcat filters to use
#android.logcat_filters = *:S python:D

# (bool) Copy library instead of making a libpymodules.so
#android.copy_libs = 1

# (str) The Android arch to build for, choices: armeabi-v7a, arm64-v8a, x86, x86_64
android.arch = armeabi-v7a

# (int) overrides automatic versionCode computation (used in build.gradle)
# this is not the same as app version and should only be edited if you know what you're doing
# android.numeric_version = 1

#
# Python for android (p4a) specific
#

# (str) python-for-android fork to use, defaults to upstream (kivy)
#p4a.fork = kivy

# (str) python-for-android branch to use, defaults to master
#p4a.branch = master

# (str) python-for-android git clone directory (if empty, it will be automatically cloned from github)
#p4a.source_dir =

# (str) The directory in which python-for-android should look for your own build recipes (if any)
#p4a.local_recipes =

# (str) Filename to the hook for p4a
#p4a.hook =

# (str) Bootstrap to use for android builds
# p4a.bootstrap = sdl2

# (int) port number to specify an explicit --port= p4a argument (eg for bootstrap flask)
#p4a.port =


#
# iOS specific
#

# (str) Path to a custom kivy-ios folder
#ios.kivy_ios_dir = ../kivy-ios
# Alternately, specify the URL and branch of a git checkout:
ios.kivy_ios_url = https://github.com/kivy/kivy-ios
ios.kivy_ios_branch = master

# Another platform dependency: ios-deploy
# Uncomment to use a custom checkout
#ios.ios_deploy_dir = ../ios_deploy
# Or specify URL and branch
ios.ios_deploy_url = https://github.com/phonegap/ios-deploy
ios.ios_deploy_branch = 1.7.0

# (str) Name of the certificate to use for signing the debug version
# Get a list of available identities: buildozer ios list_identities
#ios.codesign.debug = "iPhone Developer: <lastname> <firstname> (<hexstring>)"

# (str) Name of the certificate to use for signing the release version
#ios.codesign.release = %(ios.codesign.debug)s


[buildozer]

# (int) Log level (0 = error only, 1 = info, 2 = debug (with command output))
log_level = 2

# (int) Display warning if buildozer is run as root (0 = False, 1 = True)
warn_on_root = 1

# (str) Path to build artifact storage, absolute or relative to spec file
# build_dir = ./.buildozer

# (str) Path to build output (i.e. .apk, .ipa) storage
# bin_dir = ./bin

#    -----------------------------------------------------------------------------
#    List as sections
#
#    You can define all the "list" as [section:key].
#    Each line will be considered as a option to the list.
#    Let's take [app] / source.exclude_patterns.
#    Instead of doing:
#
#[app]
#source.exclude_patterns = license,data/audio/*.wav,data/images/original/*
#
#    This can be translated into:
#
#[app:source.exclude_patterns]
#license
#data/audio/*.wav
#data/images/original/*
#


#    -----------------------------------------------------------------------------
#    Profiles
#
#    You can extend section / key with a profile
#    For example, you want to deploy a demo version of your application without
#    HD content. You could first change the title to add "(demo)" in the name
#    and extend the excluded directories to remove the HD content.
#
#[app@demo]
#title = My Application (demo)
#
#[app:source.exclude_patterns@demo]
#images/hd/*
#
#    Then, invoke the command line with the "demo" profile:
#
#buildozer --profile demo android debug

If you want to specify things like the icon, requirements, loading screen, etc., you should edit this file. After making all the desired edits to your application, run buildozer -v android debug from your app directory to build and compile your application. This may take a while, especially if you have a slow machine.

After the process is done, your terminal should have some logs, one confirming that the build was successful:

Android successful build

You should also have an APK version of your app in your bin directory. This is the application executable that you will install and run on your phone:

Android .apk in the bin directory

Conclusion

Congratulations! If you have followed this tutorial step by step, you should have a simple random number generator app on your phone. Play around with it and tweak some values, then rebuild. Running the rebuild will not take as much time as the first build.

As you can see, building a mobile application with Python is fairly straightforward, as long as you are familiar with the framework or module you are working with. Regardless, the logic is executed the same way.

Get familiar with the Kivy module and it’s widgets. You can never know everything all at once. You only need to find a project and get your feet wet as early as possible. Happy coding.

Link: https://blog.logrocket.com/build-android-application-kivy-python-framework/

#python 

Cree Una Aplicación De Android Con El Marco Kivy Python

Si es un desarrollador de Python que está pensando en comenzar con el desarrollo móvil, entonces el marco Kivy es su mejor opción. Con Kivy, puede desarrollar aplicaciones independientes de la plataforma que compilan para iOS, Android, Windows, macOS y Linux. En este artículo, cubriremos Android específicamente porque es el más utilizado.

Construiremos una aplicación generadora de números aleatorios simple que puede instalar en su teléfono y probar cuando haya terminado. Para continuar con este artículo, debe estar familiarizado con Python. ¡Empecemos!

Primeros pasos con Kivy

Primero, necesitará un nuevo directorio para su aplicación. Asegúrese de tener Python instalado en su máquina y abra un nuevo archivo de Python. Deberá instalar el módulo Kivy desde su terminal usando cualquiera de los comandos a continuación. Para evitar conflictos de paquetes, asegúrese de instalar Kivy en un entorno virtual:

pip install kivy 
//
pip3 install kivy 

Una vez que haya instalado Kivy, debería ver un mensaje de éxito de su terminal que se parece a las capturas de pantalla a continuación:

Instalación decepcionada

Instalación exitosa de Kivy

 

A continuación, navegue a la carpeta de su proyecto. En el main.pyarchivo, necesitaremos importar el módulo Kivy y especificar qué versión queremos. Puede usar Kivy v2.0.0, pero si tiene un teléfono inteligente anterior a Android 8.0, le recomiendo usar Kivy v1.9.0. Puede jugar con las diferentes versiones durante la compilación para ver las diferencias en las características y el rendimiento.

Agregue el número de versión justo después de la import kivylínea de la siguiente manera:

kivy.require('1.9.0')

Ahora, crearemos una clase que básicamente definirá nuestra aplicación; Voy a nombrar el mío RandomNumber. Esta clase heredará la appclase de Kivy. Por lo tanto, debe importar appagregando from kivy.app import App:

class RandomNumber(App): 

En la RandomNumberclase, deberá agregar una función llamada build, que toma un selfparámetro. Para devolver la interfaz de usuario, usaremos la buildfunción. Por ahora, lo tengo devuelto como una simple etiqueta. Para hacerlo, deberá importar Labelusando la línea from kivy.uix.label import Label:

import kivy
from kivy.app import App
from kivy.uix.label import Label

class RandomNumber(App):
  def build(self):
    return Label(text="Random Number Generator")

¡Ahora, el esqueleto de nuestra aplicación está completo! Antes de continuar, debe crear una instancia de la RandomNumberclase y ejecutarla en su terminal o IDE para ver la interfaz:

importar kivy de kivy.app importar aplicación de kivy.uix.label clase de etiqueta de importación RandomNumber(App): def build(self): return Label(text="Generador de números aleatorios") randomApp = RandomNumber() randomApp.run()

Cuando ejecuta la instancia de clase con el texto Random Number Generator, debería ver una interfaz o ventana simple que se parece a la siguiente captura de pantalla:

 

Interfaz simple después de ejecutar el código.

No podrá ejecutar el texto en Android hasta que haya terminado de construir todo.

Externalización de la interfaz

A continuación, necesitaremos una forma de subcontratar la interfaz. Primero, crearemos un archivo Kivy en nuestro directorio que albergará la mayor parte de nuestro trabajo de diseño. Querrá nombrar este archivo con el mismo nombre que su clase usando letras minúsculas y una .kvextensión. Kivy asociará automáticamente el nombre de la clase y el nombre del archivo, pero es posible que no funcione en Android si son exactamente iguales.

Dentro de ese .kvarchivo, debe especificar el diseño de su aplicación, incluidos elementos como la etiqueta, los botones, los formularios, etc. Para simplificar esta demostración, agregaré una etiqueta para el título Random Number, una etiqueta que servirá como marcador de posición. para el número aleatorio que se genera _, y un Generatebotón que llama a la generatefunción.

Mi .kvarchivo se parece al siguiente código, pero puede jugar con los diferentes valores para que se ajusten a sus requisitos:

<boxLayout>:
    orientation: "vertical"
    Label:
        text: "Random Number"
        font_size: 30
        color: 0, 0.62, 0.96

    Label:
        text: "_"
        font_size: 30

    Button:
        text: "Generate"
        font_size: 15 

En el main.pyarchivo, ya no necesita la Labeldeclaración de importación porque el archivo Kivy se encarga de su interfaz de usuario. Sin embargo, necesita importar boxlayout, que utilizará en el archivo Kivy.

En su archivo principal, debe agregar la declaración de importación y editar su main.pyarchivo para leer return BoxLayout()el buildmétodo:

from kivy.uix.boxlayout import BoxLayout

Si ejecuta el comando anterior, debería ver una interfaz simple que tiene el título del número aleatorio, el _marcador de posición y el generatebotón en el que se puede hacer clic:

Aplicación de números aleatorios renderizada

Tenga en cuenta que no tuvo que importar nada para que funcione el archivo Kivy. Básicamente, cuando ejecuta la aplicación, regresa boxlayoutbuscando un archivo dentro del archivo Kivy con el mismo nombre que su clase. Tenga en cuenta que esta es una interfaz simple y puede hacer que su aplicación sea tan robusta como desee. Asegúrese de consultar la documentación del idioma Kv .

Generar la función de números aleatorios

Ahora que nuestra aplicación está casi terminada, necesitaremos una función simple para generar números aleatorios cuando un usuario haga clic en el generatebotón y luego mostrar ese número aleatorio en la interfaz de la aplicación. Para hacerlo, necesitaremos cambiar algunas cosas en nuestros archivos.

Primero, importaremos el módulo que usaremos para generar un número aleatorio con import random. Luego, crearemos una función o método que llame al número generado. Para esta demostración, usaré un rango entre 0y 2000. Generar el número aleatorio es simple con el random.randint(0, 2000)comando. Agregaremos esto a nuestro código en un momento.

A continuación, crearemos otra clase que será nuestra propia versión del box layout. Nuestra clase tendrá que heredar la box layoutclase, que alberga el método para generar números aleatorios y representarlos en la interfaz:

class MyRoot(BoxLayout):
    def __init__(self):
        super(MyRoot, self).__init__()

Dentro de esa clase, crearemos el generatemétodo, que no solo generará números aleatorios, sino que también manipulará la etiqueta que controla lo que se muestra como número aleatorio en el archivo Kivy.

Para acomodar este método, primero necesitaremos hacer cambios en el .kvarchivo. Dado que la MyRootclase ha heredado el box layout, puede crear MyRootel elemento de nivel superior en su .kvarchivo:

<MyRoot>:
    BoxLayout:
        orientation: "vertical"
        Label:
            text: "Random Number"
            font_size: 30
            color: 0, 0.62, 0.96

        Label:
            text: "_"
            font_size: 30

        Button:
            text: "Generate"
            font_size: 15

Tenga en cuenta que todavía mantiene todas las especificaciones de la interfaz de usuario con sangría en el archivo Box Layout. Después de esto, debe agregar una identificación a la etiqueta que contendrá los números generados, lo que facilita la manipulación cuando generatese llama a la función. Debe especificar la relación entre la ID en este archivo y otra en el código principal en la parte superior, justo antes de la BoxLayoutlínea:

<MyRoot>:
    random_label: random_label
    BoxLayout:
        orientation: "vertical"
        Label:
            text: "Random Number"
            font_size: 30
            color: 0, 0.62, 0.96

        Label:
            id: random_label
            text: "_"
            font_size: 30

        Button:
            text: "Generate"
            font_size: 15

La random_label: random_labellínea básicamente significa que la etiqueta con el ID random_labelse asignará a random_labelen el main.pyarchivo, lo que significa que cualquier acción que manipula random_labelserán mapeados en la etiqueta con el nombre especificado.

Ahora podemos crear el método para generar el número aleatorio en el archivo principal:

def generate_number(self):
    self.random_label.text = str(random.randint(0, 2000))

# notice how the class method manipulates the text attributre of the random label by a# ssigning it a new random number generate by the 'random.randint(0, 2000)' funcion. S# ince this the random number generated is an integer, typecasting is required to make # it a string otherwise you will get a typeError in your terminal when you run it.

La MyRootclase debería parecerse al siguiente código:

class MyRoot(BoxLayout):
    def __init__(self):
        super(MyRoot, self).__init__()

    def generate_number(self):
        self.random_label.text = str(random.randint(0, 2000))

¡Felicidades! Ya ha terminado con el archivo principal de la aplicación. Lo único que queda por hacer es asegurarse de llamar a esta función cuando se haga generateclic en el botón. Solo necesita agregar la línea on_press: root.generate_number()a la parte de selección de botones de su .kvarchivo:

<MyRoot>:
    random_label: random_label
    BoxLayout:
        orientation: "vertical"
        Label:
            text: "Random Number"
            font_size: 30
            color: 0, 0.62, 0.96

        Label:
            id: random_label
            text: "_"
            font_size: 30

        Button:
            text: "Generate"
            font_size: 15
            on_press: root.generate_number()

Ahora, puede ejecutar la aplicación.

Compilando nuestra aplicación en Android

Antes de compilar nuestra aplicación en Android, tengo malas noticias para los usuarios de Windows. Necesitará Linux o macOS para compilar su aplicación de Android. Sin embargo, no necesita tener una distribución de Linux separada, en su lugar, puede usar una máquina virtual.

Para compilar y generar una .apkaplicación Android completa , usaremos una herramienta llamada Buildozer . Instalemos Buildozer a través de nuestra terminal usando uno de los siguientes comandos:

pip3 install buildozer
//
pip install buildozer

Ahora, instalaremos algunas de las dependencias requeridas de Buildozer. Estoy en Linux Ergo, así que usaré comandos específicos de Linux. Debe ejecutar estos comandos uno por uno:

sudo apt update
sudo apt install -y git zip unzip openjdk-13-jdk python3-pip autoconf libtool pkg-config zlib1g-dev libncurses5-dev libncursesw5-dev libtinfo5 cmake libffi-dev libssl-dev

pip3 install --upgrade Cython==0.29.19 virtualenv 

# add the following line at the end of your ~/.bashrc file
export PATH=$PATH:~/.local/bin/

Después de ejecutar los comandos específicos, ejecute buildozer init. Debería ver un resultado similar a la captura de pantalla a continuación:

Inicialización exitosa de Buildozer

El comando anterior crea un .specarchivo Buildozer , que puede usar para hacer especificaciones para su aplicación, incluido el nombre de la aplicación, el ícono, etc. El .specarchivo debe verse como el bloque de código a continuación:

[app]

# (str) Title of your application
title = My Application

# (str) Package name
package.name = myapp

# (str) Package domain (needed for android/ios packaging)
package.domain = org.test

# (str) Source code where the main.py live
source.dir = .

# (list) Source files to include (let empty to include all the files)
source.include_exts = py,png,jpg,kv,atlas

# (list) List of inclusions using pattern matching
#source.include_patterns = assets/*,images/*.png

# (list) Source files to exclude (let empty to not exclude anything)
#source.exclude_exts = spec

# (list) List of directory to exclude (let empty to not exclude anything)
#source.exclude_dirs = tests, bin

# (list) List of exclusions using pattern matching
#source.exclude_patterns = license,images/*/*.jpg

# (str) Application versioning (method 1)
version = 0.1

# (str) Application versioning (method 2)
# version.regex = __version__ = \['"\](.*)['"]
# version.filename = %(source.dir)s/main.py

# (list) Application requirements
# comma separated e.g. requirements = sqlite3,kivy
requirements = python3,kivy

# (str) Custom source folders for requirements
# Sets custom source for any requirements with recipes
# requirements.source.kivy = ../../kivy

# (list) Garden requirements
#garden_requirements =

# (str) Presplash of the application
#presplash.filename = %(source.dir)s/data/presplash.png

# (str) Icon of the application
#icon.filename = %(source.dir)s/data/icon.png

# (str) Supported orientation (one of landscape, sensorLandscape, portrait or all)
orientation = portrait

# (list) List of service to declare
#services = NAME:ENTRYPOINT_TO_PY,NAME2:ENTRYPOINT2_TO_PY

#
# OSX Specific
#

#
# author = © Copyright Info

# change the major version of python used by the app
osx.python_version = 3

# Kivy version to use
osx.kivy_version = 1.9.1

#
# Android specific
#

# (bool) Indicate if the application should be fullscreen or not
fullscreen = 0

# (string) Presplash background color (for new android toolchain)
# Supported formats are: #RRGGBB #AARRGGBB or one of the following names:
# red, blue, green, black, white, gray, cyan, magenta, yellow, lightgray,
# darkgray, grey, lightgrey, darkgrey, aqua, fuchsia, lime, maroon, navy,
# olive, purple, silver, teal.
#android.presplash_color = #FFFFFF

# (list) Permissions
#android.permissions = INTERNET

# (int) Target Android API, should be as high as possible.
#android.api = 27

# (int) Minimum API your APK will support.
#android.minapi = 21

# (int) Android SDK version to use
#android.sdk = 20

# (str) Android NDK version to use
#android.ndk = 19b

# (int) Android NDK API to use. This is the minimum API your app will support, it should usually match android.minapi.
#android.ndk_api = 21

# (bool) Use --private data storage (True) or --dir public storage (False)
#android.private_storage = True

# (str) Android NDK directory (if empty, it will be automatically downloaded.)
#android.ndk_path =

# (str) Android SDK directory (if empty, it will be automatically downloaded.)
#android.sdk_path =

# (str) ANT directory (if empty, it will be automatically downloaded.)
#android.ant_path =

# (bool) If True, then skip trying to update the Android sdk
# This can be useful to avoid excess Internet downloads or save time
# when an update is due and you just want to test/build your package
# android.skip_update = False

# (bool) If True, then automatically accept SDK license
# agreements. This is intended for automation only. If set to False,
# the default, you will be shown the license when first running
# buildozer.
# android.accept_sdk_license = False

# (str) Android entry point, default is ok for Kivy-based app
#android.entrypoint = org.renpy.android.PythonActivity

# (str) Android app theme, default is ok for Kivy-based app
# android.apptheme = "@android:style/Theme.NoTitleBar"

# (list) Pattern to whitelist for the whole project
#android.whitelist =

# (str) Path to a custom whitelist file
#android.whitelist_src =

# (str) Path to a custom blacklist file
#android.blacklist_src =

# (list) List of Java .jar files to add to the libs so that pyjnius can access
# their classes. Don't add jars that you do not need, since extra jars can slow
# down the build process. Allows wildcards matching, for example:
# OUYA-ODK/libs/*.jar
#android.add_jars = foo.jar,bar.jar,path/to/more/*.jar

# (list) List of Java files to add to the android project (can be java or a
# directory containing the files)
#android.add_src =

# (list) Android AAR archives to add (currently works only with sdl2_gradle
# bootstrap)
#android.add_aars =

# (list) Gradle dependencies to add (currently works only with sdl2_gradle
# bootstrap)
#android.gradle_dependencies =

# (list) add java compile options
# this can for example be necessary when importing certain java libraries using the 'android.gradle_dependencies' option
# see https://developer.android.com/studio/write/java8-support for further information
# android.add_compile_options = "sourceCompatibility = 1.8", "targetCompatibility = 1.8"

# (list) Gradle repositories to add {can be necessary for some android.gradle_dependencies}
# please enclose in double quotes 
# e.g. android.gradle_repositories = "maven { url 'https://kotlin.bintray.com/ktor' }"
#android.add_gradle_repositories =

# (list) packaging options to add 
# see https://google.github.io/android-gradle-dsl/current/com.android.build.gradle.internal.dsl.PackagingOptions.html
# can be necessary to solve conflicts in gradle_dependencies
# please enclose in double quotes 
# e.g. android.add_packaging_options = "exclude 'META-INF/common.kotlin_module'", "exclude 'META-INF/*.kotlin_module'"
#android.add_gradle_repositories =

# (list) Java classes to add as activities to the manifest.
#android.add_activities = com.example.ExampleActivity

# (str) OUYA Console category. Should be one of GAME or APP
# If you leave this blank, OUYA support will not be enabled
#android.ouya.category = GAME

# (str) Filename of OUYA Console icon. It must be a 732x412 png image.
#android.ouya.icon.filename = %(source.dir)s/data/ouya_icon.png

# (str) XML file to include as an intent filters in <activity> tag
#android.manifest.intent_filters =

# (str) launchMode to set for the main activity
#android.manifest.launch_mode = standard

# (list) Android additional libraries to copy into libs/armeabi
#android.add_libs_armeabi = libs/android/*.so
#android.add_libs_armeabi_v7a = libs/android-v7/*.so
#android.add_libs_arm64_v8a = libs/android-v8/*.so
#android.add_libs_x86 = libs/android-x86/*.so
#android.add_libs_mips = libs/android-mips/*.so

# (bool) Indicate whether the screen should stay on
# Don't forget to add the WAKE_LOCK permission if you set this to True
#android.wakelock = False

# (list) Android application meta-data to set (key=value format)
#android.meta_data =

# (list) Android library project to add (will be added in the
# project.properties automatically.)
#android.library_references =

# (list) Android shared libraries which will be added to AndroidManifest.xml using <uses-library> tag
#android.uses_library =

# (str) Android logcat filters to use
#android.logcat_filters = *:S python:D

# (bool) Copy library instead of making a libpymodules.so
#android.copy_libs = 1

# (str) The Android arch to build for, choices: armeabi-v7a, arm64-v8a, x86, x86_64
android.arch = armeabi-v7a

# (int) overrides automatic versionCode computation (used in build.gradle)
# this is not the same as app version and should only be edited if you know what you're doing
# android.numeric_version = 1

#
# Python for android (p4a) specific
#

# (str) python-for-android fork to use, defaults to upstream (kivy)
#p4a.fork = kivy

# (str) python-for-android branch to use, defaults to master
#p4a.branch = master

# (str) python-for-android git clone directory (if empty, it will be automatically cloned from github)
#p4a.source_dir =

# (str) The directory in which python-for-android should look for your own build recipes (if any)
#p4a.local_recipes =

# (str) Filename to the hook for p4a
#p4a.hook =

# (str) Bootstrap to use for android builds
# p4a.bootstrap = sdl2

# (int) port number to specify an explicit --port= p4a argument (eg for bootstrap flask)
#p4a.port =


#
# iOS specific
#

# (str) Path to a custom kivy-ios folder
#ios.kivy_ios_dir = ../kivy-ios
# Alternately, specify the URL and branch of a git checkout:
ios.kivy_ios_url = https://github.com/kivy/kivy-ios
ios.kivy_ios_branch = master

# Another platform dependency: ios-deploy
# Uncomment to use a custom checkout
#ios.ios_deploy_dir = ../ios_deploy
# Or specify URL and branch
ios.ios_deploy_url = https://github.com/phonegap/ios-deploy
ios.ios_deploy_branch = 1.7.0

# (str) Name of the certificate to use for signing the debug version
# Get a list of available identities: buildozer ios list_identities
#ios.codesign.debug = "iPhone Developer: <lastname> <firstname> (<hexstring>)"

# (str) Name of the certificate to use for signing the release version
#ios.codesign.release = %(ios.codesign.debug)s


[buildozer]

# (int) Log level (0 = error only, 1 = info, 2 = debug (with command output))
log_level = 2

# (int) Display warning if buildozer is run as root (0 = False, 1 = True)
warn_on_root = 1

# (str) Path to build artifact storage, absolute or relative to spec file
# build_dir = ./.buildozer

# (str) Path to build output (i.e. .apk, .ipa) storage
# bin_dir = ./bin

#    -----------------------------------------------------------------------------
#    List as sections
#
#    You can define all the "list" as [section:key].
#    Each line will be considered as a option to the list.
#    Let's take [app] / source.exclude_patterns.
#    Instead of doing:
#
#[app]
#source.exclude_patterns = license,data/audio/*.wav,data/images/original/*
#
#    This can be translated into:
#
#[app:source.exclude_patterns]
#license
#data/audio/*.wav
#data/images/original/*
#


#    -----------------------------------------------------------------------------
#    Profiles
#
#    You can extend section / key with a profile
#    For example, you want to deploy a demo version of your application without
#    HD content. You could first change the title to add "(demo)" in the name
#    and extend the excluded directories to remove the HD content.
#
#[app@demo]
#title = My Application (demo)
#
#[app:source.exclude_patterns@demo]
#images/hd/*
#
#    Then, invoke the command line with the "demo" profile:
#
#buildozer --profile demo android debug

Si desea especificar cosas como el ícono, los requisitos, la pantalla de carga, etc., debe editar este archivo. Después de realizar todas las ediciones deseadas en su aplicación, ejecute buildozer -v android debugdesde el directorio de su aplicación para construir y compilar su aplicación. Esto puede llevar un tiempo, especialmente si tiene una máquina lenta.

Una vez finalizado el proceso, su terminal debería tener algunos registros, uno que confirme que la compilación fue exitosa:

Construcción exitosa de Android

También debe tener una versión APK de su aplicación en su directorio bin. Este es el ejecutable de la aplicación que instalará y ejecutará en su teléfono:

Android .apk en el directorio bin

Conclusión

¡Felicidades! Si ha seguido este tutorial paso a paso, debería tener una aplicación simple de generador de números aleatorios en su teléfono. Juega con él y ajusta algunos valores, luego reconstruye. Ejecutar la reconstrucción no llevará tanto tiempo como la primera compilación.

Como puede ver, crear una aplicación móvil con Python es bastante sencillo , siempre que esté familiarizado con el marco o módulo con el que está trabajando. Independientemente, la lógica se ejecuta de la misma manera.

Familiarícese con el módulo Kivy y sus widgets. Nunca se puede saber todo a la vez. Solo necesita encontrar un proyecto y mojarse los pies lo antes posible. Codificación feliz.

Enlace: https://blog.logrocket.com/build-android-application-kivy-python-framework/

#python 

坂本  篤司

坂本 篤司

1641693600

KivyPythonフレームワークを使用してAndroidアプリケーションを構築する

あなたがモバイル開発を始めることを考えているPython開発者なら、Kivyフレームワークが最善の策です。Kivyを使用すると、iOS、Android、Windows、macOS、およびLinux用にコンパイルされるプラットフォームに依存しないアプリケーションを開発できます。この記事では、Androidが最も使用されているため、特にAndroidについて説明します。

簡単な乱数ジェネレーターアプリを作成します。このアプリを携帯電話にインストールして、完了したらテストできます。この記事を続けるには、Pythonに精通している必要があります。始めましょう!

Kivyを使い始める

まず、アプリ用の新しいディレクトリが必要になります。マシンにPythonがインストールされていることを確認し、新しいPythonファイルを開きます。以下のコマンドのいずれかを使用して、ターミナルからKivyモジュールをインストールする必要があります。パッケージの競合を避けるために、Kivyを仮想環境にインストールしていることを確認してください。

pip install kivy 
//
pip3 install kivy 

Kivyをインストールすると、以下のスクリーンショットのような成功メッセージがターミナルから表示されます。

がっかりしたインストール

Kivyのインストールに成功

 

次に、プロジェクトフォルダに移動します。このmain.pyファイルで、Kivyモジュールをインポートし、必要なバージョンを指定する必要があります。Kivy v2.0.0を使用できますが、Android 8.0より古いスマートフォンを使用している場合は、Kivyv1.9.0を使用することをお勧めします。ビルド中にさまざまなバージョンをいじって、機能とパフォーマンスの違いを確認できます。

import kivy次のように、行の直後にバージョン番号を追加します。

kivy.require('1.9.0')

次に、基本的にアプリを定義するクラスを作成します。私の名前を付けますRandomNumber。このクラスはappKivyからクラスを継承します。したがって、次appを追加してインポートする必要がありますfrom kivy.app import App

class RandomNumber(App): 

ではRandomNumberクラスは、呼び出された関数を追加する必要がありますbuildとり、selfパラメータを。実際にUIを返すには、このbuild関数を使用します。今のところ、単純なラベルとして返送しています。そのためには、次Labelの行を使用してインポートする必要がありますfrom kivy.uix.label import Label

import kivy
from kivy.app import App
from kivy.uix.label import Label

class RandomNumber(App):
  def build(self):
    return Label(text="Random Number Generator")

これで、アプリのスケルトンが完成しました。先に進む前に、RandomNumberクラスのインスタンスを作成し、ターミナルまたはIDEで実行して、インターフェイスを確認する必要があります。

import kivy from kivy.app import App from kivy.uix.label import Label class RandomNumber(App):def build(self):return Label(text = "Random Number Generator")randomApp = RandomNumber()randomApp.run()

テキストを使用してクラスインスタンスを実行すると、Random Number Generator次のスクリーンショットのような単純なインターフェイスまたはウィンドウが表示されます。

 

コードを実行した後のシンプルなインターフェイス

すべての構築が完了するまで、Androidでテキストを実行することはできません。

インターフェースのアウトソーシング

次に、インターフェースをアウトソーシングする方法が必要になります。まず、ディレクトリにKivyファイルを作成します。このファイルには、ほとんどの設計作業が含まれています。このファイルには、小文字と.kv拡張子を使用して、クラスと同じ名前を付けることができます。Kivyはクラス名とファイル名を自動的に関連付けますが、それらがまったく同じである場合、Androidでは機能しない可能性があります。

その.kvファイル内で、ラベル、ボタン、フォームなどの要素を含むアプリのレイアウトを指定する必要があります。このデモを簡単にするために、タイトルRandom Numberのラベル、プレースホルダーとして機能するラベルを追加します。生成される乱数_、および関数Generateを呼び出すボタンgenerate

私の.kvファイルは以下のコードのように見えますが、要件に合わせてさまざまな値をいじることができます。

<boxLayout>:
    orientation: "vertical"
    Label:
        text: "Random Number"
        font_size: 30
        color: 0, 0.62, 0.96

    Label:
        text: "_"
        font_size: 30

    Button:
        text: "Generate"
        font_size: 15 

このmain.pyファイルではLabel、KivyファイルがUIを処理するため、importステートメントは不要になりました。ただし、boxlayoutKivyファイルで使用するをインポートする必要があります。

メインファイルで、importステートメントを追加し、main.pyファイルを編集return BoxLayout()してbuildメソッドで読み取る必要があります。

from kivy.uix.boxlayout import BoxLayout

上記のコマンドを実行すると、乱数のタイトル、_プレースホルダー、およびクリック可能なgenerateボタンを備えたシンプルなインターフェイスが表示されます。

レンダリングされた乱数アプリ

Kivyファイルを機能させるために何もインポートする必要がなかったことに注意してください。基本的に、アプリを実行するboxlayoutと、クラスと同じ名前のKivyファイル内のファイルを検索して戻ります。これはシンプルなインターフェースであり、アプリを必要に応じて堅牢にすることができます。Kv言語のドキュメントを必ず確認してください。

乱数関数を生成する

アプリがほぼ完成したので、ユーザーがgenerateボタンをクリックしたときに乱数を生成し、その乱数をアプリのインターフェイスにレンダリングする簡単な関数が必要になります。そのためには、ファイル内のいくつかの変更を行う必要があります。

まず、で乱数を生成するために使用するモジュールをインポートしますimport random。次に、生成された番号を呼び出す関数またはメソッドを作成します。このデモでは、私は間の範囲を使用します02000。このrandom.randint(0, 2000)コマンドを使用すると、乱数を簡単に生成できます。これをすぐにコードに追加します。

次に、独自のバージョンとなる別のクラスを作成しますbox layout。このbox layoutクラスは、乱数を生成してインターフェイス上でレンダリングするメソッドを含むクラスを継承する必要があります。

class MyRoot(BoxLayout):
    def __init__(self):
        super(MyRoot, self).__init__()

そのクラス内で、generate乱数を生成するだけでなく、Kivyファイルに乱数として表示されるものを制御するラベルを操作するメソッドを作成します。

この方法に対応するには、最初に.kvファイルに変更を加える必要があります。以来MyRootクラスが継承しているbox layout、あなたが作ることができるMyRootあなたのトップレベルの要素.kvファイルを:

<MyRoot>:
    BoxLayout:
        orientation: "vertical"
        Label:
            text: "Random Number"
            font_size: 30
            color: 0, 0.62, 0.96

        Label:
            text: "_"
            font_size: 30

        Button:
            text: "Generate"
            font_size: 15

でインデントされたすべてのUI仕様を保持していることに注意してくださいBox Layout。この後、生成された番号を保持するIDをラベルに追加して、generate関数が呼び出されたときに簡単に操作できるようにする必要があります。このファイルのIDと、上部のメインコードの別のIDとの関係を、次のBoxLayout行の直前に指定する必要があります。

<MyRoot>:
    random_label: random_label
    BoxLayout:
        orientation: "vertical"
        Label:
            text: "Random Number"
            font_size: 30
            color: 0, 0.62, 0.96

        Label:
            id: random_label
            text: "_"
            font_size: 30

        Button:
            text: "Generate"
            font_size: 15

このrandom_label: random_label行は基本的に、IDrandom_labelを持つラベルがファイルrandom_label内にマップされることをmain.py意味します。つまり、操作random_labelするアクションはすべて、指定された名前のラベルにマップされます。

これで、メインファイルに乱数を生成するメソッドを作成できます。

def generate_number(self):
    self.random_label.text = str(random.randint(0, 2000))

# notice how the class method manipulates the text attributre of the random label by a# ssigning it a new random number generate by the 'random.randint(0, 2000)' funcion. S# ince this the random number generated is an integer, typecasting is required to make # it a string otherwise you will get a typeError in your terminal when you run it.

MyRootこのクラスは、以下のコードのようになります。

class MyRoot(BoxLayout):
    def __init__(self):
        super(MyRoot, self).__init__()

    def generate_number(self):
        self.random_label.text = str(random.randint(0, 2000))

おめでとう!これで、アプリのメインファイルが完成しました。あとは、generateボタンがクリックされたときに必ずこの関数を呼び出すようにしてください。ファイルのon_press: root.generate_number()ボタン選択部分に行を追加するだけで済み.kvます。

<MyRoot>:
    random_label: random_label
    BoxLayout:
        orientation: "vertical"
        Label:
            text: "Random Number"
            font_size: 30
            color: 0, 0.62, 0.96

        Label:
            id: random_label
            text: "_"
            font_size: 30

        Button:
            text: "Generate"
            font_size: 15
            on_press: root.generate_number()

これで、アプリを実行できます。

Androidでアプリをコンパイルする

Androidでアプリをコンパイルする前に、Windowsユーザーにとって悪いニュースがあります。Androidアプリケーションをコンパイルするには、LinuxまたはmacOSが必要です。ただし、個別のLinuxディストリビューションを用意する必要はなく、代わりに仮想マシンを使用できます。

完全なAndroid.apkアプリケーションをコンパイルして生成するには、Buildozerというツールを使用します。以下のコマンドのいずれかを使用して、ターミナルからBuildozerをインストールしましょう。

pip3 install buildozer
//
pip install buildozer

次に、Buildozerに必要な依存関係のいくつかをインストールします。私はLinuxErgoを使用しているので、Linux固有のコマンドを使用します。これらのコマンドを1つずつ実行する必要があります。

sudo apt update
sudo apt install -y git zip unzip openjdk-13-jdk python3-pip autoconf libtool pkg-config zlib1g-dev libncurses5-dev libncursesw5-dev libtinfo5 cmake libffi-dev libssl-dev

pip3 install --upgrade Cython==0.29.19 virtualenv 

# add the following line at the end of your ~/.bashrc file
export PATH=$PATH:~/.local/bin/

特定のコマンドを実行した後、を実行しbuildozer initます。以下のスクリーンショットのような出力が表示されます。

Buildozerの初期化が成功しました

上記のコマンドはBuildozer.specファイルを作成します。このファイルを使用して、アプリの名前やアイコンなどをアプリに指定.specできます。ファイルは次のコードブロックのようになります。

[app]

# (str) Title of your application
title = My Application

# (str) Package name
package.name = myapp

# (str) Package domain (needed for android/ios packaging)
package.domain = org.test

# (str) Source code where the main.py live
source.dir = .

# (list) Source files to include (let empty to include all the files)
source.include_exts = py,png,jpg,kv,atlas

# (list) List of inclusions using pattern matching
#source.include_patterns = assets/*,images/*.png

# (list) Source files to exclude (let empty to not exclude anything)
#source.exclude_exts = spec

# (list) List of directory to exclude (let empty to not exclude anything)
#source.exclude_dirs = tests, bin

# (list) List of exclusions using pattern matching
#source.exclude_patterns = license,images/*/*.jpg

# (str) Application versioning (method 1)
version = 0.1

# (str) Application versioning (method 2)
# version.regex = __version__ = \['"\](.*)['"]
# version.filename = %(source.dir)s/main.py

# (list) Application requirements
# comma separated e.g. requirements = sqlite3,kivy
requirements = python3,kivy

# (str) Custom source folders for requirements
# Sets custom source for any requirements with recipes
# requirements.source.kivy = ../../kivy

# (list) Garden requirements
#garden_requirements =

# (str) Presplash of the application
#presplash.filename = %(source.dir)s/data/presplash.png

# (str) Icon of the application
#icon.filename = %(source.dir)s/data/icon.png

# (str) Supported orientation (one of landscape, sensorLandscape, portrait or all)
orientation = portrait

# (list) List of service to declare
#services = NAME:ENTRYPOINT_TO_PY,NAME2:ENTRYPOINT2_TO_PY

#
# OSX Specific
#

#
# author = © Copyright Info

# change the major version of python used by the app
osx.python_version = 3

# Kivy version to use
osx.kivy_version = 1.9.1

#
# Android specific
#

# (bool) Indicate if the application should be fullscreen or not
fullscreen = 0

# (string) Presplash background color (for new android toolchain)
# Supported formats are: #RRGGBB #AARRGGBB or one of the following names:
# red, blue, green, black, white, gray, cyan, magenta, yellow, lightgray,
# darkgray, grey, lightgrey, darkgrey, aqua, fuchsia, lime, maroon, navy,
# olive, purple, silver, teal.
#android.presplash_color = #FFFFFF

# (list) Permissions
#android.permissions = INTERNET

# (int) Target Android API, should be as high as possible.
#android.api = 27

# (int) Minimum API your APK will support.
#android.minapi = 21

# (int) Android SDK version to use
#android.sdk = 20

# (str) Android NDK version to use
#android.ndk = 19b

# (int) Android NDK API to use. This is the minimum API your app will support, it should usually match android.minapi.
#android.ndk_api = 21

# (bool) Use --private data storage (True) or --dir public storage (False)
#android.private_storage = True

# (str) Android NDK directory (if empty, it will be automatically downloaded.)
#android.ndk_path =

# (str) Android SDK directory (if empty, it will be automatically downloaded.)
#android.sdk_path =

# (str) ANT directory (if empty, it will be automatically downloaded.)
#android.ant_path =

# (bool) If True, then skip trying to update the Android sdk
# This can be useful to avoid excess Internet downloads or save time
# when an update is due and you just want to test/build your package
# android.skip_update = False

# (bool) If True, then automatically accept SDK license
# agreements. This is intended for automation only. If set to False,
# the default, you will be shown the license when first running
# buildozer.
# android.accept_sdk_license = False

# (str) Android entry point, default is ok for Kivy-based app
#android.entrypoint = org.renpy.android.PythonActivity

# (str) Android app theme, default is ok for Kivy-based app
# android.apptheme = "@android:style/Theme.NoTitleBar"

# (list) Pattern to whitelist for the whole project
#android.whitelist =

# (str) Path to a custom whitelist file
#android.whitelist_src =

# (str) Path to a custom blacklist file
#android.blacklist_src =

# (list) List of Java .jar files to add to the libs so that pyjnius can access
# their classes. Don't add jars that you do not need, since extra jars can slow
# down the build process. Allows wildcards matching, for example:
# OUYA-ODK/libs/*.jar
#android.add_jars = foo.jar,bar.jar,path/to/more/*.jar

# (list) List of Java files to add to the android project (can be java or a
# directory containing the files)
#android.add_src =

# (list) Android AAR archives to add (currently works only with sdl2_gradle
# bootstrap)
#android.add_aars =

# (list) Gradle dependencies to add (currently works only with sdl2_gradle
# bootstrap)
#android.gradle_dependencies =

# (list) add java compile options
# this can for example be necessary when importing certain java libraries using the 'android.gradle_dependencies' option
# see https://developer.android.com/studio/write/java8-support for further information
# android.add_compile_options = "sourceCompatibility = 1.8", "targetCompatibility = 1.8"

# (list) Gradle repositories to add {can be necessary for some android.gradle_dependencies}
# please enclose in double quotes 
# e.g. android.gradle_repositories = "maven { url 'https://kotlin.bintray.com/ktor' }"
#android.add_gradle_repositories =

# (list) packaging options to add 
# see https://google.github.io/android-gradle-dsl/current/com.android.build.gradle.internal.dsl.PackagingOptions.html
# can be necessary to solve conflicts in gradle_dependencies
# please enclose in double quotes 
# e.g. android.add_packaging_options = "exclude 'META-INF/common.kotlin_module'", "exclude 'META-INF/*.kotlin_module'"
#android.add_gradle_repositories =

# (list) Java classes to add as activities to the manifest.
#android.add_activities = com.example.ExampleActivity

# (str) OUYA Console category. Should be one of GAME or APP
# If you leave this blank, OUYA support will not be enabled
#android.ouya.category = GAME

# (str) Filename of OUYA Console icon. It must be a 732x412 png image.
#android.ouya.icon.filename = %(source.dir)s/data/ouya_icon.png

# (str) XML file to include as an intent filters in <activity> tag
#android.manifest.intent_filters =

# (str) launchMode to set for the main activity
#android.manifest.launch_mode = standard

# (list) Android additional libraries to copy into libs/armeabi
#android.add_libs_armeabi = libs/android/*.so
#android.add_libs_armeabi_v7a = libs/android-v7/*.so
#android.add_libs_arm64_v8a = libs/android-v8/*.so
#android.add_libs_x86 = libs/android-x86/*.so
#android.add_libs_mips = libs/android-mips/*.so

# (bool) Indicate whether the screen should stay on
# Don't forget to add the WAKE_LOCK permission if you set this to True
#android.wakelock = False

# (list) Android application meta-data to set (key=value format)
#android.meta_data =

# (list) Android library project to add (will be added in the
# project.properties automatically.)
#android.library_references =

# (list) Android shared libraries which will be added to AndroidManifest.xml using <uses-library> tag
#android.uses_library =

# (str) Android logcat filters to use
#android.logcat_filters = *:S python:D

# (bool) Copy library instead of making a libpymodules.so
#android.copy_libs = 1

# (str) The Android arch to build for, choices: armeabi-v7a, arm64-v8a, x86, x86_64
android.arch = armeabi-v7a

# (int) overrides automatic versionCode computation (used in build.gradle)
# this is not the same as app version and should only be edited if you know what you're doing
# android.numeric_version = 1

#
# Python for android (p4a) specific
#

# (str) python-for-android fork to use, defaults to upstream (kivy)
#p4a.fork = kivy

# (str) python-for-android branch to use, defaults to master
#p4a.branch = master

# (str) python-for-android git clone directory (if empty, it will be automatically cloned from github)
#p4a.source_dir =

# (str) The directory in which python-for-android should look for your own build recipes (if any)
#p4a.local_recipes =

# (str) Filename to the hook for p4a
#p4a.hook =

# (str) Bootstrap to use for android builds
# p4a.bootstrap = sdl2

# (int) port number to specify an explicit --port= p4a argument (eg for bootstrap flask)
#p4a.port =


#
# iOS specific
#

# (str) Path to a custom kivy-ios folder
#ios.kivy_ios_dir = ../kivy-ios
# Alternately, specify the URL and branch of a git checkout:
ios.kivy_ios_url = https://github.com/kivy/kivy-ios
ios.kivy_ios_branch = master

# Another platform dependency: ios-deploy
# Uncomment to use a custom checkout
#ios.ios_deploy_dir = ../ios_deploy
# Or specify URL and branch
ios.ios_deploy_url = https://github.com/phonegap/ios-deploy
ios.ios_deploy_branch = 1.7.0

# (str) Name of the certificate to use for signing the debug version
# Get a list of available identities: buildozer ios list_identities
#ios.codesign.debug = "iPhone Developer: <lastname> <firstname> (<hexstring>)"

# (str) Name of the certificate to use for signing the release version
#ios.codesign.release = %(ios.codesign.debug)s


[buildozer]

# (int) Log level (0 = error only, 1 = info, 2 = debug (with command output))
log_level = 2

# (int) Display warning if buildozer is run as root (0 = False, 1 = True)
warn_on_root = 1

# (str) Path to build artifact storage, absolute or relative to spec file
# build_dir = ./.buildozer

# (str) Path to build output (i.e. .apk, .ipa) storage
# bin_dir = ./bin

#    -----------------------------------------------------------------------------
#    List as sections
#
#    You can define all the "list" as [section:key].
#    Each line will be considered as a option to the list.
#    Let's take [app] / source.exclude_patterns.
#    Instead of doing:
#
#[app]
#source.exclude_patterns = license,data/audio/*.wav,data/images/original/*
#
#    This can be translated into:
#
#[app:source.exclude_patterns]
#license
#data/audio/*.wav
#data/images/original/*
#


#    -----------------------------------------------------------------------------
#    Profiles
#
#    You can extend section / key with a profile
#    For example, you want to deploy a demo version of your application without
#    HD content. You could first change the title to add "(demo)" in the name
#    and extend the excluded directories to remove the HD content.
#
#[app@demo]
#title = My Application (demo)
#
#[app:source.exclude_patterns@demo]
#images/hd/*
#
#    Then, invoke the command line with the "demo" profile:
#
#buildozer --profile demo android debug

アイコン、要件、ロード画面などを指定する場合は、このファイルを編集する必要があります。アプリケーションに必要なすべての編集を行った後buildozer -v android debug、アプリディレクトリから実行して、アプリケーションをビルドおよびコンパイルします。特に低速のマシンを使用している場合は、これに時間がかかることがあります。

プロセスが完了すると、端末にいくつかのログが表示され、ビルドが成功したことを確認できます。

Androidの成功したビルド

また、binディレクトリにアプリのAPKバージョンが必要です。これは、携帯電話にインストールして実行するアプリケーションの実行可能ファイルです。

binディレクトリのAndroid.apk

結論

おめでとう!このチュートリアルをステップバイステップで実行した場合は、電話に単純な乱数ジェネレーターアプリがインストールされているはずです。それをいじって、いくつかの値を微調整してから、再構築してください。再構築の実行は、最初のビルドほど時間はかかりません。

ご覧のとおり、Pythonを使用したモバイルアプリケーションの構築は、使用しているフレームワークまたはモジュールに精通している限り、かなり簡単です。とにかく、ロジックは同じ方法で実行されます。

Kivyモジュールとそのウィジェットに慣れてください。すべてを一度に知ることはできません。プロジェクトを見つけて、できるだけ早く足を濡らすだけです。ハッピーコーディング。

リンク:https//blog.logrocket.com/build-android-application-kivy-python-framework/

#python 

Treebender: A Symbolic Natural Language Parsing Library for Rust

Treebender

A symbolic natural language parsing library for Rust, inspired by HDPSG.

What is this?

This is a library for parsing natural or constructed languages into syntax trees and feature structures. There's no machine learning or probabilistic models, everything is hand-crafted and deterministic.

You can find out more about the motivations of this project in this blog post.

But what are you using it for?

I'm using this to parse a constructed language for my upcoming xenolinguistics game, Themengi.

Motivation

Using a simple 80-line grammar, introduced in the tutorial below, we can parse a simple subset of English, checking reflexive pronoun binding, case, and number agreement.

$ cargo run --bin cli examples/reflexives.fgr
> she likes himself
Parsed 0 trees

> her likes herself
Parsed 0 trees

> she like herself
Parsed 0 trees

> she likes herself
Parsed 1 tree
(0..3: S
  (0..1: N (0..1: she))
  (1..2: TV (1..2: likes))
  (2..3: N (2..3: herself)))
[
  child-2: [
    case: acc
    pron: ref
    needs_pron: #0 she
    num: sg
    child-0: [ word: herself ]
  ]
  child-1: [
    tense: nonpast
    child-0: [ word: likes ]
    num: #1 sg
  ]
  child-0: [
    child-0: [ word: she ]
    case: nom
    pron: #0
    num: #1
  ]
]

Low resource language? Low problem! No need to train on gigabytes of text, just write a grammar using your brain. Let's hypothesize that in American Sign Language, topicalized nouns (expressed with raised eyebrows) must appear first in the sentence. We can write a small grammar (18 lines), and plug in some sentences:

$ cargo run --bin cli examples/asl-wordorder.fgr -n
> boy sit
Parsed 1 tree
(0..2: S
  (0..1: NP ((0..1: N (0..1: boy))))
  (1..2: IV (1..2: sit)))

> boy throw ball
Parsed 1 tree
(0..3: S
  (0..1: NP ((0..1: N (0..1: boy))))
  (1..2: TV (1..2: throw))
  (2..3: NP ((2..3: N (2..3: ball)))))

> ball nm-raised-eyebrows boy throw
Parsed 1 tree
(0..4: S
  (0..2: NP
    (0..1: N (0..1: ball))
    (1..2: Topic (1..2: nm-raised-eyebrows)))
  (2..3: NP ((2..3: N (2..3: boy))))
  (3..4: TV (3..4: throw)))

> boy throw ball nm-raised-eyebrows
Parsed 0 trees

Tutorial

As an example, let's say we want to build a parser for English reflexive pronouns (himself, herself, themselves, themself, itself). We'll also support number ("He likes X" v.s. "They like X") and simple embedded clauses ("He said that they like X").

Grammar files are written in a custom language, similar to BNF, called Feature GRammar (.fgr). There's a VSCode syntax highlighting extension for these files available as fgr-syntax.

We'll start by defining our lexicon. The lexicon is the set of terminal symbols (symbols in the actual input) that the grammar will match. Terminal symbols must start with a lowercase letter, and non-terminal symbols must start with an uppercase letter.

// pronouns
N -> he
N -> him
N -> himself
N -> she
N -> her
N -> herself
N -> they
N -> them
N -> themselves
N -> themself

// names, lowercase as they are terminals
N -> mary
N -> sue
N -> takeshi
N -> robert

// complementizer
Comp -> that

// verbs -- intransitive, transitive, and clausal
IV -> falls
IV -> fall
IV -> fell

TV -> likes
TV -> like
TV -> liked

CV -> says
CV -> say
CV -> said

Next, we can add our sentence rules (they must be added at the top, as the first rule in the file is assumed to be the top-level rule):

// sentence rules
S -> N IV
S -> N TV N
S -> N CV Comp S

// ... previous lexicon ...

Assuming this file is saved as examples/no-features.fgr (which it is :wink:), we can test this file with the built-in CLI:

$ cargo run --bin cli examples/no-features.fgr
> he falls
Parsed 1 tree
(0..2: S
  (0..1: N (0..1: he))
  (1..2: IV (1..2: falls)))
[
  child-1: [ child-0: [ word: falls ] ]
  child-0: [ child-0: [ word: he ] ]
]

> he falls her
Parsed 0 trees

> he likes her
Parsed 1 tree
(0..3: S
  (0..1: N (0..1: he))
  (1..2: TV (1..2: likes))
  (2..3: N (2..3: her)))
[
  child-2: [ child-0: [ word: her ] ]
  child-1: [ child-0: [ word: likes ] ]
  child-0: [ child-0: [ word: he ] ]
]

> he likes
Parsed 0 trees

> he said that he likes her
Parsed 1 tree
(0..6: S
  (0..1: N (0..1: he))
  (1..2: CV (1..2: said))
  (2..3: Comp (2..3: that))
  (3..6: S
    (3..4: N (3..4: he))
    (4..5: TV (4..5: likes))
    (5..6: N (5..6: her))))
[
  child-0: [ child-0: [ word: he ] ]
  child-2: [ child-0: [ word: that ] ]
  child-1: [ child-0: [ word: said ] ]
  child-3: [
    child-2: [ child-0: [ word: her ] ]
    child-1: [ child-0: [ word: likes ] ]
    child-0: [ child-0: [ word: he ] ]
  ]
]

> he said that he
Parsed 0 trees

This grammar already parses some correct sentences, and blocks some trivially incorrect ones. However, it doesn't care about number, case, or reflexives right now:

> she likes himself  // unbound reflexive pronoun
Parsed 1 tree
(0..3: S
  (0..1: N (0..1: she))
  (1..2: TV (1..2: likes))
  (2..3: N (2..3: himself)))
[
  child-0: [ child-0: [ word: she ] ]
  child-2: [ child-0: [ word: himself ] ]
  child-1: [ child-0: [ word: likes ] ]
]

> him like her  // incorrect case on the subject pronoun, should be nominative
                // (he) instead of accusative (him)
Parsed 1 tree
(0..3: S
  (0..1: N (0..1: him))
  (1..2: TV (1..2: like))
  (2..3: N (2..3: her)))
[
  child-0: [ child-0: [ word: him ] ]
  child-1: [ child-0: [ word: like ] ]
  child-2: [ child-0: [ word: her ] ]
]

> he like her  // incorrect verb number agreement
Parsed 1 tree
(0..3: S
  (0..1: N (0..1: he))
  (1..2: TV (1..2: like))
  (2..3: N (2..3: her)))
[
  child-2: [ child-0: [ word: her ] ]
  child-1: [ child-0: [ word: like ] ]
  child-0: [ child-0: [ word: he ] ]
]

To fix this, we need to add features to our lexicon, and restrict the sentence rules based on features.

Features are added with square brackets, and are key: value pairs separated by commas. **top** is a special feature value, which basically means "unspecified" -- we'll come back to it later. Features that are unspecified are also assumed to have a **top** value, but sometimes explicitly stating top is more clear.

/// Pronouns
// The added features are:
// * num: sg or pl, whether this noun wants a singular verb (likes) or
//   a plural verb (like). note this is grammatical number, so for example
//   singular they takes plural agreement ("they like X", not *"they likes X")
// * case: nom or acc, whether this noun is nominative or accusative case.
//   nominative case goes in the subject, and accusative in the object.
//   e.g., "he fell" and "she likes him", not *"him fell" and *"her likes he"
// * pron: he, she, they, or ref -- what type of pronoun this is
// * needs_pron: whether this is a reflexive that needs to bind to another
//   pronoun.
N[ num: sg, case: nom, pron: he ]                    -> he
N[ num: sg, case: acc, pron: he ]                    -> him
N[ num: sg, case: acc, pron: ref, needs_pron: he ]   -> himself
N[ num: sg, case: nom, pron: she ]                   -> she
N[ num: sg, case: acc, pron: she ]                   -> her
N[ num: sg, case: acc, pron: ref, needs_pron: she]   -> herself
N[ num: pl, case: nom, pron: they ]                  -> they
N[ num: pl, case: acc, pron: they ]                  -> them
N[ num: pl, case: acc, pron: ref, needs_pron: they ] -> themselves
N[ num: sg, case: acc, pron: ref, needs_pron: they ] -> themself

// Names
// The added features are:
// * num: sg, as people are singular ("mary likes her" / *"mary like her")
// * case: **top**, as names can be both subjects and objects
//   ("mary likes her" / "she likes mary")
// * pron: whichever pronoun the person uses for reflexive agreement
//   mary    pron: she  => mary likes herself
//   sue     pron: they => sue likes themself
//   takeshi pron: he   => takeshi likes himself
N[ num: sg, case: **top**, pron: she ]  -> mary
N[ num: sg, case: **top**, pron: they ] -> sue
N[ num: sg, case: **top**, pron: he ]   -> takeshi
N[ num: sg, case: **top**, pron: he ]   -> robert

// Complementizer doesn't need features
Comp -> that

// Verbs -- intransitive, transitive, and clausal
// The added features are:
// * num: sg, pl, or **top** -- to match the noun numbers.
//   **top** will match either sg or pl, as past-tense verbs in English
//   don't agree in number: "he fell" and "they fell" are both fine
// * tense: past or nonpast -- this won't be used for agreement, but will be
//   copied into the final feature structure, and the client code could do
//   something with it
IV[ num:      sg, tense: nonpast ] -> falls
IV[ num:      pl, tense: nonpast ] -> fall
IV[ num: **top**, tense: past ]    -> fell

TV[ num:      sg, tense: nonpast ] -> likes
TV[ num:      pl, tense: nonpast ] -> like
TV[ num: **top**, tense: past ]    -> liked

CV[ num:      sg, tense: nonpast ] -> says
CV[ num:      pl, tense: nonpast ] -> say
CV[ num: **top**, tense: past ]    -> said

Now that our lexicon is updated with features, we can update our sentence rules to constrain parsing based on those features. This uses two new features, tags and unification. Tags allow features to be associated between nodes in a rule, and unification controls how those features are compatible. The rules for unification are:

  1. A string feature can unify with a string feature with the same value
  2. A top feature can unify with anything, and the nodes are merged
  3. A complex feature ([ ... ] structure) is recursively unified with another complex feature.

If unification fails anywhere, the parse is aborted and the tree is discarded. This allows the programmer to discard trees if features don't match.

// Sentence rules
// Intransitive verb:
// * Subject must be nominative case
// * Subject and verb must agree in number (copied through #1)
S -> N[ case: nom, num: #1 ] IV[ num: #1 ]
// Transitive verb:
// * Subject must be nominative case
// * Subject and verb must agree in number (copied through #2)
// * If there's a reflexive in the object position, make sure its `needs_pron`
//   feature matches the subject's `pron` feature. If the object isn't a
//   reflexive, then its `needs_pron` feature will implicitly be `**top**`, so
//   will unify with anything.
S -> N[ case: nom, pron: #1, num: #2 ] TV[ num: #2 ] N[ case: acc, needs_pron: #1 ]
// Clausal verb:
// * Subject must be nominative case
// * Subject and verb must agree in number (copied through #1)
// * Reflexives can't cross clause boundaries (*"He said that she likes himself"),
//   so we can ignore reflexives and delegate to inner clause rule
S -> N[ case: nom, num: #1 ] CV[ num: #1 ] Comp S

Now that we have this augmented grammar (available as examples/reflexives.fgr), we can try it out and see that it rejects illicit sentences that were previously accepted, while still accepting valid ones:

> he fell
Parsed 1 tree
(0..2: S
  (0..1: N (0..1: he))
  (1..2: IV (1..2: fell)))
[
  child-1: [
    child-0: [ word: fell ]
    num: #0 sg
    tense: past
  ]
  child-0: [
    pron: he
    case: nom
    num: #0
    child-0: [ word: he ]
  ]
]

> he like him
Parsed 0 trees

> he likes himself
Parsed 1 tree
(0..3: S
  (0..1: N (0..1: he))
  (1..2: TV (1..2: likes))
  (2..3: N (2..3: himself)))
[
  child-1: [
    num: #0 sg
    child-0: [ word: likes ]
    tense: nonpast
  ]
  child-2: [
    needs_pron: #1 he
    num: sg
    child-0: [ word: himself ]
    pron: ref
    case: acc
  ]
  child-0: [
    child-0: [ word: he ]
    pron: #1
    num: #0
    case: nom
  ]
]

> he likes herself
Parsed 0 trees

> mary likes herself
Parsed 1 tree
(0..3: S
  (0..1: N (0..1: mary))
  (1..2: TV (1..2: likes))
  (2..3: N (2..3: herself)))
[
  child-0: [
    pron: #0 she
    num: #1 sg
    case: nom
    child-0: [ word: mary ]
  ]
  child-1: [
    tense: nonpast
    child-0: [ word: likes ]
    num: #1
  ]
  child-2: [
    child-0: [ word: herself ]
    num: sg
    pron: ref
    case: acc
    needs_pron: #0
  ]
]

> mary likes themself
Parsed 0 trees

> sue likes themself
Parsed 1 tree
(0..3: S
  (0..1: N (0..1: sue))
  (1..2: TV (1..2: likes))
  (2..3: N (2..3: themself)))
[
  child-0: [
    pron: #0 they
    child-0: [ word: sue ]
    case: nom
    num: #1 sg
  ]
  child-1: [
    tense: nonpast
    num: #1
    child-0: [ word: likes ]
  ]
  child-2: [
    needs_pron: #0
    case: acc
    pron: ref
    child-0: [ word: themself ]
    num: sg
  ]
]

> sue likes himself
Parsed 0 trees

If this is interesting to you and you want to learn more, you can check out my blog series, the excellent textbook Syntactic Theory: A Formal Introduction (2nd ed.), and the DELPH-IN project, whose work on the LKB inspired this simplified version.

Using from code

I need to write this section in more detail, but if you're comfortable with Rust, I suggest looking through the codebase. It's not perfect, it started as one of my first Rust projects (after migrating through F# -> TypeScript -> C in search of the right performance/ergonomics tradeoff), and it could use more tests, but overall it's not too bad.

Basically, the processing pipeline is:

  1. Make a Grammar struct
  • Grammar is defined in rules.rs.
  • The easiest way to make a Grammar is Grammar::parse_from_file, which is mostly a hand-written recusive descent parser in parse_grammar.rs. Yes, I recognize the irony here.
  1. It takes input (in Grammar::parse, which does everything for you, or Grammar::parse_chart, which just does the chart)
  2. The input is first chart-parsed in earley.rs
  3. Then, a forest is built from the chart, in forest.rs, using an algorithm I found in a very useful blog series I forget the URL for, because the algorithms in the academic literature for this are... weird.
  4. Finally, the feature unification is used to prune the forest down to only valid trees. It would be more efficient to do this during parsing, but meh.

The most interesting thing you can do via code and not via the CLI is probably getting at the raw feature DAG, as that would let you do things like pronoun coreference. The DAG code is in featurestructure.rs, and should be fairly approachable -- there's a lot of Rust ceremony around Rc<RefCell<...>> because using an arena allocation crate seemed too harlike overkill, but that is somewhat mitigated by the NodeRef type alias. Hit me up at https://vgel.me/contact if you need help with anything here!

Download Details:
Author: vgel
Source Code: https://github.com/vgel/treebender
License: MIT License

#rust  #machinelearning