FIFA 21 Blockbuster Release Gives Fraudsters an Open Field for Theft

The hotly anticipated release of blockbuster video game FIFA 21 on Oct. 6, along with the return of professional play, are giving soccer fans reason to celebrate. And, unsurprisingly, cybercriminals are already figuring out how to capitalize.

A report from researcher Christopher Boyd at Malwarebytes Labs outlined the various ways scammers are tapping into the oversized audience of FIFA 21 to turn a quick buck, including leveraging in-game goods and rewards.

FIFA, Fans and Ronaldo: A Crook’s Hat Trick

Soccer is the world’s most popular sport, drawing in an estimated 3.5 billion fans all over the globe. Bloomberg reported during the last World Cup that four out of 10 people in the world consider themselves to be fans of the game.

That enthusiasm extends to the blockbuster video gaming franchise, FIFA, named after the sport’s international rules organization. The brand is recognized by the Guinness Book of World Records as the top selling sports video game of all time, with more than 280 million copies of the game sold in at least 51 countries.

The fact that the pandemic has slowed down in-person play (while one of the sport’s brightest stars, Cristiano Ronaldo, tested positive for COVID-19 earlier this week) hasn’t done anything to deter people from immersing themselves in the “beautiful game.” And it’s exactly that devotion and online interest that cybercriminals are leveraging to trick fans into their traps.

Coins, Cards, Points and Fraud

In his blog post explanation of his findings, Boyd explained that fraudsters are finding an easy hunting ground through a game mode called FIFA Ultimate Team (FUT).

Within this mode, players can earn “coins” which are used within the game to buy “cards,” which Boyd described as “the lifeblood of the game.”

__Phishing page example. Source: Malwarebytes

“So far, so good…and essentially harmless,” he continued. “Unfortunately, the monetized aspects of the game away from the screen contributes to scammers wanting a piece of the action.”

He pointed out there’s something called “FIFA points” which can be bought with real-life money within the game and from legit third parties. This is exactly the type of scenario that tends to grab the attention of fraudsters, he pointed out.

#vulnerabilities #web security #attack #coins #covid positive #cristiano ronaldo #cyberattack #cybersecurity #fifa #fifa 21 #fifa 21 game #fifa cards #fifa fans #fifa game #fifa game scams #fifa points #fifa world cup #fraud #fut #in-game purchases #lionel messi #phishing #security breach #soccer #video game launch #world cup #world’s most popular sport

What is GEEK

Buddha Community

FIFA 21 Blockbuster Release Gives Fraudsters an Open Field for Theft

FIFA 21 Blockbuster Release Gives Fraudsters an Open Field for Theft

The hotly anticipated release of blockbuster video game FIFA 21 on Oct. 6, along with the return of professional play, are giving soccer fans reason to celebrate. And, unsurprisingly, cybercriminals are already figuring out how to capitalize.

A report from researcher Christopher Boyd at Malwarebytes Labs outlined the various ways scammers are tapping into the oversized audience of FIFA 21 to turn a quick buck, including leveraging in-game goods and rewards.

FIFA, Fans and Ronaldo: A Crook’s Hat Trick

Soccer is the world’s most popular sport, drawing in an estimated 3.5 billion fans all over the globe. Bloomberg reported during the last World Cup that four out of 10 people in the world consider themselves to be fans of the game.

That enthusiasm extends to the blockbuster video gaming franchise, FIFA, named after the sport’s international rules organization. The brand is recognized by the Guinness Book of World Records as the top selling sports video game of all time, with more than 280 million copies of the game sold in at least 51 countries.

The fact that the pandemic has slowed down in-person play (while one of the sport’s brightest stars, Cristiano Ronaldo, tested positive for COVID-19 earlier this week) hasn’t done anything to deter people from immersing themselves in the “beautiful game.” And it’s exactly that devotion and online interest that cybercriminals are leveraging to trick fans into their traps.

Coins, Cards, Points and Fraud

In his blog post explanation of his findings, Boyd explained that fraudsters are finding an easy hunting ground through a game mode called FIFA Ultimate Team (FUT).

Within this mode, players can earn “coins” which are used within the game to buy “cards,” which Boyd described as “the lifeblood of the game.”

__Phishing page example. Source: Malwarebytes

“So far, so good…and essentially harmless,” he continued. “Unfortunately, the monetized aspects of the game away from the screen contributes to scammers wanting a piece of the action.”

He pointed out there’s something called “FIFA points” which can be bought with real-life money within the game and from legit third parties. This is exactly the type of scenario that tends to grab the attention of fraudsters, he pointed out.

#vulnerabilities #web security #attack #coins #covid positive #cristiano ronaldo #cyberattack #cybersecurity #fifa #fifa 21 #fifa 21 game #fifa cards #fifa fans #fifa game #fifa game scams #fifa points #fifa world cup #fraud #fut #in-game purchases #lionel messi #phishing #security breach #soccer #video game launch #world cup #world’s most popular sport

Controller Extra Bundle for Symfony2

ControllerExtra for Symfony2

This bundle provides a collection of annotations for Symfony2 Controllers, designed to streamline the creation of certain objects and enable smaller and more concise actions.

Reference

By default, all annotations are loaded, but any individual annotation can be completely disabled by setting to false active parameter.

Default values are:

controller_extra:
    resolver_priority: -8
    request: current
    paginator:
        active: true
        default_name: paginator
        default_page: 1
        default_limit_per_page: 10
    entity:
        active: true
        default_name: entity
        default_persist: true
        default_mapping_fallback: false
        default_factory_method: create
        default_factory_mapping: true
    form:
        active: true
        default_name: form
    object_manager:
        active: true
        default_name: form
    flush:
        active: true
        default_manager: default
    json_response:
        active: true
        default_status: 200
        default_headers: []
    log:
        active: true
        default_level: info
        default_execute: pre

ResolverEventListener is subscribed to kernel.controller event with priority -8. This element can be configured and customized with resolver_priority config value. If you need to get ParamConverter entities, make sure that this value is lower than 0. The reason is that this listener must be executed always after ParamConverter one.

Entity provider

In some annotations, you can define an entity by several ways. This chapter is about how you can define them.

By namespace

You can define an entity using its namespace. A simple new new() be performed.

/**
 * Simple controller method
 *
 * @SomeAnnotation(
 *      class = "Mmoreram\CustomBundle\Entity\MyEntity",
 * )
 */
public function indexAction()
{
}

By doctrine shortcut

You can define an entity using Doctrine shortcut notations. With this format you should ensure that your Entities follow Symfony Bundle standards and your entities are placed under Entity/ folder.

/**
 * Simple controller method
 *
 * @SomeAnnotation(
 *      class = "MmoreramCustomBundle:MyEntity",
 * )
 */
public function indexAction()
{
}

By parameter

You can define an entity using a simple config parameter. Some projects use parameters to define all entity namespaces (To allow overriding). If you define the entity with a parameter, this bundle will try to instance it with a simple new() accessing directly to the container ParametersBag.

parameters:

    #
    # Entities
    #
    my.bundle.entity.myentity: Mmoreram\CustomBundle\Entity\MyEntity
/**
 * Simple controller method
 *
 * @SomeAnnotation(
 *      class = "my.bundle.entity.myentity",
 * )
 */
public function indexAction()
{
}

Controller annotations

This bundle provide a reduced but useful set of annotations for your controller actions.

@CreatePaginator

Creates a Doctrine Paginator object, given a request and a configuration. This annotation just injects into de controller a new Doctrine\ORM\Tools\Pagination\Pagination instance ready to be iterated.

You can enable/disable this bundle by overriding active flag in configuration file config.yml

controller_extra:
    pagination:
        active: true

By default, if name option is not set, the generated object will be placed in a parameter named $paginator. This behaviour can be configured using default_name in configuration.

This annotation can be configured with these sections

Paginator Entity

To create a new Pagination object you need to refer to an existing Entity. You can check all available formats you can define it just reading the Entity Provider section.

<?php

use Doctrine\ORM\Tools\Pagination\Pagination;
use Mmoreram\ControllerExtraBundle\Annotation\CreatePaginator;

/**
 * Simple controller method
 *
 * @CreatePaginator(
 *      entityNamespace = "MmoreramCustomBundle:User",
 * )
 */
public function indexAction(Paginator $paginator)
{
}

Paginator page

You need to specify Paginator annotation the page to fetch. By default, if none is specified, this bundle will use the default one defined in configuration. You can override in config.yml

controller_extra:
    pagination:
        default_page: 1

You can refer to an existing Request attribute using ~value~ format, to any $_GET element by using format ?field? or to any $_POST by using format #field#

You can choose between Master Request or Current Request accessing to its attributes, by configuring the request value of the configuration.

use Doctrine\ORM\Tools\Pagination\Pagination;
use Mmoreram\ControllerExtraBundle\Annotation\CreatePaginator;

/**
 * Simple controller method
 *
 * This Controller matches pattern /myroute/paginate/{foo}
 *
 * @CreatePaginator(
 *      entityNamespace = "MmoreramCustomBundle:User",
 *      page = "~foo~"
 * )
 */
public function indexAction(Paginator $paginator)
{
}

or you can hardcode the page to use.

use Doctrine\ORM\Tools\Pagination\Pagination;
use Mmoreram\ControllerExtraBundle\Annotation\CreatePaginator;

/**
 * Simple controller method
 *
 * This Controller matches pattern /myroute/paginate/
 *
 * @CreatePaginator(
 *      entityNamespace = "MmoreramCustomBundle:User",
 *      page = 1
 * )
 */
public function indexAction(Paginator $paginator)
{
}

Paginator limit

You need to specify Paginator annotation the limit to fetch. By default, if none is specified, this bundle will use the default one defined in configuration. You can override in config.yml

controller_extra:
    pagination:
        default_limit_per_page: 10

You can refer to an existing Request attribute using ~value~ format, to any $_GET element by using format ?field? or to any $_POST by using format #field#

use Doctrine\ORM\Tools\Pagination\Pagination;
use Mmoreram\ControllerExtraBundle\Annotation\CreatePaginator;

/**
 * Simple controller method
 *
 * This Controller matches pattern /myroute/paginate/{foo}/{limit}
 *
 * @CreatePaginator(
 *      entityNamespace = "MmoreramCustomBundle:User",
 *      page = "~foo~",
 *      limit = "~limit~"
 * )
 */
public function indexAction(Paginator $paginator)
{
}

or you can hardcode the page to use.

use Doctrine\ORM\Tools\Pagination\Pagination;
use Mmoreram\ControllerExtraBundle\Annotation\CreatePaginator;

/**
 * Simple controller method
 *
 * This Controller matches pattern /myroute/paginate/
 *
 * @CreatePaginator(
 *      entityNamespace = "MmoreramCustomBundle:User",
 *      page = 1,
 *      limit = 10
 * )
 */
public function indexAction(Paginator $paginator)
{
}

Paginator OrderBy

You can order your Pagination just defining the fields you want to orderBy and the desired direction. The orderBy section must be defined as an array of arrays, and each array should contain these positions:

  • First position: Entity alias (Principal object is set as x)
  • Second position: Entity field
  • Third position: Direction
  • Fourth position: Custom direction map (optional)
use Doctrine\ORM\Tools\Pagination\Pagination;
use Mmoreram\ControllerExtraBundle\Annotation\CreatePaginator;

/**
 * Simple controller method
 *
 * @CreatePaginator(
 *      entityNamespace = "MmoreramCustomBundle:User",
 *      orderBy = {
 *          {"x", "createdAt", "ASC"},
 *          {"x", "updatedAt", "DESC"},
 *          {"x", "id", 1, {
 *              0 => "ASC",
 *              1 => "DESC",
 *          }},
 *      }
 * )
 */
public function indexAction(Paginator $paginator)
{
}

With the third and fourth value you can define a map where to match your own direction nomenclature with DQL one. DQL nomenclature just accept ASC for Ascendant and DESC for Descendant.

This is very useful when you need to match a url format with the DQL one. You can refer to an existing Request attribute using ~value~ format, to any $_GET element by using format ?field? or to any $_POST by using format #field#

use Doctrine\ORM\Tools\Pagination\Pagination;
use Mmoreram\ControllerExtraBundle\Annotation\CreatePaginator;

/**
 * Simple controller method
 *
 * This Controller matches pattern /myroute/paginate/order/{field}/{direction}
 *
 * For example, some matchings...
 *
 * /myroute/paginate/order/id/1 -> ORDER BY id DESC
 * /myroute/paginate/order/enabled/0 - ORDER BY enabled ASC
 *
 * @CreatePaginator(
 *      entityNamespace = "MmoreramCustomBundle:User",
 *      orderBy = {
 *          {"x", "createdAt", "ASC"},
 *          {"x", "updatedAt", "DESC"},
 *          {"x", "~field~", ~direction~, {
 *              0 => "ASC",
 *              1 => "DESC",
 *          }},
 *      }
 * )
 */
public function indexAction(Paginator $paginator)
{
}

The order of the definitions will alter the order of the DQL query.

Paginator Wheres

You can define some where statements in your Paginator. The wheres section must be defined as an array of arrays, and each array should contain these positions:

  • First position: Entity alias (Principal object is set as x)
  • Second position: Entity field
  • Third position: Operator =, <=, >, LIKE...
  • Fourth position: Value to compare with
  • Fifth position: Is a filter. By default, false
use Doctrine\ORM\Tools\Pagination\Pagination;
use Mmoreram\ControllerExtraBundle\Annotation\CreatePaginator;

/**
 * Simple controller method
 *
 * @CreatePaginator(
 *      entityNamespace = "MmoreramCustomBundle:User",
 *      wheres = {
 *          {"x", "enabled", "=", true},
 *          {"x", "age", ">", 18},
 *          {"x", "name", "LIKE", "Eferv%"},
 *      }
 * )
 */
public function indexAction(Paginator $paginator)
{
}

You can refer to an existing Request attribute using ~value~ format, to any $_GET element by using format ?field? or to any $_POST by using format #field#

use Doctrine\ORM\Tools\Pagination\Pagination;
use Mmoreram\ControllerExtraBundle\Annotation\CreatePaginator;

/**
 * Simple controller method
 *
 * This Controller matches pattern /myroute/{field}
 *
 * @CreatePaginator(
 *      entityNamespace = "MmoreramCustomBundle:User",
 *      wheres = {
 *          {"x", "name", "LIKE", "~field~"},
 *      }
 * )
 */
public function indexAction(Paginator $paginator)
{
}

You can use as well this feature for optional filtering by setting the last position to true. In that case, if the filter value is not found, such line will be ignored.

use Doctrine\ORM\Tools\Pagination\Pagination;
use Mmoreram\ControllerExtraBundle\Annotation\CreatePaginator;

/**
 * Simple controller method
 *
 * This Controller matches pattern /myroute?query=name%
 * This Controller matches pattern /myroute as well
 *
 * In both cases this will work. In the first case we will apply the where line
 * in the paginator. In the second case, we wont.
 *
 * @CreatePaginator(
 *      entityNamespace = "MmoreramCustomBundle:User",
 *      wheres = {
 *          {"x", "name", "LIKE", "?query?", true},
 *      }
 * )
 */
public function indexAction(Paginator $paginator)
{
}

Paginator Not Nulls

You can also define some fields to not null. Is same as wheres section, but specific for NULL assignments. The notNulls section must be defined as an array of arrays, and each array should contain these positions:

  • First position: Object (Principal object is set as x)
  • Second position: Field
use Doctrine\ORM\Tools\Pagination\Pagination;
use Mmoreram\ControllerExtraBundle\Annotation\CreatePaginator;

/**
 * Simple controller method
 *
 * @CreatePaginator(
 *      entityNamespace = "MmoreramCustomBundle:User",
 *      notNulls = {
 *          {"x", "enabled"},
 *          {"x", "deleted"},
 *      }
 * )
 */
public function indexAction(Paginator $paginator)
{
}

Paginator Left Join

You can do some left joins in this section. The leftJoins section must be defined as an array of array, where each array can have these fields:

  • First position: Entity alias (Principal object is set as x)
  • Second position: Entity relation (Address)
  • Third position: Relation identifier (a)
  • Fourth position: If true, this relation is added in select group. Otherwise, wont be loaded until its request (optional)
use Doctrine\ORM\Tools\Pagination\Pagination;
use Mmoreram\ControllerExtraBundle\Annotation\CreatePaginator;

/**
 * Simple controller method
 *
 * @CreatePaginator(
 *      entityNamespace = "MmoreramCustomBundle:User",
 *      leftJoins = {
 *          {"x", "User", "u", true},
 *          {"x", "Address", "a", true},
 *          {"x", "Cart", "c"},
 *      }
 * )
 */
public function indexAction(Paginator $paginator)
{
}

Paginator Inner Join

You can do some inner joins in this section. The innerJoins section must be defined as an array of array, where each array can have these fields:

  • First position: Entity alias (x)
  • Second position: Entity relation (Address)
  • Third position: Relation identifier (a)
  • Fourth position: If true, this relation is added in select group. Otherwise, wont be loaded until its request (optional)
use Doctrine\ORM\Tools\Pagination\Pagination;
use Mmoreram\ControllerExtraBundle\Annotation\CreatePaginator;

/**
 * Simple controller method
 *
 * @CreatePaginator(
 *      entityNamespace = "MmoreramCustomBundle:User",
 *      innerJoins = {
 *          {"x", "User", "u", true},
 *          {"x", "Address", "a", true},
 *          {"x", "Cart", "c"},
 *      }
 * )
 */
public function indexAction(Paginator $paginator)
{
}

Paginator Attributes

A nice feature of this annotation is that you can also inject into your controller a Mmoreram\ControllerExtraBundle\ValueObject\PaginatorAttributes instance with some interesting information about your pagination.

  • currentPage : Current page fetched
  • totalElements : Total elements given your criteria. If none criteria is defined in your configuration, this value will show all elements of a certain entity.
  • totalPages : Total pages you can fetch given a criteria.
  • limitPerPage: Maximum number of elements in each page.

To inject this object you need to define the "attributes" annotation field with the method parameter name.

use Doctrine\ORM\Tools\Pagination\Pagination;
use Mmoreram\ControllerExtraBundle\Annotation\CreatePaginator;
use Mmoreram\ControllerExtraBundle\ValueObject\PaginatorAttributes;

/**
 * Simple controller method
 *
 * This Controller matches pattern /myroute/paginate/
 *
 * @CreatePaginator(
 *      attributes = "paginatorAttributes",
 *      entityNamespace = "MmoreramCustomBundle:User",
 *      page = 1,
 *      limit = 10
 * )
 */
public function indexAction(
    Paginator $paginator,
    PaginatorAttributes $paginatorAttributes
)
{
    $currentPage = $paginatorAttributes->getCurrentPage();
    $totalElements = $paginatorAttributes->getTotalElements();
    $totalPages = $paginatorAttributes->getTotalPages();
    $limitPerPage = $paginatorAttributes->getLimitPerPage();

}

Paginator Example

This is a completed example and its DQL resolution

use Doctrine\ORM\Tools\Pagination\Pagination;
use Mmoreram\ControllerExtraBundle\Annotation\CreatePaginator;

/**
 * Simple controller method
 *
 * This Controller matches pattern /paginate/nb/{limit}/{page}
 *
 * Where:
 *
 * * limit = 10
 * * page = 1
 *
 * @CreatePaginator(
 *      entityNamespace = "ControllerExtraBundle:Fake",
 *      page = "~page~",
 *      limit = "~limit~",
 *      orderBy = {
 *          { "x", "createdAt", "ASC" },
 *          { "x", "updatedAt", "DESC" },
 *          { "x", "id", "0", {
 *              "1" = "ASC",
 *              "2" = "DESC",
 *          }}
 *      },
 *      wheres = {
 *          { "x", "enabled" , "=", true }
 *      },
 *      leftJoins = {
 *          { "x", "relation", "r" },
 *          { "x", "relation2", "r2" },
 *          { "x", "relation5", "r5", true },
 *      },
 *      innerJoins = {
 *          { "x", "relation3", "r3" },
 *          { "x", "relation4", "r4", true },
 *      },
 *      notNulls = {
 *          {"x", "address1"},
 *          {"x", "address2"},
 *      }
 * )
 */
public function indexAction(Paginator $paginator)
{
}

The DQL generated by this annotation is

    SELECT x, r4, r5
    FROM Mmoreram\\ControllerExtraBundle\\Tests\\FakeBundle\\Entity\\Fake x

    INNER JOIN x.relation3 r3
    INNER JOIN x.relation4 r4

    LEFT JOIN x.relation r
    LEFT JOIN x.relation2 r2
    LEFT JOIN x.relation5 r5

    WHERE enabled = ?where0
    AND x.address1 IS NOT NULL
    AND x.address2 IS NOT NULL

    ORDER BY createdAt ASC, id ASC

PagerFanta Add-on

This annotation can create a PagerFanta instance if you need it. You only have to define your parameter as such, and the annotation resolver will wrap your paginator with a Pagerfanta object instance.

use Mmoreram\ControllerExtraBundle\Annotation\CreatePaginator;
use Pagerfanta\Pagerfanta;

/**
 * Simple controller method
 *
 * This Controller matches pattern /myroute/paginate/
 *
 * @CreatePaginator(
 *      entityNamespace = "MmoreramCustomBundle:User",
 *      page = 1,
 *      limit = 10
 * )
 */
public function indexAction(Pagerfanta $paginator)
{
}

KNPPaginator Add-on

This annotation can create a KNPPaginator instance if you need it. You only have to define your parameter as such, and the annotation resolver will wrap your paginator with a KNPPaginator object instance.

use Mmoreram\ControllerExtraBundle\Annotation\CreatePaginator;
use Knp\Component\Pager\Pagination\PaginationInterface;

/**
 * Simple controller method
 *
 * This Controller matches pattern /myroute/paginate/
 *
 * @CreatePaginator(
 *      entityNamespace = "MmoreramCustomBundle:User",
 *      page = 1,
 *      limit = 10
 * )
 */
public function indexAction(PaginationInterface $paginator)
{
}

@LoadEntity

Loads an entity from your database, or creates a new one.

<?php

use Mmoreram\ControllerExtraBundle\Annotation\Entity;
use Mmoreram\ControllerExtraBundle\Entity\User;

/**
 * Simple controller method
 *
 * @Entity(
 *      namespace = "MmoreramCustomBundle:User",
 *      name  = "user"
 * )
 */
public function indexAction(User $user)
{
}

By default, if name option is not set, the generated object will be placed in a parameter named $entity. This behaviour can be configured using default_name in configuration.

You can also use setters in Entity annotation. It means that you can simply call entity setters using Request attributes.

<?php

use Mmoreram\ControllerExtraBundle\Annotation\Entity;
use Mmoreram\ControllerExtraBundle\Entity\Address;
use Mmoreram\ControllerExtraBundle\Entity\User;

/**
 * Simple controller method
 *
 * @Entity(
 *      namespace = "MmoreramCustomBundle:Address",
 *      name  = "address"
 * )
 * @Entity(
 *      namespace = "MmoreramCustomBundle:User",
 *      name  = "user",
 *      setters = {
 *          "setAddress": "address"
 *      }
 * )
 */
public function indexAction(Address $address, User $user)
{
}

When User instance is built, method setAddress is called using as parameter the new Address instance.

New entities are just created with a simple new(), so they are not persisted. By default, they will be persisted using configured manager, but you can disable this feature using persist option.

<?php

use Mmoreram\ControllerExtraBundle\Annotation\Entity;
use Mmoreram\ControllerExtraBundle\Entity\User;

/**
 * Simple controller method
 *
 * @Entity(
 *      namespace = "MmoreramCustomBundle:User",
 *      name  = "user",
 *      persist = false
 * )
 */
public function indexAction(User $user)
{
}

Entity Mapping

When you define a new Entity annotation, you can also request the mapped entity given a map. It means that if a map is defined, this bundle will try to request the mapped instance satisfying it.

The keys of the map represent the names of the mapped fields and the values represent their desired values. Remember than you can refer to any Request attribute by using format ~field~, to any $_GET element by using format ?field? or to any $_POST by using format #field#

<?php

use Mmoreram\ControllerExtraBundle\Annotation\Entity;
use Mmoreram\ControllerExtraBundle\Entity\User;

/**
 * Simple controller method
 *
 * This Controller matches pattern /user/edit/{id}/{username}
 *
 * @Entity(
 *      namespace = "MmoreramCustomBundle:User",
 *      name  = "user",
 *      mapping = {
 *          "id": "~id~",
 *          "username": "~username~"
 *      }
 * )
 */
public function indexAction(User $user)
{
}

In this case, you will try to get the mapped instance of User with passed id. If some mapping is defined and any entity is found, a new EntityNotFoundException` is thrown.

Entity Mapping Fallback

So what if one ore more than one mapping references are not found? For example, you're trying to map the {id} parameter from your route, but this parameter is not even defined. Whan happens here? Well, you can assume then that you want to pass a new entity instance by using the mappingFallback.

By default, if mapping_fallback option is not set, the used value will be the parameter default_mapping_fallback defined in configuration. By default this value is false

Don't confuse with the scenario where you're looking for an entity in your database, all mapping references have been resolved, and the entity is not found. In that case, a common "EntityNotFound" exception will be thrown by Doctrine.

Lets see an example. Because we have enabled the mappingFallback, and because the mapping definition does not match the assigned route, we will return a new empty User entity.

<?php

use Mmoreram\ControllerExtraBundle\Annotation\Entity;
use Mmoreram\ControllerExtraBundle\Entity\User;

/**
 * Simple controller method
 *
 * This Controller matches pattern /user/edit/{id}
 *
 * @LoadEntity(
 *      namespace = "MmoreramCustomBundle:User",
 *      name  = "user",
 *      mapping = {
 *          "id": "~id~",
 *          "username": "~nonexisting~"
 *      },
 *      mappingFallback = true
 * )
 */
public function indexAction(User $user)
{
    // $user->getId() === null
}

Entity Repository

By default, the Doctrine entity manager provides the right repository per each entity (not the default one, but the right specific one). Although, you can define a custom repository to be used in your annotation by using the repository configuration.

/**
 * Simple controller method
 *
 * @CreateEntity(
 *      namespace = "MmoreramCustomBundle:User",
 *      mapping = {
 *          "id": "~id~",
 *          "username": "~username~"
 *      }
 *      repository = {
 *          "class" = "Mmoreram\CustomBundle\Repository\AnotherRepository",
 *      },
 * )
 */
public function indexAction(User $user)
{
}

By default, the method findOneBy will always be used, unless you define another one.

/**
 * Simple controller method
 *
 * @CreateEntity(
 *      namespace = "MmoreramCustomBundle:User",
 *      mapping = {
 *          "id": "~id~",
 *          "username": "~username~"
 *      }
 *      repository = {
 *          "class" = "Mmoreram\CustomBundle\Repository\AnotherRepository",
 *          "method" = "find",
 *      },
 * )
 */
public function indexAction(User $user)
{
}

Entity Factory

When the annotation considers that a new entity must be created, because no mapping information has been provided, or because the mapping fallback has been activated, by default a new instance will be created by using the namespace value.

This configuration block has three positions

  • class - factory class
  • method - Method to use when retrieving the object
  • static - Method is static

You can define the factory with a simple namespace

/**
 * Simple controller method
 *
 * @CreateEntity(
 *      namespace = "MmoreramCustomBundle:User",
 *      factory = {
 *          "class" = "Mmoreram\CustomBundle\Factory\UserFactory",
 *          "method" = "create",
 *          "static" = true,
 *      },
 * )
 */
public function indexAction(User $user)
{
}

If you want to define your Factory as a service, with the possibility of overriding namespace, you can simply define service name. All other options have the same behaviour.

parameters:

    #
    # Factories
    #
    my.bundle.factory.user_factory: Mmoreram\CustomBundle\Factory\UserFactory
/**
 * Simple controller method
 *
 * @CreateEntity(
 *      class = {
 *          "factory" = my.bundle.factory.user_factory,
 *          "method" = "create",
 *          "static" = true,
 *      },
 * )
 */
public function indexAction(User $user)
{
}

If you do not define the method, default one will be used. You can override this default value by defining new one in your config.yml. Same with static value

controller_extra:
    entity:
        default_factory_method: create
        default_factory_static: true

@CreateForm

Provides form injection in your controller actions. This annotation only needs a name to be defined in, where you must define namespace where your form is placed.

<?php

use Mmoreram\ControllerExtraBundle\Annotation\CreateForm;
use Symfony\Component\Form\AbstractType;

/**
 * Simple controller method
 *
 * @CreateForm(
 *      class = "\Mmoreram\CustomBundle\Form\Type\UserType",
 *      name  = "userType"
 * )
 */
public function indexAction(AbstractType $userType)
{
}

By default, if name option is not set, the generated object will be placed in a parameter named $form. This behaviour can be configured using default_name in configuration.

You can not just define your Type location using the namespace, in which case a new AbstractType element will be created. but you can also define it using service alias, in which case this bundle will return an instance using Symfony DI.

<?php

use Mmoreram\ControllerExtraBundle\Annotation\CreateForm;
use Symfony\Component\Form\AbstractType;

/**
 * Simple controller method
 *
 * @CreateForm(
 *      class = "user_type",
 *      name  = "userType"
 * )
 */
public function indexAction(AbstractType $userType)
{
}

This annotation allows you to not only create an instance of FormType, but also allows you to inject a Form object or a FormView object

To inject a Form object you only need to cast method value as such.

<?php

use Mmoreram\ControllerExtraBundle\Annotation\CreateForm;
use Symfony\Component\Form\Form;

/**
 * Simple controller method
 *
 * @CreateForm(
 *      class = "user_type",
 *      name  = "userForm"
 * )
 */
public function indexAction(Form $userForm)
{
}

You can also, using [SensioFrameworkExtraBundle][1]'s [ParamConverter][2], create a Form object with an previously created entity. you can define this entity using entity parameter.

<?php

use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;
use Sensio\Bundle\FrameworkExtraBundle\Configuration\ParamConverter;
use Symfony\Component\Form\Form;

use Mmoreram\ControllerExtraBundle\Annotation\CreateForm;
use Mmoreram\ControllerExtraBundle\Entity\User;

/**
 * Simple controller method
 *
 * @Route(
 *      path = "/user/{id}",
 *      name = "view_user"
 * )
 * @ParamConverter("user", class="MmoreramCustomBundle:User")
 * @CreateForm(
 *      class  = "user_type",
 *      entity = "user"
 *      name   = "userForm",
 * )
 */
public function indexAction(User $user, Form $userForm)
{
}

To handle current request, you can set handleRequest to true. By default this value is set to false

<?php

use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;
use Sensio\Bundle\FrameworkExtraBundle\Configuration\ParamConverter;
use Symfony\Component\Form\Form;

use Mmoreram\ControllerExtraBundle\Annotation\CreateForm;
use Mmoreram\ControllerExtraBundle\Entity\User;

/**
 * Simple controller method
 *
 * @Route(
 *      path = "/user/{id}",
 *      name = "view_user"
 * )
 * @ParamConverter("user", class="MmoreramCustomBundle:User")
 * @CreateForm(
 *      class         = "user_type",
 *      entity        = "user"
 *      handleRequest = true,
 *      name          = "userForm",
 * )
 */
public function indexAction(User $user, Form $userForm)
{
}

You can also add as a method parameter if the form is valid, using validate setting. Annotation will place result of $form->isValid() in specified method argument.

<?php

use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;
use Sensio\Bundle\FrameworkExtraBundle\Configuration\ParamConverter;
use Symfony\Component\Form\Form;

use Mmoreram\ControllerExtraBundle\Annotation\CreateForm;
use Mmoreram\ControllerExtraBundle\Entity\User;

/**
 * Simple controller method
 *
 * @Route(
 *      path = "/user/{id}",
 *      name = "view_user"
 * )
 * @ParamConverter("user", class="MmoreramCustomBundle:User")
 * @CreateForm(
 *      class         = "user_type",
 *      entity        = "user"
 *      handleRequest = true,
 *      name          = "userForm",
 *      validate      = "isValid",
 * )
 */
public function indexAction(User $user, Form $userForm, $isValid)
{
}

To inject a FormView object you only need to cast method variable as such.

<?php

use Symfony\Component\Form\FormView;

use Mmoreram\ControllerExtraBundle\Annotation\CreateForm;

/**
 * Simple controller method
 *
 * @CreateForm(
 *      class = "user_type",
 *      name  = "userFormView"
 * )
 */
public function indexAction(FormView $userFormView)
{
}

@Flush

Flush annotation allows you to flush entityManager at the end of request using kernel.response event

<?php

use Mmoreram\ControllerExtraBundle\Annotation\Flush;

/**
 * Simple controller method
 *
 * @Flush
 */
public function indexAction()
{
}

If not otherwise specified, default Doctrine Manager will be flushed with this annotation. You can overwrite default Manager in your config.yml file.

controller_extra:
    flush:
        default_manager: my_custom_manager

You can also override this value in every single Flush Annotation instance defining manager value

<?php

use Mmoreram\ControllerExtraBundle\Annotation\Flush;

/**
 * Simple controller method
 *
 * @Flush(
 *      manager = "my_own_manager"
 * )
 */
public function indexAction()
{
}

If you want to change default manager in all annotation instances, you should override bundle parameter in your config.yml file.

controller_extra:
    flush:
        default_manager: my_own_manager

If any parameter is set, annotation will flush all. If you only need to flush one or many entities, you can define explicitly which entity must be flushed.

<?php

use Sensio\Bundle\FrameworkExtraBundle\Configuration\ParamConverter;

use Mmoreram\ControllerExtraBundle\Annotation\Flush;
use Mmoreram\ControllerExtraBundle\Entity\User;

/**
 * Simple controller method
 *
 * @ParamConverter("user", class="MmoreramCustomBundle:User")
 * @Flush(
 *      entity = "user"
 * )
 */
public function indexAction(User $user)
{
}

You can also define a set of entities to flush

<?php

use Sensio\Bundle\FrameworkExtraBundle\Configuration\ParamConverter;

use Mmoreram\ControllerExtraBundle\Annotation\Flush;
use Mmoreram\ControllerExtraBundle\Entity\Address;
use Mmoreram\ControllerExtraBundle\Entity\User;

/**
 * Simple controller method
 *
 * @ParamConverter("user", class="MmoreramCustomBundle:User")
 * @ParamConverter("address", class="MmoreramCustomBundle:Address")
 * @Flush(
 *      entity = {
 *          "user", 
 *          "address"
 *      }
 * )
 */
public function indexAction(User $user, Address $address)
{
}

If multiple @Mmoreram\Flush are defined in same action, last instance will overwrite previous. Anyway just one instance should be defined.

@ToJsonResponse

JsonResponse annotation allows you to create a Symfony\Component\HttpFoundation\JsonResponse object, given a simple controller return value.

<?php

use Mmoreram\ControllerExtraBundle\Annotation\ToJsonResponse;

/**
 * Simple controller method
 *
 * @ToJsonResponse
 */
public function indexAction(User $user, Address $address)
{
    return array(
        'This is my response'
    );
}

By default, JsonResponse is created using default status and headers defined in bundle parameters. You can overwrite them in your config.yml file.

controller_extra:
    json_response:
        default_status: 403
        default_headers:
            "User-Agent": "Googlebot/2.1"

You can also overwrite these values in each @JsonResponse annotation.

<?php

use Mmoreram\ControllerExtraBundle\Annotation\ToJsonResponse;

/**
 * Simple controller method
 *
 * @ToJsonResponse(
 *      status = 403,
 *      headers = {
 *          "User-Agent": "Googlebot/2.1"
 *      }
 * )
 */
public function indexAction(User $user, Address $address)
{
    return array(
        'This is my response'
    );
}

If an Exception is returned the response status is set by default to 500 and the Exception message is returned as response.

STATUS 500 Internal server error

{
    message : 'Exception message'
}

In case we use a HttpExceptionInterface the use the exception status code as status code. In case we launch this exception

use Symfony\Component\HttpKernel\Exception\NotFoundHttpException;

...

return new NotFoundHttpException('Resource not found');

We'll receive this response

STATUS 404 Not Found

{
    message : 'Resource not found'
}

If the exception is being launched on an annotation (e.g. Entity annotation) remember to add the JsonResponse annotation at the beginning or at least before any annotation that could cause an exception.

If multiple @Mmoreram\JsonResponse are defined in same action, last instance will overwrite previous. Anyway just one instance should be defined.

@Log

Log annotation allows you to log any plain message before or after controller action execution

<?php

use Mmoreram\ControllerExtraBundle\Annotation\Log;

/**
 * Simple controller method
 *
 * @Log("Executing index Action")
 */
public function indexAction()
{
}

You can define the level of the message. You can define default one if none is specified overriding it in your config.yml file.

controller_extra:
    log:
        default_level: warning

Every Annotation instance can overwrite this value using level field.

<?php

use Mmoreram\ControllerExtraBundle\Annotation\Log;

/**
 * Simple controller method
 *
 * @Log(
 *      value   = "Executing index Action",
 *      level   = @Log::LVL_WARNING
 * )
 */
public function indexAction()
{
}

Several levels can be used, as defined in [Psr\Log\LoggerInterface][6] interface

  • @Mmoreram\Log::LVL_EMERG
  • @Mmoreram\Log::LVL_CRIT
  • @Mmoreram\Log::LVL_ERR
  • @Mmoreram\Log::LVL_WARN
  • @Mmoreram\Log::LVL_NOTICE
  • @Mmoreram\Log::LVL_INFO
  • @Mmoreram\Log::LVL_DEBUG
  • @Mmoreram\Log::LVL_LOG

You can also define the execution of the log. You can define default one if none is specified overriding it in your config.yml file.

controller_extra:
    log:
        default_execute: pre

Every Annotation instance can overwrite this value using level field.

<?php

use Mmoreram\ControllerExtraBundle\Annotation\Log;

/**
 * Simple controller method
 *
 * @Log(
 *      value   = "Executing index Action",
 *      execute = @Log::EXEC_POST
 * )
 */
public function indexAction()
{
}

Several executions can be used,

  • @Mmoreram\Log::EXEC_PRE - Logged before controller execution
  • @Mmoreram\Log::EXEC_POST - Logged after controller execution
  • @Mmoreram\Log::EXEC_BOTH - Logged both

@Get

The Get annotation allows you to get any parameter from the request query string.

For a GET request like:

GET /my-page?foo=bar HTTP/1.1

You can can simply get the foo var using the GET annotation

<?php

use Mmoreram\ControllerExtraBundle\Annotation\Get;

/**
 * Simple controller method
 *
 * @Get(
 *     path = "foo"
 * )
 */
public function indexAction($foo)
{
    // Use the foo var
}

You can also customize the var name and the default value in case the var is not sent on the query string.

For a GET request like:

GET /my-page HTTP/1.1

And this annotation

<?php

use Mmoreram\ControllerExtraBundle\Annotation\Get;

/**
 * Simple controller method
 *
 * @Get(
 *     path = "foo",
 *     name = "varName",
 *     default = 'bar',
 * )
 */
public function indexAction($varName)
{
    // This would print 'bar'
    echo $varName;
}

@Post

The Post annotation allows you to get any parameter from the post request body.

For a POST request like:

POST /my-page HTTP/1.1
foo=bar

You can can simply get the foo var using the POST annotation

<?php

use Mmoreram\ControllerExtraBundle\Annotation\Post;

/**
 * Simple controller method
 *
 * @Post(
 *     path = "foo"
 * )
 */
public function indexAction($foo)
{
    // Use the foo var
}

You can also customize the var name and the default value in case the var is not sent on the query string.

For a POST request like:

POST /my-page HTTP/1.1

And this annotation

<?php

use Mmoreram\ControllerExtraBundle\Annotation\Post;

/**
 * Simple controller method
 *
 * @Post(
 *     path = "foo",
 *     name = "varName",
 *     default = 'bar',
 * )
 */
public function indexAction($varName)
{
    // This would print 'bar'
    echo $varName;
}

Custom annotations

Using this bundle you can now create, in a very easy way, your own controller annotation.

Annotation

The annotation object. You need to define the fields your custom annotation will contain. Must extends Mmoreram\ControllerExtraBundle\Annotation\Annotation abstract class.

<?php

namespace My\Bundle\Annotation;

use Mmoreram\ControllerExtraBundle\Annotation\Annotation;

/**
 * Entity annotation driver
 *
 * @Annotation
 * @Target({"METHOD"})
 */
final class MyCustomAnnotation extends Annotation
{
    /**
     * @var string
     *
     * Dummy field
     */
    public $field;
    
    /**
     * Get Dummy field
     *
     * @return string Dummy field
     */
    public function getField()
    {
        return $this->field;
    }
}

Resolver

Once you have defined your own annotation, you have to resolve how this annotation works in a controller. You can manage this using a Resolver. Must extend Mmoreram\ControllerExtraBundle\Resolver\AnnotationResolver; abstract class.

<?php

namespace My\Bundle\Resolver;

use Symfony\Component\HttpFoundation\Request;

use Mmoreram\ControllerExtraBundle\Resolver\AnnotationResolver;
use Mmoreram\ControllerExtraBundle\Annotation\Annotation;

/**
 * MyCustomAnnotation Resolver
 */
class MyCustomAnnotationResolver extends AnnotationResolver
{
    /**
     * Specific annotation evaluation.
     *
     * This method must be implemented in every single EventListener
     * with specific logic
     *
     * All method code will executed only if specific active flag is true
     *
     * @param Request          $request
     * @param Annotation       $annotation
     * @param ReflectionMethod $method
     */
    public function evaluateAnnotation(
        Request $request,
        Annotation $annotation,
        ReflectionMethod $method
    )
    {
        /**
         * You can now manage your annotation.
         * You can access to its fields using public methods.
         * 
         * Annotation fields can be public and can be acceded directly,
         * but is better for testing to use getters; they can be mocked.
         */
        $field = $annotation->getField();
        
        /**
         * You can also access to existing method parameters.
         * 
         * Available parameters are:
         * 
         * # ParamConverter parameters ( See `resolver_priority` config value )
         * # All method defined parameters, included Request object if is set.
         */
        $entity = $request->attributes->get('entity');
        
        /**
         * And you can now place new elements in the controller action.
         * In this example we are creating new method parameter
         * called $myNewField with some value
         */
        $request->attributes->set(
            'myNewField',
            new $field()
        );
        
        return $this;
    }

}

This class will be defined as a service, so this method is computed just before executing current controller. You can also subscribe to some kernel events and do whatever you need to do ( You can check Mmoreram\ControllerExtraBundle\Resolver\LogAnnotationResolver for some examples.

Definition

Once Resolver is done, we need to define our service as an Annotation Resolver. We will use a custom tag.

parameters:
    #
    # Resolvers
    #
    my.bundle.resolver.my_custom_annotation_resolver.class: My\Bundle\Resolver\MyCustomAnnotationResolver

services:
    #
    # Resolvers
    #
    my.bundle.resolver.my_custom_annotation_resolver:
        class: %my.bundle.resolver.my_custom_annotation_resolver.class%
        tags:
            - { name: controller_extra.annotation }

Registration

We need to register our annotation inside our application. We can just do it in the boot() method of bundle.php file.

<?php

namespace My\Bundle;

use Symfony\Component\HttpKernel\Bundle\Bundle;
use Doctrine\Common\Annotations\AnnotationRegistry;

/**
 * MyBundle
 */
class ControllerExtraBundle extends Bundle
{

    /**
     * Boots the Bundle.
     */
    public function boot()
    {
        $kernel = $this->container->get('kernel');

        AnnotationRegistry::registerFile($kernel
            ->locateResource("@MyBundle/Annotation/MyCustomAnnotation.php")
        );
    }
}

Et voilà! We can now use our custom Annotation in our project controllers.


Download Details:

Author: mmoreram
Source Code: https://github.com/mmoreram/ControllerExtraBundle

License: MIT license

#symfony #php 

Brook  Legros

Brook Legros

1659408900

TinyTDS: FreeTDS Bindings for Ruby using DB-Library

TinyTDS - Simple and fast FreeTDS bindings for Ruby using DB-Library.

  • TravisCI - TravisCI
  • Build Status - Appveyor
  • Gem Version - Gem Version
  • Gitter chat - Community

About TinyTDS

The TinyTDS gem is meant to serve the extremely common use-case of connecting, querying and iterating over results to Microsoft SQL Server or Sybase databases from Ruby using the FreeTDS's DB-Library API.

TinyTDS offers automatic casting to Ruby primitives along with proper encoding support. It converts all SQL Server datatypes to native Ruby primitives while supporting :utc or :local time zones for time-like types. To date it is the only Ruby client library that allows client encoding options, defaulting to UTF-8, while connecting to SQL Server. It also properly encodes all string and binary data. The motivation for TinyTDS is to become the de-facto low level connection mode for the SQL Server Adapter for ActiveRecord.

The API is simple and consists of these classes:

  • TinyTds::Client - Your connection to the database.
  • TinyTds::Result - Returned from issuing an #execute on the connection. It includes Enumerable.
  • TinyTds::Error - A wrapper for all FreeTDS exceptions.

Install

Installing with rubygems should just work. TinyTDS is currently tested on Ruby version 2.0.0 and upward.

$ gem install tiny_tds

If you use Windows, we pre-compile TinyTDS with static versions of FreeTDS and supporting libraries. If you're using RubyInstaller the binary gem will require that devkit is installed and in your path to operate properly.

On all other platforms, we will find these dependencies. It is recommended that you install the latest FreeTDS via your method of choice. For example, here is how to install FreeTDS on Ubuntu. You might also need the build-essential and possibly the libc6-dev packages.

$ apt-get install wget
$ apt-get install build-essential
$ apt-get install libc6-dev

$ wget http://www.freetds.org/files/stable/freetds-1.1.24.tar.gz
$ tar -xzf freetds-1.1.24.tar.gz
$ cd freetds-1.1.24
$ ./configure --prefix=/usr/local --with-tdsver=7.3
$ make
$ make install

Please read the MiniPortile and/or Windows sections at the end of this file for advanced configuration options past the following:

--with-freetds-dir=DIR
  Use the freetds library placed under DIR.

Getting Started

Optionally, Microsoft has done a great job writing some articles on how to get started with SQL Server and Ruby using TinyTDS. Please checkout one of the following posts that match your platform.

FreeTDS Compatibility & Configuration

TinyTDS is developed against FreeTDS 0.95, 0.99, and 1.0 current. Our default and recommended is 1.0. We also test with SQL Server 2008, 2014, and Azure. However, usage of TinyTDS with SQL Server 2000 or 2005 should be just fine. Below are a few QA style notes about installing FreeTDS.

NOTE: Windows users of our pre-compiled native gems need not worry about installing FreeTDS and its dependencies.

Do I need to install FreeTDS? Yes! Somehow, someway, you are going to need FreeTDS for TinyTDS to compile against.

OK, I am installing FreeTDS, how do I configure it? Contrary to what most people think, you do not need to specially configure FreeTDS in any way for client libraries like TinyTDS to use it. About the only requirement is that you compile it with libiconv for proper encoding support. FreeTDS must also be compiled with OpenSSL (or the like) to use it with Azure. See the "Using TinyTDS with Azure" section below for more info.

Do I need to configure --with-tdsver equal to anything? Most likely! Technically you should not have to. This is only a default for clients/configs that do not specify what TDS version they want to use. We are currently having issues with passing down a TDS version with the login bit. Till we get that fixed, if you are not using a freetds.conf or a TDSVER environment variable, then make sure to use 7.1.

But I want to use TDS version 7.2 for SQL Server 2005 and up! TinyTDS uses TDS version 7.1 (previously named 8.0) and fully supports all the data types supported by FreeTDS, this includes varchar(max) and nvarchar(max). Technically compiling and using TDS version 7.2 with FreeTDS is not supported. But this does not mean those data types will not work. I know, it's confusing If you want to learn more, read this thread. http://lists.ibiblio.org/pipermail/freetds/2011q3/027306.html

I want to configure FreeTDS using --enable-msdblib and/or --enable-sybase-compat so it works for my database. Cool? It's a waste of time and totally moot! Client libraries like TinyTDS define their own C structure names where they diverge from Sybase to SQL Server. Technically we use the MSDBLIB structures which does not mean we only work with that database vs Sybase. These configs are just a low level default for C libraries that do not define what they want. So I repeat, you do not NEED to use any of these, nor will they hurt anything since we control what C structure names we use internally!

Data Types

Our goal is to support every SQL Server data type and covert it to a logical Ruby object. When dates or times are returned, they are instantiated to either :utc or :local time depending on the query options. Only [datetimeoffset] types are excluded. All strings are associated the to the connection's encoding and all binary data types are associated to Ruby's ASCII-8BIT/BINARY encoding.

Below is a list of the data types we support when using the 7.3 TDS protocol version. Using a lower protocol version will result in these types being returned as strings.

  • [date]
  • [datetime2]
  • [datetimeoffset]
  • [time]

TinyTds::Client Usage

Connect to a database.

client = TinyTds::Client.new username: 'sa', password: 'secret', host: 'mydb.host.net'

Creating a new client takes a hash of options. For valid iconv encoding options, see the output of iconv -l. Only a few have been tested and highly recommended to leave blank for the UTF-8 default.

  • :username - The database server user.
  • :password - The user password.
  • :dataserver - Can be the name for your data server as defined in freetds.conf. Raw hostname or hostname:port will work here too. FreeTDS says that named instance like 'localhost\SQLEXPRESS' work too, but I highly suggest that you use the :host and :port options below. Google how to find your host port if you are using named instances or go here.
  • :host - Used if :dataserver blank. Can be an host name or IP.
  • :port - Defaults to 1433. Only used if :host is used.
  • :database - The default database to use.
  • :appname - Short string seen in SQL Servers process/activity window.
  • :tds_version - TDS version. Defaults to "7.3".
  • :login_timeout - Seconds to wait for login. Default to 60 seconds.
  • :timeout - Seconds to wait for a response to a SQL command. Default 5 seconds. Prior to 1.0rc5, FreeTDS was unable to set the timeout on a per-client basis, permitting only a global timeout value. This means that if you're using an older version, the timeout values for all clients will be overwritten each time you instantiate a new TinyTds::Client object. If you are using 1.0rc5 or later, all clients will have an independent timeout setting as you'd expect. Timeouts caused by network failure will raise a timeout error 1 second after the configured timeout limit is hit (see #481 for details).
  • :encoding - Any valid iconv value like CP1251 or ISO-8859-1. Default UTF-8.
  • :azure - Pass true to signal that you are connecting to azure.
  • :contained - Pass true to signal that you are connecting with a contained database user.
  • :use_utf16 - Instead of using UCS-2 for database wide character encoding use UTF-16. Newer Windows versions use this encoding instead of UCS-2. Default true.
  • :message_handler - Pass in a call-able object such as a Proc or a method to receive info messages from the database. It should have a single parameter, which will be a TinyTds::Error object representing the message. For example:
opts = ... # host, username, password, etc
opts[:message_handler] = Proc.new { |m| puts m.message }
client = TinyTds::Client.new opts
# => Changed database context to 'master'.
# => Changed language setting to us_english.
client.execute("print 'hello world!'").do
# => hello world!

Use the #active? method to determine if a connection is good. The implementation of this method may change but it should always guarantee that a connection is good. Current it checks for either a closed or dead connection.

client.dead?    # => false
client.closed?  # => false
client.active?  # => true
client.execute("SQL TO A DEAD SERVER")
client.dead?    # => true
client.closed?  # => false
client.active?  # => false
client.close
client.closed?  # => true
client.active?  # => false

Escape strings.

client.escape("How's It Going'") # => "How''s It Going''"

Send a SQL string to the database and return a TinyTds::Result object.

result = client.execute("SELECT * FROM [datatypes]")

TinyTds::Result Usage

A result object is returned by the client's execute command. It is important that you either return the data from the query, most likely with the #each method, or that you cancel the results before asking the client to execute another SQL batch. Failing to do so will yield an error.

Calling #each on the result will lazily load each row from the database.

result.each do |row|
  # By default each row is a hash.
  # The keys are the fields, as you'd expect.
  # The values are pre-built Ruby primitives mapped from their corresponding types.
end

A result object has a #fields accessor. It can be called before the result rows are iterated over. Even if no rows are returned, #fields will still return the column names you expected. Any SQL that does not return columned data will always return an empty array for #fields. It is important to remember that if you access the #fields before iterating over the results, the columns will always follow the default query option's :symbolize_keys setting at the client's level and will ignore the query options passed to each.

result = client.execute("USE [tinytdstest]")
result.fields # => []
result.do

result = client.execute("SELECT [id] FROM [datatypes]")
result.fields # => ["id"]
result.cancel
result = client.execute("SELECT [id] FROM [datatypes]")
result.each(:symbolize_keys => true)
result.fields # => [:id]

You can cancel a result object's data from being loading by the server.

result = client.execute("SELECT * FROM [super_big_table]")
result.cancel

You can use results cancelation in conjunction with results lazy loading, no problem.

result = client.execute("SELECT * FROM [super_big_table]")
result.each_with_index do |row, i|
  break if row > 10
end
result.cancel

If the SQL executed by the client returns affected rows, you can easily find out how many.

result.each
result.affected_rows # => 24

This pattern is so common for UPDATE and DELETE statements that the #do method cancels any need for loading the result data and returns the #affected_rows.

result = client.execute("DELETE FROM [datatypes]")
result.do # => 72

Likewise for INSERT statements, the #insert method cancels any need for loading the result data and executes a SCOPE_IDENTITY() for the primary key.

result = client.execute("INSERT INTO [datatypes] ([xml]) VALUES ('<html><br/></html>')")
result.insert # => 420

The result object can handle multiple result sets form batched SQL or stored procedures. It is critical to remember that when calling each with a block for the first time will return each "row" of each result set. Calling each a second time with a block will yield each "set".

sql = ["SELECT TOP (1) [id] FROM [datatypes]",
       "SELECT TOP (2) [bigint] FROM [datatypes] WHERE [bigint] IS NOT NULL"].join(' ')

set1, set2 = client.execute(sql).each
set1 # => [{"id"=>11}]
set2 # => [{"bigint"=>-9223372036854775807}, {"bigint"=>9223372036854775806}]

result = client.execute(sql)

result.each do |rowset|
  # First time data loading, yields each row from each set.
  # 1st: {"id"=>11}
  # 2nd: {"bigint"=>-9223372036854775807}
  # 3rd: {"bigint"=>9223372036854775806}
end

result.each do |rowset|
  # Second time over (if columns cached), yields each set.
  # 1st: [{"id"=>11}]
  # 2nd: [{"bigint"=>-9223372036854775807}, {"bigint"=>9223372036854775806}]
end

Use the #sqlsent? and #canceled? query methods on the client to determine if an active SQL batch still needs to be processed and or if data results were canceled from the last result object. These values reset to true and false respectively for the client at the start of each #execute and new result object. Or if all rows are processed normally, #sqlsent? will return false. To demonstrate, lets assume we have 100 rows in the result object.

client.sqlsent?   # = false
client.canceled?  # = false

result = client.execute("SELECT * FROM [super_big_table]")

client.sqlsent?   # = true
client.canceled?  # = false

result.each do |row|
  # Assume we break after 20 rows with 80 still pending.
  break if row["id"] > 20
end

client.sqlsent?   # = true
client.canceled?  # = false

result.cancel

client.sqlsent?   # = false
client.canceled?  # = true

It is possible to get the return code after executing a stored procedure from either the result or client object.

client.return_code  # => nil

result = client.execute("EXEC tinytds_TestReturnCodes")
result.do
result.return_code  # => 420
client.return_code  # => 420

Query Options

Every TinyTds::Result object can pass query options to the #each method. The defaults are defined and configurable by setting options in the TinyTds::Client.default_query_options hash. The default values are:

  • :as => :hash - Object for each row yielded. Can be set to :array.
  • :symbolize_keys => false - Row hash keys. Defaults to shared/frozen string keys.
  • :cache_rows => true - Successive calls to #each returns the cached rows.
  • :timezone => :local - Local to the Ruby client or :utc for UTC.
  • :empty_sets => true - Include empty results set in queries that return multiple result sets.

Each result gets a copy of the default options you specify at the client level and can be overridden by passing an options hash to the #each method. For example

result.each(:as => :array, :cache_rows => false) do |row|
  # Each row is now an array of values ordered by #fields.
  # Rows are yielded and forgotten about, freeing memory.
end

Besides the standard query options, the result object can take one additional option. Using :first => true will only load the first row of data and cancel all remaining results.

result = client.execute("SELECT * FROM [super_big_table]")
result.each(:first => true) # => [{'id' => 24}]

Row Caching

By default row caching is turned on because the SQL Server adapter for ActiveRecord would not work without it. I hope to find some time to create some performance patches for ActiveRecord that would allow it to take advantages of lazily created yielded rows from result objects. Currently only TinyTDS and the Mysql2 gem allow such a performance gain.

Encoding Error Handling

TinyTDS takes an opinionated stance on how we handle encoding errors. First, we treat errors differently on reads vs. writes. Our opinion is that if you are reading bad data due to your client's encoding option, you would rather just find ? marks in your strings vs being blocked with exceptions. This is how things wold work via ODBC or SMS. On the other hand, writes will raise an exception. In this case we raise the SYBEICONVO/2402 error message which has a description of Error converting characters into server's character set. Some character(s) could not be converted.. Even though the severity of this message is only a 4 and TinyTDS will automatically strip/ignore unknown characters, we feel you should know that you are inserting bad encodings. In this way, a transaction can be rolled back, etc. Remember, any database write that has bad characters due to the client encoding will still be written to the database, but it is up to you rollback said write if needed. Most ORMs like ActiveRecord handle this scenario just fine.

Timeout Error Handling

TinyTDS will raise a TinyTDS::Error when a timeout is reached based on the options supplied to the client. Depending on the reason for the timeout, the connection could be dead or alive. When db processing is the cause for the timeout, the connection should still be usable after the error is raised. When network failure is the cause of the timeout, the connection will be dead. If you attempt to execute another command batch on a dead connection you will see a DBPROCESS is dead or not enabled error. Therefore, it is recommended to check for a dead? connection before trying to execute another command batch.

Binstubs

The TinyTDS gem uses binstub wrappers which mirror compiled FreeTDS Utilities binaries. These native executables are usually installed at the system level when installing FreeTDS. However, when using MiniPortile to install TinyTDS as we do with Windows binaries, these binstubs will find and prefer local gem exe directory executables. These are the following binstubs we wrap.

  • tsql - Used to test connections and debug compile time settings.
  • defncopy - Used to dump schema structures.

Using TinyTDS With Rails & The ActiveRecord SQL Server adapter.

TinyTDS is the default connection mode for the SQL Server adapter in versions 3.1 or higher. The SQL Server adapter can be found using the links below.

Using TinyTDS with Azure

TinyTDS is fully tested with the Azure platform. You must set the azure: true connection option when connecting. This is needed to specify the default database name in the login packet since Azure has no notion of USE [database]. FreeTDS must be compiled with OpenSSL too.

IMPORTANT: Do not use username@server.database.windows.net for the username connection option! You must use the shorter username@server instead!

Also, please read the Azure SQL Database General Guidelines and Limitations MSDN article to understand the differences. Specifically, the connection constraints section!

Connection Settings

A DBLIB connection does not have the same default SET options for a standard SMS SQL Server connection. Hence, we recommend the following options post establishing your connection.

SQL Server

SET ANSI_DEFAULTS ON

SET QUOTED_IDENTIFIER ON
SET CURSOR_CLOSE_ON_COMMIT OFF
SET IMPLICIT_TRANSACTIONS OFF
SET TEXTSIZE 2147483647
SET CONCAT_NULL_YIELDS_NULL ON

Azure

SET ANSI_NULLS ON
SET ANSI_NULL_DFLT_ON ON
SET ANSI_PADDING ON
SET ANSI_WARNINGS ON

SET QUOTED_IDENTIFIER ON
SET CURSOR_CLOSE_ON_COMMIT OFF
SET IMPLICIT_TRANSACTIONS OFF
SET TEXTSIZE 2147483647
SET CONCAT_NULL_YIELDS_NULL ON

Thread Safety

TinyTDS must be used with a connection pool for thread safety. If you use ActiveRecord or the Sequel gem this is done for you. However, if you are using TinyTDS on your own, we recommend using the ConnectionPool gem when using threads:

Please read our thread_test.rb file for details on how we test its usage.

Emoji Support 😍

This is possible using FreeTDS version 0.95 or higher. You must use the use_utf16 login option or add the following config to your freetds.conf in either the global section or a specfic dataserver. If you are on Windows, the default location for your conf file will be in C:\Sites.

[global]
  use utf-16 = true

The default is true and since FreeTDS v1.0 would do this as well.

Compiling Gems for Windows

For the convenience of Windows users, TinyTDS ships pre-compiled gems for supported versions of Ruby on Windows. In order to generate these gems, rake-compiler-dock is used. This project provides several Docker images with rvm, cross-compilers and a number of different target versions of Ruby.

Run the following rake task to compile the gems for Windows. This will check the availability of Docker (and boot2docker on Windows or OS-X) and will give some advice for download and installation. When docker is running, it will download the docker image (once-only) and start the build:

$ rake gem:windows

The compiled gems will exist in ./pkg directory.

Development & Testing

First, clone the repo using the command line or your Git GUI of choice.

$ git clone git@github.com:rails-sqlserver/tiny_tds.git

After that, the quickest way to get setup for development is to use Docker. Assuming you have downloaded docker for your platform, you can use docker-compose to run the necessary containers for testing.

$ docker-compose up -d

This will download our SQL Server for Linux Docker image based from microsoft/mssql-server-linux/. Our image already has the [tinytdstest] DB and tinytds users created. This will also download a toxiproxy Docker image which we can use to simulate network failures for tests. Basically, it does the following.

$ docker network create main-network
$ docker pull metaskills/mssql-server-linux-tinytds
$ docker run -p 1433:1433 -d --name sqlserver --network main-network metaskills/mssql-server-linux-tinytds
$ docker pull shopify/toxiproxy
$ docker run -p 8474:8474 -p 1234:1234 -d --name toxiproxy --network main-network shopify/toxiproxy

If you are using your own database. Make sure to run these SQL commands as SA to get the test database and user installed.

CREATE DATABASE [tinytdstest];
CREATE LOGIN [tinytds] WITH PASSWORD = '', CHECK_POLICY = OFF, DEFAULT_DATABASE = [tinytdstest];
USE [tinytdstest];
CREATE USER [tinytds] FOR LOGIN [tinytds];
EXEC sp_addrolemember N'db_owner', N'tinytds';

From here you can build and run tests against an installed version of FreeTDS.

$ bundle install
$ bundle exec rake

Examples us using enviornment variables to customize the test task.

$ rake TINYTDS_UNIT_DATASERVER=mydbserver
$ rake TINYTDS_UNIT_DATASERVER=mydbserver TINYTDS_SCHEMA=sqlserver_2008
$ rake TINYTDS_UNIT_HOST=mydb.host.net TINYTDS_SCHEMA=sqlserver_azure
$ rake TINYTDS_UNIT_HOST=mydb.host.net TINYTDS_UNIT_PORT=5000 TINYTDS_SCHEMA=sybase_ase

Docker Builds

If you use a multi stage Docker build to assemble your gems in one phase and then copy your app and gems into another, lighter, container without build tools you will need to make sure you tell the OS how to find dependencies for TinyTDS.

After you have built and installed FreeTDS it will normally place library files in /usr/local/lib. When TinyTDS builds native extensions, it already knows to look here but if you copy your app to a new container that link will be broken.

Set the LD_LIBRARY_PATH environment variable export LD_LIBRARY_PATH=/usr/local/lib:${LD_LIBRARY_PATH} and run ldconfig. If you run ldd tiny_tds.so you should not see any broken links. Make sure you also copied in the library dependencies from your build container with a command like COPY --from=builder /usr/local/lib /usr/local/lib.

Help & Support

About Me

My name is Ken Collins and I currently maintain the SQL Server adapter for ActiveRecord and wrote this library as my first cut into learning Ruby C extensions. Hopefully it will help promote the power of Ruby and the Rails framework to those that have not yet discovered it. My blog is metaskills.net and I can be found on twitter as @metaskills. Enjoy!

Special Thanks

License

TinyTDS is Copyright (c) 2010-2015 Ken Collins, ken@metaskills.net and Will Bond (Veracross LLC) wbond@breuer.com. It is distributed under the MIT license. Windows binaries contain pre-compiled versions of FreeTDS http://www.freetds.org/ which is licensed under the GNU LGPL license at http://www.gnu.org/licenses/lgpl-2.0.html


Author: rails-sqlserver
Source code: https://github.com/rails-sqlserver/tiny_tds
License:

#ruby   #ruby-on-rails 

Royce  Reinger

Royce Reinger

1649392464

Flight Rules for Git: Guide About What to Do When Things Go Wrong

Flight rules for Git

What are "flight rules"?

A guide for astronauts (now, programmers using Git) about what to do when things go wrong.

Flight Rules are the hard-earned body of knowledge recorded in manuals that list, step-by-step, what to do if X occurs, and why. Essentially, they are extremely detailed, scenario-specific standard operating procedures. [...]

NASA has been capturing our missteps, disasters and solutions since the early 1960s, when Mercury-era ground teams first started gathering "lessons learned" into a compendium that now lists thousands of problematic situations, from engine failure to busted hatch handles to computer glitches, and their solutions.

— Chris Hadfield, An Astronaut's Guide to Life on Earth.

Conventions for this document

For clarity's sake all examples in this document use a customized bash prompt in order to indicate the current branch and whether or not there are staged changes. The branch is enclosed in parentheses, and a * next to the branch name indicates staged changes.

All commands should work for at least git version 2.13.0. See the git website to update your local git version. 

Table of Contents generated with DocToc

Repositories

I want to start a local repository

To initialize an existing directory as a Git repository:

(my-folder) $ git init

I want to clone a remote repository

To clone (copy) a remote repository, copy the URL for the repository, and run:

$ git clone [url]

This will save it to a folder named the same as the remote repository's. Make sure you have a connection to the remote server you are cloning from (for most purposes this means making sure you are connected to the internet).

To clone it into a folder with a different name than the default repository name:

$ git clone [url] name-of-new-folder

I set the wrong remote repository

There are a few possible problems here:

If you cloned the wrong repository, simply delete the directory created after running git clone and clone the correct repository.

If you set the wrong repository as the origin of an existing local repository, change the URL of your origin by running:

$ git remote set-url origin [url of the actual repo]

For more, see this StackOverflow topic.

I want to add code to someone else's repository

Git doesn't allow you to add code to someone else's repository without access rights. Neither does GitHub, which is not the same as Git, but rather a hosted service for Git repositories. However, you can suggest code using patches, or, on GitHub, forks and pull requests.

First, a bit about forking. A fork is a copy of a repository. It is not a git operation, but is a common action on GitHub, Bitbucket, GitLab — or anywhere people host Git repositories. You can fork a repository through the hosted UI.

Suggesting code via pull requests

After you've forked a repository, you normally need to clone the repository to your machine. You can do some small edits on GitHub, for instance, without cloning, but this isn't a github-flight-rules list, so let's go with how to do this locally.

# if you are using ssh
$ git clone git@github.com:k88hudson/git-flight-rules.git

# if you are using https
$ git clone https://github.com/k88hudson/git-flight-rules.git

If you cd into the resulting directory, and type git remote, you'll see a list of the remotes. Normally there will be one remote - origin - which will point to k88hudson/git-flight-rules. In this case, we also want a remote that will point to your fork.

First, to follow a Git convention, we normally use the remote name origin for your own repository and upstream for whatever you've forked. So, rename the origin remote to upstream

$ git remote rename origin upstream

You can also do this using git remote set-url, but it takes longer and is more steps.

Then, set up a new remote that points to your project.

$ git remote add origin git@github.com:YourName/git-flight-rules.git

Note that now you have two remotes.

  • origin references your own repository.
  • upstream references the original one.

From origin, you can read and write. From upstream, you can only read.

When you've finished making whatever changes you like, push your changes (normally in a branch) to the remote named origin. If you're on a branch, you could use --set-upstream to avoid specifying the remote tracking branch on every future push using this branch. For instance:

$ (feature/my-feature) git push --set-upstream origin feature/my-feature

There is no way to suggest a pull request using the CLI using Git (although there are tools, like hub, which will do this for you). So, if you're ready to make a pull request, go to your GitHub (or another Git host) and create a new pull request. Note that your host automatically links the original and forked repositories.

After all of this, do not forget to respond to any code review feedback.

Suggesting code via patches

Another approach to suggesting code changes that doesn't rely on third party sites such as Github is to use git format-patch.

format-patch creates a .patch file for one or more commits. This file is essentially a list of changes that looks similar to the commit diffs you can view on Github.

A patch can be viewed and even edited by the recipient and applied using git am.

For example, to create a patch based on the previous commit you would run git format-patch HEAD^ which would create a .patch file called something like 0001-My-Commit-Message.patch.

To apply this patch file to your repository you would run git am ./0001-My-Commit-Message.patch.

Patches can also be sent via email using the git send-email command. For information on usage and configuration see: https://git-send-email.io

I need to update my fork with latest updates from the original repository

After a while, the upstream repository may have been updated, and these updates need to be pulled into your origin repo. Remember that like you, other people are contributing too. Suppose that you are in your own feature branch and you need to update it with the original repository updates.

You probably have set up a remote that points to the original project. If not, do this now. Generally we use upstream as a remote name:

$ (main) git remote add upstream <link-to-original-repository>
# $ (main) git remote add upstream git@github.com:k88hudson/git-flight-rules.git

Now you can fetch from upstream and get the latest updates.

$ (main) git fetch upstream
$ (main) git merge upstream/main

# or using a single command
$ (main) git pull upstream main

Editing Commits

 

What did I just commit?

Let's say that you just blindly committed changes with git commit -a and you're not sure what the actual content of the commit you just made was. You can show the latest commit on your current HEAD with:

(main)$ git show

Or

$ git log -n1 -p

If you want to see a file at a specific commit, you can also do this (where <commitid> is the commit you're interested in):

$ git show <commitid>:filename

I wrote the wrong thing in a commit message

If you wrote the wrong thing and the commit has not yet been pushed, you can do the following to change the commit message without changing the changes in the commit:

$ git commit --amend --only

This will open your default text editor, where you can edit the message. On the other hand, you can do this all in one command:

$ git commit --amend --only -m 'xxxxxxx'

If you have already pushed the message, you can amend the commit and force push, but this is not recommended.

 

I committed with the wrong name and email configured

If it's a single commit, amend it

$ git commit --amend --no-edit --author "New Authorname <authoremail@mydomain.com>"

An alternative is to correctly configure your author settings in git config --global author.(name|email) and then use

$ git commit --amend --reset-author --no-edit

If you need to change all of history, see the man page for git filter-branch.

I want to remove a file from the previous commit

In order to remove changes for a file from the previous commit, do the following:

$ git checkout HEAD^ myfile
$ git add myfile
$ git commit --amend --no-edit

In case the file was newly added to the commit and you want to remove it (from Git alone), do:

$ git rm --cached myfile
$ git commit --amend --no-edit

This is particularly useful when you have an open patch and you have committed an unnecessary file, and need to force push to update the patch on a remote. The --no-edit option is used to keep the existing commit message.

 

I want to delete or remove my last commit

If you need to delete pushed commits, you can use the following. However, it will irreversibly change your history, and mess up the history of anyone else who had already pulled from the repository. In short, if you're not sure, you should never do this, ever.

$ git reset HEAD^ --hard
$ git push --force-with-lease [remote] [branch]

If you haven't pushed, to reset Git to the state it was in before you made your last commit (while keeping your staged changes):

(my-branch*)$ git reset --soft HEAD@{1}

This only works if you haven't pushed. If you have pushed, the only truly safe thing to do is git revert SHAofBadCommit. That will create a new commit that undoes all the previous commit's changes. Or, if the branch you pushed to is rebase-safe (ie. other devs aren't expected to pull from it), you can just use git push --force-with-lease. For more, see the above section.

 

Delete/remove arbitrary commit

The same warning applies as above. Never do this if possible.

$ git rebase --onto SHA1_OF_BAD_COMMIT^ SHA1_OF_BAD_COMMIT
$ git push --force-with-lease [remote] [branch]

Or do an interactive rebase and remove the line(s) corresponding to commit(s) you want to see removed.

 

I tried to push my amended commit to a remote, but I got an error message

To https://github.com/yourusername/repo.git
! [rejected]        mybranch -> mybranch (non-fast-forward)
error: failed to push some refs to 'https://github.com/tanay1337/webmaker.org.git'
hint: Updates were rejected because the tip of your current branch is behind
hint: its remote counterpart. Integrate the remote changes (e.g.
hint: 'git pull ...') before pushing again.
hint: See the 'Note about fast-forwards' in 'git push --help' for details.

Note that, as with rebasing (see below), amending replaces the old commit with a new one, so you must force push (--force-with-lease) your changes if you have already pushed the pre-amended commit to your remote. Be careful when you do this – always make sure you specify a branch!

(my-branch)$ git push origin mybranch --force-with-lease

In general, avoid force pushing. It is best to create and push a new commit rather than force-pushing the amended commit as it will cause conflicts in the source history for any other developer who has interacted with the branch in question or any child branches. --force-with-lease will still fail, if someone else was also working on the same branch as you, and your push would overwrite those changes.

If you are absolutely sure that nobody is working on the same branch or you want to update the tip of the branch unconditionally, you can use --force (-f), but this should be avoided in general.

 

I accidentally did a hard reset, and I want my changes back

If you accidentally do git reset --hard, you can normally still get your commit back, as git keeps a log of everything for a few days.

Note: This is only valid if your work is backed up, i.e., either committed or stashed. git reset --hard will remove uncommitted modifications, so use it with caution. (A safer option is git reset --keep.)

(main)$ git reflog

You'll see a list of your past commits, and a commit for the reset. Choose the SHA of the commit you want to return to, and reset again:

(main)$ git reset --hard SHA1234

And you should be good to go.

I accidentally committed and pushed a merge

If you accidentally merged a feature branch to the main development branch before it was ready to be merged, you can still undo the merge. But there's a catch: A merge commit has more than one parent (usually two).

The command to use

(feature-branch)$ git revert -m 1 <commit>

where the -m 1 option says to select parent number 1 (the branch into which the merge was made) as the parent to revert to.

Note: the parent number is not a commit identifier. Rather, a merge commit has a line Merge: 8e2ce2d 86ac2e7. The parent number is the 1-based index of the desired parent on this line, the first identifier is number 1, the second is number 2, and so on.

I accidentally committed and pushed files containing sensitive data

If you accidentally pushed files containing sensitive, or private data (passwords, keys, etc.), you can amend the previous commit. Keep in mind that once you have pushed a commit, you should consider any data it contains to be compromised. These steps can remove the sensitive data from your public repo or your local copy, but you cannot remove the sensitive data from other people's pulled copies. If you committed a password, change it immediately. If you committed a key, re-generate it immediately. Amending the pushed commit is not enough, since anyone could have pulled the original commit containing your sensitive data in the meantime.

If you edit the file and remove the sensitive data, then run

(feature-branch)$ git add edited_file
(feature-branch)$ git commit --amend --no-edit
(feature-branch)$ git push --force-with-lease origin [branch]

If you want to remove an entire file (but keep it locally), then run

(feature-branch)$ git rm --cached sensitive_file
echo sensitive_file >> .gitignore
(feature-branch)$ git add .gitignore
(feature-branch)$ git commit --amend --no-edit
(feature-branch)$ git push --force-with-lease origin [branch]

Alternatively store your sensitive data in local environment variables.

If you want to completely remove an entire file (and not keep it locally), then run

(feature-branch)$ git rm sensitive_file
(feature-branch)$ git commit --amend --no-edit
(feature-branch)$ git push --force-with-lease origin [branch]

If you have made other commits in the meantime (i.e. the sensitive data is in a commit before the previous commit), you will have to rebase.

I want to remove a large file from ever existing in repo history

If the file you want to delete is secret or sensitive, instead see how to remove sensitive files.

Even if you delete a large or unwanted file in a recent commit, it still exists in git history, in your repo's .git folder, and will make git clone download unneeded files.

The actions in this part of the guide will require a force push, and rewrite large sections of repo history, so if you are working with remote collaborators, check first that any local work of theirs is pushed.

There are two options for rewriting history, the built-in git-filter-branch or bfg-repo-cleaner. bfg is significantly cleaner and more performant, but it is a third-party download and requires java. We will describe both alternatives. The final step is to force push your changes, which requires special consideration on top of a regular force push, given that a great deal of repo history will have been permanently changed.

Recommended Technique: Use third-party bfg

Using bfg-repo-cleaner requires java. Download the bfg jar from the link here. Our examples will use bfg.jar, but your download may have a version number, e.g. bfg-1.13.0.jar.

To delete a specific file.

(main)$ git rm path/to/filetoremove
(main)$ git commit -m "Commit removing filetoremove"
(main)$ java -jar ~/Downloads/bfg.jar --delete-files filetoremove

Note that in bfg you must use the plain file name even if it is in a subdirectory.

You can also delete a file by pattern, e.g.:

(main)$ git rm *.jpg
(main)$ git commit -m "Commit removing *.jpg"
(main)$ java -jar ~/Downloads/bfg.jar --delete-files *.jpg

With bfg, the files that exist on your latest commit will not be affected. For example, if you had several large .tga files in your repo, and then in an earlier commit, you deleted a subset of them, this call does not touch files present in the latest commit

Note, if you renamed a file as part of a commit, e.g. if it started as LargeFileFirstName.mp4 and a commit changed it to LargeFileSecondName.mp4, running java -jar ~/Downloads/bfg.jar --delete-files LargeFileSecondName.mp4 will not remove it from git history. Either run the --delete-files command with both filenames, or with a matching pattern.

Built-in Technique: Use git-filter-branch

git-filter-branch is more cumbersome and has less features, but you may use it if you cannot install or run bfg.

In the below, replace filepattern may be a specific name or pattern, e.g. *.jpg. This will remove files matching the pattern from all history and branches.

(main)$ git filter-branch --force --index-filter 'git rm --cached --ignore-unmatch filepattern' --prune-empty --tag-name-filter cat -- --all

Behind-the-scenes explanation:

--tag-name-filter cat is a cumbersome, but simplest, way to apply the original tags to the new commits, using the command cat.

--prune-empty removes any now-empty commits.

Final Step: Pushing your changed repo history

Once you have removed your desired files, test carefully that you haven't broken anything in your repo - if you have, it is easiest to re-clone your repo to start over. To finish, optionally use git garbage collection to minimize your local .git folder size, and then force push.

(main)$ git reflog expire --expire=now --all && git gc --prune=now --aggressive
(main)$ git push origin --force --tags

Since you just rewrote the entire git repo history, the git push operation may be too large, and return the error “The remote end hung up unexpectedly”. If this happens, you can try increasing the git post buffer:

(main)$ git config http.postBuffer 524288000
(main)$ git push --force

If this does not work, you will need to manually push the repo history in chunks of commits. In the command below, try increasing <number> until the push operation succeeds.

(main)$ git push -u origin HEAD~<number>:refs/head/main --force

Once the push operation succeeds the first time, decrease <number> gradually until a conventional git push succeeds.

 

I need to change the content of a commit which is not my last

Consider you created some (e.g. three) commits and later realize you missed doing something that belongs contextually into the first of those commits. This bothers you, because if you'd create a new commit containing those changes, you'd have a clean code base, but your commits weren't atomic (i.e. changes that belonged to each other weren't in the same commit). In such a situation you may want to change the commit where these changes belong to, include them and have the following commits unaltered. In such a case, git rebase might save you.

Consider a situation where you want to change the third last commit you made.

(your-branch)$ git rebase -i HEAD~4

gets you into interactive rebase mode, which allows you to edit any of your last three commits. A text editor pops up, showing you something like

pick 9e1d264 The third last commit
pick 4b6e19a The second to last commit
pick f4037ec The last commit

which you change into

edit 9e1d264 The third last commit
pick 4b6e19a The second to last commit
pick f4037ec The last commit

This tells rebase that you want to edit your third last commit and keep the other two unaltered. Then you'll save (and close) the editor. Git will then start to rebase. It stops on the commit you want to alter, giving you the chance to edit that commit. Now you can apply the changes which you missed applying when you initially committed that commit. You do so by editing and staging them. Afterwards you'll run

(your-branch)$ git commit --amend

which tells Git to recreate the commit, but to leave the commit message unedited. Having done that, the hard part is solved.

(your-branch)$ git rebase --continue

will do the rest of the work for you.

Staging

I want to stage all tracked files and leave untracked files

$ git add -u

To stage part of tracked files

# to stage files with ext .txt
$ git add -u *.txt

# to stage all files inside directory src
$ git add -u src/

I need to add staged changes to the previous commit

(my-branch*)$ git commit --amend

If you already know you don't want to change the commit message, you can tell git to reuse the commit message:

(my-branch*)$ git commit --amend -C HEAD

I want to stage part of a new file, but not the whole file

Normally, if you want to stage part of a file, you run this:

$ git add --patch filename.x

-p will work for short. This will open interactive mode. You would be able to use the s option to split the commit - however, if the file is new, you will not have this option. To add a new file, do this:

$ git add -N filename.x

Then, you will need to use the e option to manually choose which lines to add. Running git diff --cached or git diff --staged will show you which lines you have staged compared to which are still saved locally.

I want to add changes in one file to two different commits

git add will add the entire file to a commit. git add -p will allow to interactively select which changes you want to add.

I staged too many edits, and I want to break them out into a separate commit

git reset -p will open a patch mode reset dialog. This is similar to git add -p, except that selecting "yes" will unstage the change, removing it from the upcoming commit.

I want to stage my unstaged edits, and unstage my staged edits

In many cases, you should unstage all of your staged files and then pick the file you want and commit it. However, if you want to switch the staged and unstaged edits, you can create a temporary commit to store your staged files, stage your unstaged files and then stash them. Then, reset the temporary commit and pop your stash.

$ git commit -m "WIP"
$ git add . # This will also add untracked files.
$ git stash
$ git reset HEAD^
$ git stash pop --index 0

NOTE 1: The reason to use pop here is want to keep idempotent as much as possible. NOTE 2: Your staged files will be marked as unstaged if you don't use the --index flag. (This link explains why.)

Unstaged Edits

I want to move my unstaged edits to a new branch

$ git checkout -b my-branch

I want to move my unstaged edits to a different, existing branch

$ git stash
$ git checkout my-branch
$ git stash pop

I want to discard my local uncommitted changes (staged and unstaged)

If you want to discard all your local staged and unstaged changes, you can do this:

(my-branch)$ git reset --hard
# or
(main)$ git checkout -f

This will unstage all files you might have staged with git add:

$ git reset

This will revert all local uncommitted changes (should be executed in repo root):

$ git checkout .

You can also revert uncommitted changes to a particular file or directory:

$ git checkout [some_dir|file.txt]

Yet another way to revert all uncommitted changes (longer to type, but works from any subdirectory):

$ git reset --hard HEAD

This will remove all local untracked files, so only files tracked by Git remain:

$ git clean -fd

-x will also remove all ignored files.

I want to discard specific unstaged changes

When you want to get rid of some, but not all changes in your working copy.

Checkout undesired changes, keep good changes.

$ git checkout -p
# Answer y to all of the snippets you want to drop

Another strategy involves using stash. Stash all the good changes, reset working copy, and reapply good changes.

$ git stash -p
# Select all of the snippets you want to save
$ git reset --hard
$ git stash pop

Alternatively, stash your undesired changes, and then drop stash.

$ git stash -p
# Select all of the snippets you don't want to save
$ git stash drop

I want to discard specific unstaged files

When you want to get rid of one specific file in your working copy.

$ git checkout myFile

Alternatively, to discard multiple files in your working copy, list them all.

$ git checkout myFirstFile mySecondFile

I want to discard only my unstaged local changes

When you want to get rid of all of your unstaged local uncommitted changes

$ git checkout .

I want to discard all of my untracked files

When you want to get rid of all of your untracked files

$ git clean -f

I want to unstage a specific staged file

Sometimes we have one or more files that accidentally ended up being staged, and these files have not been committed before. To unstage them:

$ git reset -- <filename>

This results in unstaging the file and make it look like it's untracked.

Branches

I want to list all branches

List local branches

$ git branch

List remote branches

$ git branch -r

List all branches (both local and remote)

$ git branch -a

 

Create a branch from a commit

$ git checkout -b <branch> <SHA1_OF_COMMIT>

 

I pulled from/into the wrong branch

This is another chance to use git reflog to see where your HEAD pointed before the bad pull.

(main)$ git reflog
ab7555f HEAD@{0}: pull origin wrong-branch: Fast-forward
c5bc55a HEAD@{1}: checkout: checkout message goes here

Simply reset your branch back to the desired commit:

$ git reset --hard c5bc55a

Done.

 

I want to discard local commits so my branch is the same as one on the server

Confirm that you haven't pushed your changes to the server.

git status should show how many commits you are ahead of origin:

(my-branch)$ git status
# On branch my-branch
# Your branch is ahead of 'origin/my-branch' by 2 commits.
#   (use "git push" to publish your local commits)
#

One way of resetting to match origin (to have the same as what is on the remote) is to do this:

(main)$ git reset --hard origin/my-branch

 

I committed to main instead of a new branch

Create the new branch while remaining on main:

(main)$ git branch my-branch

Reset the branch main to the previous commit:

(main)$ git reset --hard HEAD^

HEAD^ is short for HEAD^1. This stands for the first parent of HEAD, similarly HEAD^2 stands for the second parent of the commit (merges can have 2 parents).

Note that HEAD^2 is not the same as HEAD~2 (see this link for more information).

Alternatively, if you don't want to use HEAD^, find out what the commit hash you want to set your main branch to (git log should do the trick). Then reset to that hash. git push will make sure that this change is reflected on your remote.

For example, if the hash of the commit that your main branch is supposed to be at is a13b85e:

(main)$ git reset --hard a13b85e
HEAD is now at a13b85e

Checkout the new branch to continue working:

(main)$ git checkout my-branch

 

I want to keep the whole file from another ref-ish

Say you have a working spike (see note), with hundreds of changes. Everything is working. Now, you commit into another branch to save that work:

(solution)$ git add -A && git commit -m "Adding all changes from this spike into one big commit."

When you want to put it into a branch (maybe feature, maybe develop), you're interested in keeping whole files. You want to split your big commit into smaller ones.

Say you have:

  • branch solution, with the solution to your spike. One ahead of develop.
  • branch develop, where you want to add your changes.

You can solve it bringing the contents to your branch:

(develop)$ git checkout solution -- file1.txt

This will get the contents of that file in branch solution to your branch develop:

# On branch develop
# Your branch is up-to-date with 'origin/develop'.
# Changes to be committed:
#  (use "git reset HEAD <file>..." to unstage)
#
#        modified:   file1.txt

Then, commit as usual.

Note: Spike solutions are made to analyze or solve the problem. These solutions are used for estimation and discarded once everyone gets clear visualization of the problem. ~ Wikipedia.

 

I made several commits on a single branch that should be on different branches

Say you are on your main branch. Running git log, you see you have made two commits:

(main)$ git log

commit e3851e817c451cc36f2e6f3049db528415e3c114
Author: Alex Lee <alexlee@example.com>
Date:   Tue Jul 22 15:39:27 2014 -0400

    Bug #21 - Added CSRF protection

commit 5ea51731d150f7ddc4a365437931cd8be3bf3131
Author: Alex Lee <alexlee@example.com>
Date:   Tue Jul 22 15:39:12 2014 -0400

    Bug #14 - Fixed spacing on title

commit a13b85e984171c6e2a1729bb061994525f626d14
Author: Aki Rose <akirose@example.com>
Date:   Tue Jul 21 01:12:48 2014 -0400

    First commit

Let's take note of our commit hashes for each bug (e3851e8 for #21, 5ea5173 for #14).

First, let's reset our main branch to the correct commit (a13b85e):

(main)$ git reset --hard a13b85e
HEAD is now at a13b85e

Now, we can create a fresh branch for our bug #21:

(main)$ git checkout -b 21
(21)$

Now, let's cherry-pick the commit for bug #21 on top of our branch. That means we will be applying that commit, and only that commit, directly on top of whatever our head is at.

(21)$ git cherry-pick e3851e8

At this point, there is a possibility there might be conflicts. See the There were conflicts section in the interactive rebasing section above for how to resolve conflicts.

Now let's create a new branch for bug #14, also based on main

(21)$ git checkout main
(main)$ git checkout -b 14
(14)$

And finally, let's cherry-pick the commit for bug #14:

(14)$ git cherry-pick 5ea5173

 

I want to delete local branches that were deleted upstream

Once you merge a pull request on GitHub, it gives you the option to delete the merged branch in your fork. If you aren't planning to keep working on the branch, it's cleaner to delete the local copies of the branch so you don't end up cluttering up your working checkout with a lot of stale branches.

$ git fetch -p upstream

where, upstream is the remote you want to fetch from.

 

I accidentally deleted my branch

If you're regularly pushing to remote, you should be safe most of the time. But still sometimes you may end up deleting your branches. Let's say we create a branch and create a new file:

(main)$ git checkout -b my-branch
(my-branch)$ git branch
(my-branch)$ touch foo.txt
(my-branch)$ ls
README.md foo.txt

Let's add it and commit.

(my-branch)$ git add .
(my-branch)$ git commit -m 'foo.txt added'
(my-branch)$ foo.txt added
 1 files changed, 1 insertions(+)
 create mode 100644 foo.txt
(my-branch)$ git log

commit 4e3cd85a670ced7cc17a2b5d8d3d809ac88d5012
Author: siemiatj <siemiatj@example.com>
Date:   Wed Jul 30 00:34:10 2014 +0200

    foo.txt added

commit 69204cdf0acbab201619d95ad8295928e7f411d5
Author: Kate Hudson <katehudson@example.com>
Date:   Tue Jul 29 13:14:46 2014 -0400

    Fixes #6: Force pushing after amending commits

Now we're switching back to main and 'accidentally' removing our branch.

(my-branch)$ git checkout main
Switched to branch 'main'
Your branch is up-to-date with 'origin/main'.
(main)$ git branch -D my-branch
Deleted branch my-branch (was 4e3cd85).
(main)$ echo oh noes, deleted my branch!
oh noes, deleted my branch!

At this point you should get familiar with 'reflog', an upgraded logger. It stores the history of all the action in the repo.

(main)$ git reflog
69204cd HEAD@{0}: checkout: moving from my-branch to main
4e3cd85 HEAD@{1}: commit: foo.txt added
69204cd HEAD@{2}: checkout: moving from main to my-branch

As you can see we have commit hash from our deleted branch. Let's see if we can restore our deleted branch.

(main)$ git checkout -b my-branch-help
Switched to a new branch 'my-branch-help'
(my-branch-help)$ git reset --hard 4e3cd85
HEAD is now at 4e3cd85 foo.txt added
(my-branch-help)$ ls
README.md foo.txt

Voila! We got our removed file back. git reflog is also useful when rebasing goes terribly wrong.

I want to delete a branch

To delete a remote branch:

(main)$ git push origin --delete my-branch

You can also do:

(main)$ git push origin :my-branch

To delete a local branch:

(main)$ git branch -d my-branch

To delete a local branch that has not been merged to the current branch or an upstream:

(main)$ git branch -D my-branch

I want to delete multiple branches

Say you want to delete all branches that start with fix/:

(main)$ git branch | grep 'fix/' | xargs git branch -d

I want to rename a branch

To rename the current (local) branch:

(main)$ git branch -m new-name

To rename a different (local) branch:

(main)$ git branch -m old-name new-name

To delete the old-name remote branch and push the new-name local branch:

(main)$ git push origin :old_name new_name

 

I want to checkout to a remote branch that someone else is working on

First, fetch all branches from remote:

(main)$ git fetch --all

Say you want to checkout to daves from the remote.

(main)$ git checkout --track origin/daves
Branch daves set up to track remote branch daves from origin.
Switched to a new branch 'daves'

(--track is shorthand for git checkout -b [branch] [remotename]/[branch])

This will give you a local copy of the branch daves, and any update that has been pushed will also show up remotely.

I want to create a new remote branch from current local one

$ git push <remote> HEAD

If you would also like to set that remote branch as upstream for the current one, use the following instead:

$ git push -u <remote> HEAD

With the upstream mode and the simple (default in Git 2.0) mode of the push.default config, the following command will push the current branch with regards to the remote branch that has been registered previously with -u:

$ git push

The behavior of the other modes of git push is described in the doc of push.default.

I want to set a remote branch as the upstream for a local branch

You can set a remote branch as the upstream for the current local branch using:

$ git branch --set-upstream-to [remotename]/[branch]
# or, using the shorthand:
$ git branch -u [remotename]/[branch]

To set the upstream remote branch for another local branch:

$ git branch -u [remotename]/[branch] [local-branch]

 

I want to set my HEAD to track the default remote branch

By checking your remote branches, you can see which remote branch your HEAD is tracking. In some cases, this is not the desired branch.

$ git branch -r
  origin/HEAD -> origin/gh-pages
  origin/main

To change origin/HEAD to track origin/main, you can run this command:

$ git remote set-head origin --auto
origin/HEAD set to main

I made changes on the wrong branch

You've made uncommitted changes and realise you're on the wrong branch. Stash changes and apply them to the branch you want:

(wrong_branch)$ git stash
(wrong_branch)$ git checkout <correct_branch>
(correct_branch)$ git stash apply

 

I want to split a branch into two

You've made a lot of commits on a branch and now want to separate it into two, ending with a branch up to an earlier commit and another with all the changes.

Use git log to find the commit where you want to split. Then do the following:

(original_branch)$ git checkout -b new_branch
(new_branch)$ git checkout original_branch
(original_branch)$ git reset --hard <sha1 split here>

If you had previously pushed the original_branch to remote, you will need to do a force push. For more information check Stack Overlflow

Rebasing and Merging

 

I want to undo rebase/merge

You may have merged or rebased your current branch with a wrong branch, or you can't figure it out or finish the rebase/merge process. Git saves the original HEAD pointer in a variable called ORIG_HEAD before doing dangerous operations, so it is simple to recover your branch at the state before the rebase/merge.

(my-branch)$ git reset --hard ORIG_HEAD

 

I rebased, but I don't want to force push

Unfortunately, you have to force push, if you want those changes to be reflected on the remote branch. This is because you have changed the history. The remote branch won't accept changes unless you force push. This is one of the main reasons many people use a merge workflow, instead of a rebasing workflow - large teams can get into trouble with developers force pushing. Use this with caution. A safer way to use rebase is not to reflect your changes on the remote branch at all, and instead to do the following:

(main)$ git checkout my-branch
(my-branch)$ git rebase -i main
(my-branch)$ git checkout main
(main)$ git merge --ff-only my-branch

For more, see this SO thread.

 

I need to combine commits

Let's suppose you are working in a branch that is/will become a pull-request against main. In the simplest case when all you want to do is to combine all commits into a single one and you don't care about commit timestamps, you can reset and recommit. Make sure the main branch is up to date and all your changes committed, then:

(my-branch)$ git reset --soft main
(my-branch)$ git commit -am "New awesome feature"

If you want more control, and also to preserve timestamps, you need to do something called an interactive rebase:

(my-branch)$ git rebase -i main

If you aren't working against another branch you'll have to rebase relative to your HEAD. If you want to squash the last 2 commits, for example, you'll have to rebase against HEAD~2. For the last 3, HEAD~3, etc.

(main)$ git rebase -i HEAD~2

After you run the interactive rebase command, you will see something like this in your text editor:

pick a9c8a1d Some refactoring
pick 01b2fd8 New awesome feature
pick b729ad5 fixup
pick e3851e8 another fix

# Rebase 8074d12..b729ad5 onto 8074d12
#
# Commands:
#  p, pick = use commit
#  r, reword = use commit, but edit the commit message
#  e, edit = use commit, but stop for amending
#  s, squash = use commit, but meld into previous commit
#  f, fixup = like "squash", but discard this commit's log message
#  x, exec = run command (the rest of the line) using shell
#
# These lines can be re-ordered; they are executed from top to bottom.
#
# If you remove a line here THAT COMMIT WILL BE LOST.
#
# However, if you remove everything, the rebase will be aborted.
#
# Note that empty commits are commented out

All the lines beginning with a # are comments, they won't affect your rebase.

Then you replace pick commands with any in the list above, and you can also remove commits by removing corresponding lines.

For example, if you want to leave the oldest (first) commit alone and combine all the following commits with the second oldest, you should edit the letter next to each commit except the first and the second to say f:

pick a9c8a1d Some refactoring
pick 01b2fd8 New awesome feature
f b729ad5 fixup
f e3851e8 another fix

If you want to combine these commits and rename the commit, you should additionally add an r next to the second commit or simply use s instead of f:

pick a9c8a1d Some refactoring
pick 01b2fd8 New awesome feature
s b729ad5 fixup
s e3851e8 another fix

You can then rename the commit in the next text prompt that pops up.

Newer, awesomer features

# Please enter the commit message for your changes. Lines starting
# with '#' will be ignored, and an empty message aborts the commit.
# rebase in progress; onto 8074d12
# You are currently editing a commit while rebasing branch 'main' on '8074d12'.
#
# Changes to be committed:
#   modified:   README.md
#

If everything is successful, you should see something like this:

(main)$ Successfully rebased and updated refs/heads/main.

Safe merging strategy

--no-commit performs the merge but pretends the merge failed and does not autocommit, giving the user a chance to inspect and further tweak the merge result before committing. no-ff maintains evidence that a feature branch once existed, keeping project history consistent.

(main)$ git merge --no-ff --no-commit my-branch

I need to merge a branch into a single commit

(main)$ git merge --squash my-branch

 

I want to combine only unpushed commits

Sometimes you have several work in progress commits that you want to combine before you push them upstream. You don't want to accidentally combine any commits that have already been pushed upstream because someone else may have already made commits that reference them.

(main)$ git rebase -i @{u}

This will do an interactive rebase that lists only the commits that you haven't already pushed, so it will be safe to reorder/fix/squash anything in the list.

I need to abort the merge

Sometimes the merge can produce problems in certain files, in those cases we can use the option abort to abort the current conflict resolution process, and try to reconstruct the pre-merge state.

(my-branch)$ git merge --abort

This command is available since Git version >= 1.7.4

I need to update the parent commit of my branch

Say I have a main branch, a feature-1 branch branched from main, and a feature-2 branch branched off of feature-1. If I make a commit to feature-1, then the parent commit of feature-2 is no longer accurate (it should be the head of feature-1, since we branched off of it). We can fix this with git rebase --onto.

(feature-2)$ git rebase --onto feature-1 <the first commit in your feature-2 branch that you don't want to bring along> feature-2

This helps in sticky scenarios where you might have a feature built on another feature that hasn't been merged yet, and a bugfix on the feature-1 branch needs to be reflected in your feature-2 branch.

Check if all commits on a branch are merged

To check if all commits on a branch are merged into another branch, you should diff between the heads (or any commits) of those branches:

(main)$ git log --graph --left-right --cherry-pick --oneline HEAD...feature/120-on-scroll

This will tell you if any commits are in one but not the other, and will give you a list of any nonshared between the branches. Another option is to do this:

(main)$ git log main ^feature/120-on-scroll --no-merges

Possible issues with interactive rebases

 

The rebase editing screen says 'noop'

If you're seeing this:

noop

That means you are trying to rebase against a branch that is at an identical commit, or is ahead of your current branch. You can try:

  • making sure your main branch is where it should be
  • rebase against HEAD~2 or earlier instead

 

There were conflicts

If you are unable to successfully complete the rebase, you may have to resolve conflicts.

First run git status to see which files have conflicts in them:

(my-branch)$ git status
On branch my-branch
Changes not staged for commit:
  (use "git add <file>..." to update what will be committed)
  (use "git checkout -- <file>..." to discard changes in working directory)

  both modified:   README.md

In this example, README.md has conflicts. Open that file and look for the following:

   <<<<<<< HEAD
   some code
   =========
   some code
   >>>>>>> new-commit

You will need to resolve the differences between the code that was added in your new commit (in the example, everything from the middle line to new-commit) and your HEAD.

If you want to keep one branch's version of the code, you can use --ours or --theirs:

(main*)$ git checkout --ours README.md
  • When merging, use --ours to keep changes from the local branch, or --theirs to keep changes from the other branch.
  • When rebasing, use --theirs to keep changes from the local branch, or --ours to keep changes from the other branch. For an explanation of this swap, see this note in the Git documentation.

If the merges are more complicated, you can use a visual diff editor:

(main*)$ git mergetool -t opendiff

After you have resolved all conflicts and tested your code, git add the files you have changed, and then continue the rebase with git rebase --continue

(my-branch)$ git add README.md
(my-branch)$ git rebase --continue

If after resolving all the conflicts you end up with an identical tree to what it was before the commit, you need to git rebase --skip instead.

If at any time you want to stop the entire rebase and go back to the original state of your branch, you can do so:

(my-branch)$ git rebase --abort

 

Stash

Stash all edits

To stash all the edits in your working directory

$ git stash

If you also want to stash untracked files, use -u option.

$ git stash -u

Stash specific files

To stash only one file from your working directory

$ git stash push working-directory-path/filename.ext

To stash multiple files from your working directory

$ git stash push working-directory-path/filename1.ext working-directory-path/filename2.ext

 

Stash with message

$ git stash save <message>

or

$ git stash push -m <message>

 

Apply a specific stash from list

First check your list of stashes with message using

$ git stash list

Then apply a specific stash from the list using

$ git stash apply "stash@{n}"

Here, 'n' indicates the position of the stash in the stack. The topmost stash will be position 0.

Furthermore, using a time-based stash reference is also possible.

$ git stash apply "stash@{2.hours.ago}"

 

Stash while keeping unstaged edits

You can manually create a stash commit, and then use git stash store.

$ git stash create
$ git stash store -m <message> CREATED_SHA1

Finding

I want to find a string in any commit

To find a certain string which was introduced in any commit, you can use the following structure:

$ git log -S "string to find"

Commons parameters:

--source means to show the ref name given on the command line by which each commit was reached.

--all means to start from every branch.

--reverse prints in reverse order, it means that will show the first commit that made the change.

 

I want to find by author/committer

To find all commits by author/committer you can use:

$ git log --author=<name or email>
$ git log --committer=<name or email>

Keep in mind that author and committer are not the same. The --author is the person who originally wrote the code; on the other hand, the --committer, is the person who committed the code on behalf of the original author.

I want to list commits containing specific files

To find all commits containing a specific file you can use:

$ git log -- <path to file>

You would usually specify an exact path, but you may also use wild cards in the path and file name:

$ git log -- **/*.js

While using wildcards, it's useful to inform --name-status to see the list of committed files:

$ git log --name-status -- **/*.js

 

I want to view the commit history for a specific function

To trace the evolution of a single function you can use:

$ git log -L :FunctionName:FilePath

Note that you can combine this with further git log options, like revision ranges and commit limits.

Find a tag where a commit is referenced

To find all tags containing a specific commit:

$ git tag --contains <commitid>

Submodules

 

Clone all submodules

$ git clone --recursive git://github.com/foo/bar.git

If already cloned:

$ git submodule update --init --recursive

 

Remove a submodule

Creating a submodule is pretty straight-forward, but deleting them less so. The commands you need are:

$ git submodule deinit submodulename
$ git rm submodulename
$ git rm --cached submodulename
$ rm -rf .git/modules/submodulename

Miscellaneous Objects

Copy a folder or file from one branch to another

$ git checkout <branch-you-want-the-directory-from> -- <folder-name or file-name>

Restore a deleted file

First find the commit when the file last existed:

$ git rev-list -n 1 HEAD -- filename

Then checkout that file:

git checkout deletingcommitid^ -- filename

Delete tag

$ git tag -d <tag_name>
$ git push <remote> :refs/tags/<tag_name>

 

Recover a deleted tag

If you want to recover a tag that was already deleted, you can do so by following these steps: First, you need to find the unreachable tag:

$ git fsck --unreachable | grep tag

Make a note of the tag's hash. Then, restore the deleted tag with following, making use of git update-ref:

$ git update-ref refs/tags/<tag_name> <hash>

Your tag should now have been restored.

Deleted Patch

If someone has sent you a pull request on GitHub, but then deleted their original fork, you will be unable to clone their repository or to use git am as the .diff, .patch URLs become unavailable. But you can checkout the PR itself using GitHub's special refs. To fetch the content of PR#1 into a new branch called pr_1:

$ git fetch origin refs/pull/1/head:pr_1
From github.com:foo/bar
 * [new ref]         refs/pull/1/head -> pr_1

Exporting a repository as a Zip file

$ git archive --format zip --output /full/path/to/zipfile.zip main

Push a branch and a tag that have the same name

If there is a tag on a remote repository that has the same name as a branch you will get the following error when trying to push that branch with a standard $ git push <remote> <branch> command.

$ git push origin <branch>
error: dst refspec same matches more than one.
error: failed to push some refs to '<git server>'

Fix this by specifying you want to push the head reference.

$ git push origin refs/heads/<branch-name>

If you want to push a tag to a remote repository that has the same name as a branch, you can use a similar command.

$ git push origin refs/tags/<tag-name>

Tracking Files

 

I want to change a file name's capitalization, without changing the contents of the file

(main)$ git mv --force myfile MyFile

I want to overwrite local files when doing a git pull

(main)$ git fetch --all
(main)$ git reset --hard origin/main

 

I want to remove a file from Git but keep the file

(main)$ git rm --cached log.txt

I want to revert a file to a specific revision

Assuming the hash of the commit you want is c5f567:

(main)$ git checkout c5f567 -- file1/to/restore file2/to/restore

If you want to revert to changes made just 1 commit before c5f567, pass the commit hash as c5f567~1:

(main)$ git checkout c5f567~1 -- file1/to/restore file2/to/restore

I want to list changes of a specific file between commits or branches

Assuming you want to compare last commit with file from commit c5f567:

$ git diff HEAD:path_to_file/file c5f567:path_to_file/file

Same goes for branches:

$ git diff main:path_to_file/file staging:path_to_file/file

I want Git to ignore changes to a specific file

This works great for config templates or other files that require locally adding credentials that shouldn't be committed.

$ git update-index --assume-unchanged file-to-ignore

Note that this does not remove the file from source control - it is only ignored locally. To undo this and tell Git to notice changes again, this clears the ignore flag:

$ git update-index --no-assume-unchanged file-to-stop-ignoring

Debugging with Git

The git-bisect command uses a binary search to find which commit in your Git history introduced a bug.

Suppose you're on the main branch, and you want to find the commit that broke some feature. You start bisect:

$ git bisect start

Then you should specify which commit is bad, and which one is known to be good. Assuming that your current version is bad, and v1.1.1 is good:

$ git bisect bad
$ git bisect good v1.1.1

Now git-bisect selects a commit in the middle of the range that you specified, checks it out, and asks you whether it's good or bad. You should see something like:

$ Bisecting: 5 revision left to test after this (roughly 5 step)
$ [c44abbbee29cb93d8499283101fe7c8d9d97f0fe] Commit message
$ (c44abbb)$

You will now check if this commit is good or bad. If it's good:

$ (c44abbb)$ git bisect good

and git-bisect will select another commit from the range for you. This process (selecting good or bad) will repeat until there are no more revisions left to inspect, and the command will finally print a description of the first bad commit.

Configuration

I want to add aliases for some Git commands

On OS X and Linux, your git configuration file is stored in ~/.gitconfig. I've added some example aliases I use as shortcuts (and some of my common typos) in the [alias] section as shown below:

[alias]
    a = add
    amend = commit --amend
    c = commit
    ca = commit --amend
    ci = commit -a
    co = checkout
    d = diff
    dc = diff --changed
    ds = diff --staged
    extend = commit --amend -C HEAD
    f = fetch
    loll = log --graph --decorate --pretty=oneline --abbrev-commit
    m = merge
    one = log --pretty=oneline
    outstanding = rebase -i @{u}
    reword = commit --amend --only
    s = status
    unpushed = log @{u}
    wc = whatchanged
    wip = rebase -i @{u}
    zap = fetch -p
    day = log --reverse --no-merges --branches=* --date=local --since=midnight --author=\"$(git config --get user.name)\"
    delete-merged-branches = "!f() { git checkout --quiet main && git branch --merged | grep --invert-match '\\*' | xargs -n 1 git branch --delete; git checkout --quiet @{-1}; }; f"

I want to add an empty directory to my repository

You can’t! Git doesn’t support this, but there’s a hack. You can create a .gitignore file in the directory with the following contents:

 # Ignore everything in this directory
 *
 # Except this file
 !.gitignore

Another common convention is to make an empty file in the folder, titled .gitkeep.

$ mkdir mydir
$ touch mydir/.gitkeep

You can also name the file as just .keep , in which case the second line above would be touch mydir/.keep

I want to cache a username and password for a repository

You might have a repository that requires authentication. In which case you can cache a username and password so you don't have to enter it on every push and pull. Credential helper can do this for you.

$ git config --global credential.helper cache
# Set git to use the credential memory cache
$ git config --global credential.helper 'cache --timeout=3600'
# Set the cache to timeout after 1 hour (setting is in seconds)

To find a credential helper:

$ git help -a | grep credential
# Shows you possible credential helpers

For OS specific credential caching:

$ git config --global credential.helper osxkeychain
# For OSX
$ git config --global credential.helper manager
# Git for Windows 2.7.3+
$ git config --global credential.helper gnome-keyring
# Ubuntu and other GNOME-based distros

More credential helpers can likely be found for different distributions and operating systems.

I want to make Git ignore permissions and filemode changes

$ git config core.fileMode false

If you want to make this the default behaviour for logged-in users, then use:

$ git config --global core.fileMode false

I want to set a global user

To configure user information used across all local repositories, and to set a name that is identifiable for credit when review version history:

$ git config --global user.name “[firstname lastname]”

To set an email address that will be associated with each history marker:

git config --global user.email “[valid-email]”

I've no idea what I did wrong

So, you're screwed - you reset something, or you merged the wrong branch, or you force pushed and now you can't find your commits. You know, at some point, you were doing alright, and you want to go back to some state you were at.

This is what git reflog is for. reflog keeps track of any changes to the tip of a branch, even if that tip isn't referenced by a branch or a tag. Basically, every time HEAD changes, a new entry is added to the reflog. This only works for local repositories, sadly, and it only tracks movements (not changes to a file that weren't recorded anywhere, for instance).

(main)$ git reflog
0a2e358 HEAD@{0}: reset: moving to HEAD~2
0254ea7 HEAD@{1}: checkout: moving from 2.2 to main
c10f740 HEAD@{2}: checkout: moving from main to 2.2

The reflog above shows a checkout from main to the 2.2 branch and back. From there, there's a hard reset to an older commit. The latest activity is represented at the top labeled HEAD@{0}.

If it turns out that you accidentally moved back, the reflog will contain the commit main pointed to (0254ea7) before you accidentally dropped 2 commits.

$ git reset --hard 0254ea7

Using git reset it is then possible to change main back to the commit it was before. This provides a safety net in case history was accidentally changed.

(copied and edited from Source).

Git Shortcuts

Git Bash

Once you're comfortable with what the above commands are doing, you might want to create some shortcuts for Git Bash. This allows you to work a lot faster by doing complex tasks in really short commands.

alias sq=squash

function squash() {
    git rebase -i HEAD~$1
}

Copy those commands to your .bashrc or .bash_profile.

PowerShell on Windows

If you are using PowerShell on Windows, you can also set up aliases and functions. Add these commands to your profile, whose path is defined in the $profile variable. Learn more at the About Profiles page on the Microsoft documentation site.

Set-Alias sq Squash-Commits

function Squash-Commits {
  git rebase -i HEAD~$1
}

Other Resources

Books

Tutorials

Scripts and Tools

  • firstaidgit.io A searchable selection of the most frequently asked Git questions
  • git-extra-commands - a collection of useful extra Git scripts
  • git-extras - GIT utilities -- repo summary, repl, changelog population, author commit percentages and more
  • git-fire - git-fire is a Git plugin that helps in the event of an emergency by adding all current files, committing, and pushing to a new branch (to prevent merge conflicts).
  • git-tips - Small Git tips
  • git-town - Generic, high-level Git workflow support! http://www.git-town.com

GUI Clients

  • GitKraken - The downright luxurious Git client,for Windows, Mac & Linux
  • git-cola - another Git client for Windows and OS X
  • GitUp - A newish GUI that has some very opinionated ways of dealing with Git's complications
  • gitx-dev - another graphical Git client for OS X
  • Sourcetree - Simplicity meets power in a beautiful and free Git GUI. For Windows and Mac.
  • Tower - graphical Git client for OS X (paid)
  • tig - terminal text-mode interface for Git
  • Magit - Interface to Git implemented as an Emacs package.
  • GitExtensions - a shell extension, a Visual Studio 2010-2015 plugin and a standalone Git repository tool.
  • Fork - a fast and friendly Git client for Mac (beta)
  • gmaster - a Git client for Windows that has 3-way merge, analyze refactors, semantic diff and merge (beta)
  • gitk - a Git client for linux to allow simple view of repo state.
  • SublimeMerge - Blazing fast, extensible client that provides 3-way merges, powerful search and syntax highlighting, in active development.

🌍 EnglishEspañolРусский简体中文한국어Tiếng ViệtFrançais日本語

Author: K88hudson
Source Code: https://github.com/k88hudson/git-flight-rules 
License: CC-BY-SA-4.0 License

#git #guide 

Hermann  Frami

Hermann Frami

1642173480

Flight Rules for Git

Flight rules for Git

🌍 EnglishEspañolРусский简体中文한국어Tiếng ViệtFrançais日本語

What are "flight rules"?

A guide for astronauts (now, programmers using Git) about what to do when things go wrong.

Flight Rules are the hard-earned body of knowledge recorded in manuals that list, step-by-step, what to do if X occurs, and why. Essentially, they are extremely detailed, scenario-specific standard operating procedures. [...]

NASA has been capturing our missteps, disasters and solutions since the early 1960s, when Mercury-era ground teams first started gathering "lessons learned" into a compendium that now lists thousands of problematic situations, from engine failure to busted hatch handles to computer glitches, and their solutions.

— Chris Hadfield, An Astronaut's Guide to Life on Earth.

Conventions for this document

For clarity's sake all examples in this document use a customized bash prompt in order to indicate the current branch and whether or not there are staged changes. The branch is enclosed in parentheses, and a * next to the branch name indicates staged changes.

All commands should work for at least git version 2.13.0. See the git website to update your local git version.

Table of Contents generated with DocToc

Repositories

I want to start a local repository

To initialize an existing directory as a Git repository:

(my-folder) $ git init

I want to clone a remote repository

To clone (copy) a remote repository, copy the URL for the repository, and run:

$ git clone [url]

This will save it to a folder named the same as the remote repository's. Make sure you have a connection to the remote server you are cloning from (for most purposes this means making sure you are connected to the internet).

To clone it into a folder with a different name than the default repository name:

$ git clone [url] name-of-new-folder

I set the wrong remote repository

There are a few possible problems here:

If you cloned the wrong repository, simply delete the directory created after running git clone and clone the correct repository.

If you set the wrong repository as the origin of an existing local repository, change the URL of your origin by running:

$ git remote set-url origin [url of the actual repo]

For more, see this StackOverflow topic.

I want to add code to someone else's repository

Git doesn't allow you to add code to someone else's repository without access rights. Neither does GitHub, which is not the same as Git, but rather a hosted service for Git repositories. However, you can suggest code using patches, or, on GitHub, forks and pull requests.

First, a bit about forking. A fork is a copy of a repository. It is not a git operation, but is a common action on GitHub, Bitbucket, GitLab — or anywhere people host Git repositories. You can fork a repository through the hosted UI.

Suggesting code via pull requests

After you've forked a repository, you normally need to clone the repository to your machine. You can do some small edits on GitHub, for instance, without cloning, but this isn't a github-flight-rules list, so let's go with how to do this locally.

# if you are using ssh
$ git clone git@github.com:k88hudson/git-flight-rules.git

# if you are using https
$ git clone https://github.com/k88hudson/git-flight-rules.git

If you cd into the resulting directory, and type git remote, you'll see a list of the remotes. Normally there will be one remote - origin - which will point to k88hudson/git-flight-rules. In this case, we also want a remote that will point to your fork.

First, to follow a Git convention, we normally use the remote name origin for your own repository and upstream for whatever you've forked. So, rename the origin remote to upstream

$ git remote rename origin upstream

You can also do this using git remote set-url, but it takes longer and is more steps.

Then, set up a new remote that points to your project.

$ git remote add origin git@github.com:YourName/git-flight-rules.git

Note that now you have two remotes.

  • origin references your own repository.
  • upstream references the original one.

From origin, you can read and write. From upstream, you can only read.

When you've finished making whatever changes you like, push your changes (normally in a branch) to the remote named origin. If you're on a branch, you could use --set-upstream to avoid specifying the remote tracking branch on every future push using this branch. For instance:

$ (feature/my-feature) git push --set-upstream origin feature/my-feature

There is no way to suggest a pull request using the CLI using Git (although there are tools, like hub, which will do this for you). So, if you're ready to make a pull request, go to your GitHub (or another Git host) and create a new pull request. Note that your host automatically links the original and forked repositories.

After all of this, do not forget to respond to any code review feedback.

Suggesting code via patches

Another approach to suggesting code changes that doesn't rely on third party sites such as Github is to use git format-patch.

format-patch creates a .patch file for one or more commits. This file is essentially a list of changes that looks similar to the commit diffs you can view on Github.

A patch can be viewed and even edited by the recipient and applied using git am.

For example, to create a patch based on the previous commit you would run git format-patch HEAD^ which would create a .patch file called something like 0001-My-Commit-Message.patch.

To apply this patch file to your repository you would run git am ./0001-My-Commit-Message.patch.

Patches can also be sent via email using the git send-email command. For information on usage and configuration see: https://git-send-email.io

I need to update my fork with latest updates from the original repository

After a while, the upstream repository may have been updated, and these updates need to be pulled into your origin repo. Remember that like you, other people are contributing too. Suppose that you are in your own feature branch and you need to update it with the original repository updates.

You probably have set up a remote that points to the original project. If not, do this now. Generally we use upstream as a remote name:

$ (main) git remote add upstream <link-to-original-repository>
# $ (main) git remote add upstream git@github.com:k88hudson/git-flight-rules.git

Now you can fetch from upstream and get the latest updates.

$ (main) git fetch upstream
$ (main) git merge upstream/main

# or using a single command
$ (main) git pull upstream main

Editing Commits

 

What did I just commit?

Let's say that you just blindly committed changes with git commit -a and you're not sure what the actual content of the commit you just made was. You can show the latest commit on your current HEAD with:

(main)$ git show

Or

$ git log -n1 -p

If you want to see a file at a specific commit, you can also do this (where <commitid> is the commit you're interested in):

$ git show <commitid>:filename

I wrote the wrong thing in a commit message

If you wrote the wrong thing and the commit has not yet been pushed, you can do the following to change the commit message without changing the changes in the commit:

$ git commit --amend --only

This will open your default text editor, where you can edit the message. On the other hand, you can do this all in one command:

$ git commit --amend --only -m 'xxxxxxx'

If you have already pushed the message, you can amend the commit and force push, but this is not recommended.

 

I committed with the wrong name and email configured

If it's a single commit, amend it

$ git commit --amend --no-edit --author "New Authorname <authoremail@mydomain.com>"

An alternative is to correctly configure your author settings in git config --global author.(name|email) and then use

$ git commit --amend --reset-author --no-edit

If you need to change all of history, see the man page for git filter-branch.

I want to remove a file from the previous commit

In order to remove changes for a file from the previous commit, do the following:

$ git checkout HEAD^ myfile
$ git add myfile
$ git commit --amend --no-edit

In case the file was newly added to the commit and you want to remove it (from Git alone), do:

$ git rm --cached myfile
$ git commit --amend --no-edit

This is particularly useful when you have an open patch and you have committed an unnecessary file, and need to force push to update the patch on a remote. The --no-edit option is used to keep the existing commit message.

 

I want to delete or remove my last commit

If you need to delete pushed commits, you can use the following. However, it will irreversibly change your history, and mess up the history of anyone else who had already pulled from the repository. In short, if you're not sure, you should never do this, ever.

$ git reset HEAD^ --hard
$ git push --force-with-lease [remote] [branch]

If you haven't pushed, to reset Git to the state it was in before you made your last commit (while keeping your staged changes):

(my-branch*)$ git reset --soft HEAD@{1}

This only works if you haven't pushed. If you have pushed, the only truly safe thing to do is git revert SHAofBadCommit. That will create a new commit that undoes all the previous commit's changes. Or, if the branch you pushed to is rebase-safe (ie. other devs aren't expected to pull from it), you can just use git push --force-with-lease. For more, see the above section.

 

Delete/remove arbitrary commit

The same warning applies as above. Never do this if possible.

$ git rebase --onto SHA1_OF_BAD_COMMIT^ SHA1_OF_BAD_COMMIT
$ git push --force-with-lease [remote] [branch]

Or do an interactive rebase and remove the line(s) corresponding to commit(s) you want to see removed.

 

I tried to push my amended commit to a remote, but I got an error message

To https://github.com/yourusername/repo.git
! [rejected]        mybranch -> mybranch (non-fast-forward)
error: failed to push some refs to 'https://github.com/tanay1337/webmaker.org.git'
hint: Updates were rejected because the tip of your current branch is behind
hint: its remote counterpart. Integrate the remote changes (e.g.
hint: 'git pull ...') before pushing again.
hint: See the 'Note about fast-forwards' in 'git push --help' for details.

Note that, as with rebasing (see below), amending replaces the old commit with a new one, so you must force push (--force-with-lease) your changes if you have already pushed the pre-amended commit to your remote. Be careful when you do this – always make sure you specify a branch!

(my-branch)$ git push origin mybranch --force-with-lease

In general, avoid force pushing. It is best to create and push a new commit rather than force-pushing the amended commit as it will cause conflicts in the source history for any other developer who has interacted with the branch in question or any child branches. --force-with-lease will still fail, if someone else was also working on the same branch as you, and your push would overwrite those changes.

If you are absolutely sure that nobody is working on the same branch or you want to update the tip of the branch unconditionally, you can use --force (-f), but this should be avoided in general.

 

I accidentally did a hard reset, and I want my changes back

If you accidentally do git reset --hard, you can normally still get your commit back, as git keeps a log of everything for a few days.

Note: This is only valid if your work is backed up, i.e., either committed or stashed. git reset --hard will remove uncommitted modifications, so use it with caution. (A safer option is git reset --keep.)

(main)$ git reflog

You'll see a list of your past commits, and a commit for the reset. Choose the SHA of the commit you want to return to, and reset again:

(main)$ git reset --hard SHA1234

And you should be good to go.

 

I accidentally committed and pushed a merge

If you accidentally merged a feature branch to the main development branch before it was ready to be merged, you can still undo the merge. But there's a catch: A merge commit has more than one parent (usually two).

The command to use

(feature-branch)$ git revert -m 1 <commit>

where the -m 1 option says to select parent number 1 (the branch into which the merge was made) as the parent to revert to.

Note: the parent number is not a commit identifier. Rather, a merge commit has a line Merge: 8e2ce2d 86ac2e7. The parent number is the 1-based index of the desired parent on this line, the first identifier is number 1, the second is number 2, and so on.

 

I accidentally committed and pushed files containing sensitive data

If you accidentally pushed files containing sensitive, or private data (passwords, keys, etc.), you can amend the previous commit. Keep in mind that once you have pushed a commit, you should consider any data it contains to be compromised. These steps can remove the sensitive data from your public repo or your local copy, but you cannot remove the sensitive data from other people's pulled copies. If you committed a password, change it immediately. If you committed a key, re-generate it immediately. Amending the pushed commit is not enough, since anyone could have pulled the original commit containing your sensitive data in the meantime.

If you edit the file and remove the sensitive data, then run

(feature-branch)$ git add edited_file
(feature-branch)$ git commit --amend --no-edit
(feature-branch)$ git push --force-with-lease origin [branch]

If you want to remove an entire file (but keep it locally), then run

(feature-branch)$ git rm --cached sensitive_file
echo sensitive_file >> .gitignore
(feature-branch)$ git add .gitignore
(feature-branch)$ git commit --amend --no-edit
(feature-branch)$ git push --force-with-lease origin [branch]

Alternatively store your sensitive data in local environment variables.

If you want to completely remove an entire file (and not keep it locally), then run

(feature-branch)$ git rm sensitive_file
(feature-branch)$ git commit --amend --no-edit
(feature-branch)$ git push --force-with-lease origin [branch]

If you have made other commits in the meantime (i.e. the sensitive data is in a commit before the previous commit), you will have to rebase.

 

I want to remove a large file from ever existing in repo history

If the file you want to delete is secret or sensitive, instead see how to remove sensitive files.

Even if you delete a large or unwanted file in a recent commit, it still exists in git history, in your repo's .git folder, and will make git clone download unneeded files.

The actions in this part of the guide will require a force push, and rewrite large sections of repo history, so if you are working with remote collaborators, check first that any local work of theirs is pushed.

There are two options for rewriting history, the built-in git-filter-branch or bfg-repo-cleaner. bfg is significantly cleaner and more performant, but it is a third-party download and requires java. We will describe both alternatives. The final step is to force push your changes, which requires special consideration on top of a regular force push, given that a great deal of repo history will have been permanently changed.

Recommended Technique: Use third-party bfg

Using bfg-repo-cleaner requires java. Download the bfg jar from the link here. Our examples will use bfg.jar, but your download may have a version number, e.g. bfg-1.13.0.jar.

To delete a specific file.

(main)$ git rm path/to/filetoremove
(main)$ git commit -m "Commit removing filetoremove"
(main)$ java -jar ~/Downloads/bfg.jar --delete-files filetoremove

Note that in bfg you must use the plain file name even if it is in a subdirectory.

You can also delete a file by pattern, e.g.:

(main)$ git rm *.jpg
(main)$ git commit -m "Commit removing *.jpg"
(main)$ java -jar ~/Downloads/bfg.jar --delete-files *.jpg

With bfg, the files that exist on your latest commit will not be affected. For example, if you had several large .tga files in your repo, and then in an earlier commit, you deleted a subset of them, this call does not touch files present in the latest commit

Note, if you renamed a file as part of a commit, e.g. if it started as LargeFileFirstName.mp4 and a commit changed it to LargeFileSecondName.mp4, running java -jar ~/Downloads/bfg.jar --delete-files LargeFileSecondName.mp4 will not remove it from git history. Either run the --delete-files command with both filenames, or with a matching pattern.

Built-in Technique: Use git-filter-branch

git-filter-branch is more cumbersome and has less features, but you may use it if you cannot install or run bfg.

In the below, replace filepattern may be a specific name or pattern, e.g. *.jpg. This will remove files matching the pattern from all history and branches.

(main)$ git filter-branch --force --index-filter 'git rm --cached --ignore-unmatch filepattern' --prune-empty --tag-name-filter cat -- --all

Behind-the-scenes explanation:

--tag-name-filter cat is a cumbersome, but simplest, way to apply the original tags to the new commits, using the command cat.

--prune-empty removes any now-empty commits.

Final Step: Pushing your changed repo history

Once you have removed your desired files, test carefully that you haven't broken anything in your repo - if you have, it is easiest to re-clone your repo to start over. To finish, optionally use git garbage collection to minimize your local .git folder size, and then force push.

(main)$ git reflog expire --expire=now --all && git gc --prune=now --aggressive
(main)$ git push origin --force --tags

Since you just rewrote the entire git repo history, the git push operation may be too large, and return the error “The remote end hung up unexpectedly”. If this happens, you can try increasing the git post buffer:

(main)$ git config http.postBuffer 524288000
(main)$ git push --force

If this does not work, you will need to manually push the repo history in chunks of commits. In the command below, try increasing <number> until the push operation succeeds.

(main)$ git push -u origin HEAD~<number>:refs/head/main --force

Once the push operation succeeds the first time, decrease <number> gradually until a conventional git push succeeds.

 

I need to change the content of a commit which is not my last

Consider you created some (e.g. three) commits and later realize you missed doing something that belongs contextually into the first of those commits. This bothers you, because if you'd create a new commit containing those changes, you'd have a clean code base, but your commits weren't atomic (i.e. changes that belonged to each other weren't in the same commit). In such a situation you may want to change the commit where these changes belong to, include them and have the following commits unaltered. In such a case, git rebase might save you.

Consider a situation where you want to change the third last commit you made.

(your-branch)$ git rebase -i HEAD~4

gets you into interactive rebase mode, which allows you to edit any of your last three commits. A text editor pops up, showing you something like

pick 9e1d264 The third last commit
pick 4b6e19a The second to last commit
pick f4037ec The last commit

which you change into

edit 9e1d264 The third last commit
pick 4b6e19a The second to last commit
pick f4037ec The last commit

This tells rebase that you want to edit your third last commit and keep the other two unaltered. Then you'll save (and close) the editor. Git will then start to rebase. It stops on the commit you want to alter, giving you the chance to edit that commit. Now you can apply the changes which you missed applying when you initially committed that commit. You do so by editing and staging them. Afterwards you'll run

(your-branch)$ git commit --amend

which tells Git to recreate the commit, but to leave the commit message unedited. Having done that, the hard part is solved.

(your-branch)$ git rebase --continue

will do the rest of the work for you.

Staging

 

I want to stage all tracked files and leave untracked files

$ git add -u

To stage part of tracked files

# to stage files with ext .txt
$ git add -u *.txt

# to stage all files inside directory src
$ git add -u src/

 

I need to add staged changes to the previous commit

(my-branch*)$ git commit --amend

If you already know you don't want to change the commit message, you can tell git to reuse the commit message:

(my-branch*)$ git commit --amend -C HEAD

 

I want to stage part of a new file, but not the whole file

Normally, if you want to stage part of a file, you run this:

$ git add --patch filename.x

-p will work for short. This will open interactive mode. You would be able to use the s option to split the commit - however, if the file is new, you will not have this option. To add a new file, do this:

$ git add -N filename.x

Then, you will need to use the e option to manually choose which lines to add. Running git diff --cached or git diff --staged will show you which lines you have staged compared to which are still saved locally.

 

I want to add changes in one file to two different commits

git add will add the entire file to a commit. git add -p will allow to interactively select which changes you want to add.

 

I staged too many edits, and I want to break them out into a separate commit

git reset -p will open a patch mode reset dialog. This is similar to git add -p, except that selecting "yes" will unstage the change, removing it from the upcoming commit.

 

I want to stage my unstaged edits, and unstage my staged edits

In many cases, you should unstage all of your staged files and then pick the file you want and commit it. However, if you want to switch the staged and unstaged edits, you can create a temporary commit to store your staged files, stage your unstaged files and then stash them. Then, reset the temporary commit and pop your stash.

$ git commit -m "WIP"
$ git add . # This will also add untracked files.
$ git stash
$ git reset HEAD^
$ git stash pop --index 0

NOTE 1: The reason to use pop here is want to keep idempotent as much as possible. NOTE 2: Your staged files will be marked as unstaged if you don't use the --index flag. (This link explains why.)

Unstaged Edits

 

I want to move my unstaged edits to a new branch

$ git checkout -b my-branch

 

I want to move my unstaged edits to a different, existing branch

$ git stash
$ git checkout my-branch
$ git stash pop

 

I want to discard my local uncommitted changes (staged and unstaged)

If you want to discard all your local staged and unstaged changes, you can do this:

(my-branch)$ git reset --hard
# or
(main)$ git checkout -f

This will unstage all files you might have staged with git add:

$ git reset

This will revert all local uncommitted changes (should be executed in repo root):

$ git checkout .

You can also revert uncommitted changes to a particular file or directory:

$ git checkout [some_dir|file.txt]

Yet another way to revert all uncommitted changes (longer to type, but works from any subdirectory):

$ git reset --hard HEAD

This will remove all local untracked files, so only files tracked by Git remain:

$ git clean -fd

-x will also remove all ignored files.

I want to discard specific unstaged changes

When you want to get rid of some, but not all changes in your working copy.

Checkout undesired changes, keep good changes.

$ git checkout -p
# Answer y to all of the snippets you want to drop

Another strategy involves using stash. Stash all the good changes, reset working copy, and reapply good changes.

$ git stash -p
# Select all of the snippets you want to save
$ git reset --hard
$ git stash pop

Alternatively, stash your undesired changes, and then drop stash.

$ git stash -p
# Select all of the snippets you don't want to save
$ git stash drop

I want to discard specific unstaged files

When you want to get rid of one specific file in your working copy.

$ git checkout myFile

Alternatively, to discard multiple files in your working copy, list them all.

$ git checkout myFirstFile mySecondFile

I want to discard only my unstaged local changes

When you want to get rid of all of your unstaged local uncommitted changes

$ git checkout .

 

I want to discard all of my untracked files

When you want to get rid of all of your untracked files

$ git clean -f

 

I want to unstage a specific staged file

Sometimes we have one or more files that accidentally ended up being staged, and these files have not been committed before. To unstage them:

$ git reset -- <filename>

This results in unstaging the file and make it look like it's untracked.

Branches

I want to list all branches

List local branches

$ git branch

List remote branches

$ git branch -r

List all branches (both local and remote)

$ git branch -a

 

Create a branch from a commit

$ git checkout -b <branch> <SHA1_OF_COMMIT>

 

I pulled from/into the wrong branch

This is another chance to use git reflog to see where your HEAD pointed before the bad pull.

(main)$ git reflog
ab7555f HEAD@{0}: pull origin wrong-branch: Fast-forward
c5bc55a HEAD@{1}: checkout: checkout message goes here

Simply reset your branch back to the desired commit:

$ git reset --hard c5bc55a

Done.

 

I want to discard local commits so my branch is the same as one on the server

Confirm that you haven't pushed your changes to the server.

git status should show how many commits you are ahead of origin:

(my-branch)$ git status
# On branch my-branch
# Your branch is ahead of 'origin/my-branch' by 2 commits.
#   (use "git push" to publish your local commits)
#

One way of resetting to match origin (to have the same as what is on the remote) is to do this:

(main)$ git reset --hard origin/my-branch

 

I committed to main instead of a new branch

Create the new branch while remaining on main:

(main)$ git branch my-branch

Reset the branch main to the previous commit:

(main)$ git reset --hard HEAD^

HEAD^ is short for HEAD^1. This stands for the first parent of HEAD, similarly HEAD^2 stands for the second parent of the commit (merges can have 2 parents).

Note that HEAD^2 is not the same as HEAD~2 (see this link for more information).

Alternatively, if you don't want to use HEAD^, find out what the commit hash you want to set your main branch to (git log should do the trick). Then reset to that hash. git push will make sure that this change is reflected on your remote.

For example, if the hash of the commit that your main branch is supposed to be at is a13b85e:

(main)$ git reset --hard a13b85e
HEAD is now at a13b85e

Checkout the new branch to continue working:

(main)$ git checkout my-branch

 

I want to keep the whole file from another ref-ish

Say you have a working spike (see note), with hundreds of changes. Everything is working. Now, you commit into another branch to save that work:

(solution)$ git add -A && git commit -m "Adding all changes from this spike into one big commit."

When you want to put it into a branch (maybe feature, maybe develop), you're interested in keeping whole files. You want to split your big commit into smaller ones.

Say you have:

  • branch solution, with the solution to your spike. One ahead of develop.
  • branch develop, where you want to add your changes.

You can solve it bringing the contents to your branch:

(develop)$ git checkout solution -- file1.txt

This will get the contents of that file in branch solution to your branch develop:

# On branch develop
# Your branch is up-to-date with 'origin/develop'.
# Changes to be committed:
#  (use "git reset HEAD <file>..." to unstage)
#
#        modified:   file1.txt

Then, commit as usual.

Note: Spike solutions are made to analyze or solve the problem. These solutions are used for estimation and discarded once everyone gets clear visualization of the problem. ~ Wikipedia.

 

I made several commits on a single branch that should be on different branches

Say you are on your main branch. Running git log, you see you have made two commits:

(main)$ git log

commit e3851e817c451cc36f2e6f3049db528415e3c114
Author: Alex Lee <alexlee@example.com>
Date:   Tue Jul 22 15:39:27 2014 -0400

    Bug #21 - Added CSRF protection

commit 5ea51731d150f7ddc4a365437931cd8be3bf3131
Author: Alex Lee <alexlee@example.com>
Date:   Tue Jul 22 15:39:12 2014 -0400

    Bug #14 - Fixed spacing on title

commit a13b85e984171c6e2a1729bb061994525f626d14
Author: Aki Rose <akirose@example.com>
Date:   Tue Jul 21 01:12:48 2014 -0400

    First commit

Let's take note of our commit hashes for each bug (e3851e8 for #21, 5ea5173 for #14).

First, let's reset our main branch to the correct commit (a13b85e):

(main)$ git reset --hard a13b85e
HEAD is now at a13b85e

Now, we can create a fresh branch for our bug #21:

(main)$ git checkout -b 21
(21)$

Now, let's cherry-pick the commit for bug #21 on top of our branch. That means we will be applying that commit, and only that commit, directly on top of whatever our head is at.

(21)$ git cherry-pick e3851e8

At this point, there is a possibility there might be conflicts. See the There were conflicts section in the interactive rebasing section above for how to resolve conflicts.

Now let's create a new branch for bug #14, also based on main

(21)$ git checkout main
(main)$ git checkout -b 14
(14)$

And finally, let's cherry-pick the commit for bug #14:

(14)$ git cherry-pick 5ea5173

 

I want to delete local branches that were deleted upstream

Once you merge a pull request on GitHub, it gives you the option to delete the merged branch in your fork. If you aren't planning to keep working on the branch, it's cleaner to delete the local copies of the branch so you don't end up cluttering up your working checkout with a lot of stale branches.

$ git fetch -p upstream

where, upstream is the remote you want to fetch from.

 

I accidentally deleted my branch

If you're regularly pushing to remote, you should be safe most of the time. But still sometimes you may end up deleting your branches. Let's say we create a branch and create a new file:

(main)$ git checkout -b my-branch
(my-branch)$ git branch
(my-branch)$ touch foo.txt
(my-branch)$ ls
README.md foo.txt

Let's add it and commit.

(my-branch)$ git add .
(my-branch)$ git commit -m 'foo.txt added'
(my-branch)$ foo.txt added
 1 files changed, 1 insertions(+)
 create mode 100644 foo.txt
(my-branch)$ git log

commit 4e3cd85a670ced7cc17a2b5d8d3d809ac88d5012
Author: siemiatj <siemiatj@example.com>
Date:   Wed Jul 30 00:34:10 2014 +0200

    foo.txt added

commit 69204cdf0acbab201619d95ad8295928e7f411d5
Author: Kate Hudson <katehudson@example.com>
Date:   Tue Jul 29 13:14:46 2014 -0400

    Fixes #6: Force pushing after amending commits

Now we're switching back to main and 'accidentally' removing our branch.

(my-branch)$ git checkout main
Switched to branch 'main'
Your branch is up-to-date with 'origin/main'.
(main)$ git branch -D my-branch
Deleted branch my-branch (was 4e3cd85).
(main)$ echo oh noes, deleted my branch!
oh noes, deleted my branch!

At this point you should get familiar with 'reflog', an upgraded logger. It stores the history of all the action in the repo.

(main)$ git reflog
69204cd HEAD@{0}: checkout: moving from my-branch to main
4e3cd85 HEAD@{1}: commit: foo.txt added
69204cd HEAD@{2}: checkout: moving from main to my-branch

As you can see we have commit hash from our deleted branch. Let's see if we can restore our deleted branch.

(main)$ git checkout -b my-branch-help
Switched to a new branch 'my-branch-help'
(my-branch-help)$ git reset --hard 4e3cd85
HEAD is now at 4e3cd85 foo.txt added
(my-branch-help)$ ls
README.md foo.txt

Voila! We got our removed file back. git reflog is also useful when rebasing goes terribly wrong.

I want to delete a branch

To delete a remote branch:

(main)$ git push origin --delete my-branch

You can also do:

(main)$ git push origin :my-branch

To delete a local branch:

(main)$ git branch -d my-branch

To delete a local branch that has not been merged to the current branch or an upstream:

(main)$ git branch -D my-branch

I want to delete multiple branches

Say you want to delete all branches that start with fix/:

(main)$ git branch | grep 'fix/' | xargs git branch -d

I want to rename a branch

To rename the current (local) branch:

(main)$ git branch -m new-name

To rename a different (local) branch:

(main)$ git branch -m old-name new-name

To delete the old-name remote branch and push the new-name local branch:

(main)$ git push origin :old_name new_name

 

I want to checkout to a remote branch that someone else is working on

First, fetch all branches from remote:

(main)$ git fetch --all

Say you want to checkout to daves from the remote.

(main)$ git checkout --track origin/daves
Branch daves set up to track remote branch daves from origin.
Switched to a new branch 'daves'

(--track is shorthand for git checkout -b [branch] [remotename]/[branch])

This will give you a local copy of the branch daves, and any update that has been pushed will also show up remotely.

I want to create a new remote branch from current local one

$ git push <remote> HEAD

If you would also like to set that remote branch as upstream for the current one, use the following instead:

$ git push -u <remote> HEAD

With the upstream mode and the simple (default in Git 2.0) mode of the push.default config, the following command will push the current branch with regards to the remote branch that has been registered previously with -u:

$ git push

The behavior of the other modes of git push is described in the doc of push.default.

I want to set a remote branch as the upstream for a local branch

You can set a remote branch as the upstream for the current local branch using:

$ git branch --set-upstream-to [remotename]/[branch]
# or, using the shorthand:
$ git branch -u [remotename]/[branch]

To set the upstream remote branch for another local branch:

$ git branch -u [remotename]/[branch] [local-branch]

 

I want to set my HEAD to track the default remote branch

By checking your remote branches, you can see which remote branch your HEAD is tracking. In some cases, this is not the desired branch.

$ git branch -r
  origin/HEAD -> origin/gh-pages
  origin/main

To change origin/HEAD to track origin/main, you can run this command:

$ git remote set-head origin --auto
origin/HEAD set to main

I made changes on the wrong branch

You've made uncommitted changes and realise you're on the wrong branch. Stash changes and apply them to the branch you want:

(wrong_branch)$ git stash
(wrong_branch)$ git checkout <correct_branch>
(correct_branch)$ git stash apply

 

I want to split a branch into two

You've made a lot of commits on a branch and now want to separate it into two, ending with a branch up to an earlier commit and another with all the changes.

Use git log to find the commit where you want to split. Then do the following:

(original_branch)$ git checkout -b new_branch
(new_branch)$ git checkout original_branch
(original_branch)$ git reset --hard <sha1 split here>

If you had previously pushed the original_branch to remote, you will need to do a force push. For more information check Stack Overlflow

Rebasing and Merging

 

I want to undo rebase/merge

You may have merged or rebased your current branch with a wrong branch, or you can't figure it out or finish the rebase/merge process. Git saves the original HEAD pointer in a variable called ORIG_HEAD before doing dangerous operations, so it is simple to recover your branch at the state before the rebase/merge.

(my-branch)$ git reset --hard ORIG_HEAD

 

I rebased, but I don't want to force push

Unfortunately, you have to force push, if you want those changes to be reflected on the remote branch. This is because you have changed the history. The remote branch won't accept changes unless you force push. This is one of the main reasons many people use a merge workflow, instead of a rebasing workflow - large teams can get into trouble with developers force pushing. Use this with caution. A safer way to use rebase is not to reflect your changes on the remote branch at all, and instead to do the following:

(main)$ git checkout my-branch
(my-branch)$ git rebase -i main
(my-branch)$ git checkout main
(main)$ git merge --ff-only my-branch

For more, see this SO thread.

 

I need to combine commits

Let's suppose you are working in a branch that is/will become a pull-request against main. In the simplest case when all you want to do is to combine all commits into a single one and you don't care about commit timestamps, you can reset and recommit. Make sure the main branch is up to date and all your changes committed, then:

(my-branch)$ git reset --soft main
(my-branch)$ git commit -am "New awesome feature"

If you want more control, and also to preserve timestamps, you need to do something called an interactive rebase:

(my-branch)$ git rebase -i main

If you aren't working against another branch you'll have to rebase relative to your HEAD. If you want to squash the last 2 commits, for example, you'll have to rebase against HEAD~2. For the last 3, HEAD~3, etc.

(main)$ git rebase -i HEAD~2

After you run the interactive rebase command, you will see something like this in your text editor:

pick a9c8a1d Some refactoring
pick 01b2fd8 New awesome feature
pick b729ad5 fixup
pick e3851e8 another fix

# Rebase 8074d12..b729ad5 onto 8074d12
#
# Commands:
#  p, pick = use commit
#  r, reword = use commit, but edit the commit message
#  e, edit = use commit, but stop for amending
#  s, squash = use commit, but meld into previous commit
#  f, fixup = like "squash", but discard this commit's log message
#  x, exec = run command (the rest of the line) using shell
#
# These lines can be re-ordered; they are executed from top to bottom.
#
# If you remove a line here THAT COMMIT WILL BE LOST.
#
# However, if you remove everything, the rebase will be aborted.
#
# Note that empty commits are commented out

All the lines beginning with a # are comments, they won't affect your rebase.

Then you replace pick commands with any in the list above, and you can also remove commits by removing corresponding lines.

For example, if you want to leave the oldest (first) commit alone and combine all the following commits with the second oldest, you should edit the letter next to each commit except the first and the second to say f:

pick a9c8a1d Some refactoring
pick 01b2fd8 New awesome feature
f b729ad5 fixup
f e3851e8 another fix

If you want to combine these commits and rename the commit, you should additionally add an r next to the second commit or simply use s instead of f:

pick a9c8a1d Some refactoring
pick 01b2fd8 New awesome feature
s b729ad5 fixup
s e3851e8 another fix

You can then rename the commit in the next text prompt that pops up.

Newer, awesomer features

# Please enter the commit message for your changes. Lines starting
# with '#' will be ignored, and an empty message aborts the commit.
# rebase in progress; onto 8074d12
# You are currently editing a commit while rebasing branch 'main' on '8074d12'.
#
# Changes to be committed:
#   modified:   README.md
#

If everything is successful, you should see something like this:

(main)$ Successfully rebased and updated refs/heads/main.

Safe merging strategy

--no-commit performs the merge but pretends the merge failed and does not autocommit, giving the user a chance to inspect and further tweak the merge result before committing. no-ff maintains evidence that a feature branch once existed, keeping project history consistent.

(main)$ git merge --no-ff --no-commit my-branch

I need to merge a branch into a single commit

(main)$ git merge --squash my-branch

 

I want to combine only unpushed commits

Sometimes you have several work in progress commits that you want to combine before you push them upstream. You don't want to accidentally combine any commits that have already been pushed upstream because someone else may have already made commits that reference them.

(main)$ git rebase -i @{u}

This will do an interactive rebase that lists only the commits that you haven't already pushed, so it will be safe to reorder/fix/squash anything in the list.

I need to abort the merge

Sometimes the merge can produce problems in certain files, in those cases we can use the option abort to abort the current conflict resolution process, and try to reconstruct the pre-merge state.

(my-branch)$ git merge --abort

This command is available since Git version >= 1.7.4

I need to update the parent commit of my branch

Say I have a main branch, a feature-1 branch branched from main, and a feature-2 branch branched off of feature-1. If I make a commit to feature-1, then the parent commit of feature-2 is no longer accurate (it should be the head of feature-1, since we branched off of it). We can fix this with git rebase --onto.

(feature-2)$ git rebase --onto feature-1 <the first commit in your feature-2 branch that you don't want to bring along> feature-2

This helps in sticky scenarios where you might have a feature built on another feature that hasn't been merged yet, and a bugfix on the feature-1 branch needs to be reflected in your feature-2 branch.

Check if all commits on a branch are merged

To check if all commits on a branch are merged into another branch, you should diff between the heads (or any commits) of those branches:

(main)$ git log --graph --left-right --cherry-pick --oneline HEAD...feature/120-on-scroll

This will tell you if any commits are in one but not the other, and will give you a list of any nonshared between the branches. Another option is to do this:

(main)$ git log main ^feature/120-on-scroll --no-merges

Possible issues with interactive rebases

 

The rebase editing screen says 'noop'

If you're seeing this:

noop

That means you are trying to rebase against a branch that is at an identical commit, or is ahead of your current branch. You can try:

  • making sure your main branch is where it should be
  • rebase against HEAD~2 or earlier instead

 

There were conflicts

If you are unable to successfully complete the rebase, you may have to resolve conflicts.

First run git status to see which files have conflicts in them:

(my-branch)$ git status
On branch my-branch
Changes not staged for commit:
  (use "git add <file>..." to update what will be committed)
  (use "git checkout -- <file>..." to discard changes in working directory)

  both modified:   README.md

In this example, README.md has conflicts. Open that file and look for the following:

   <<<<<<< HEAD
   some code
   =========
   some code
   >>>>>>> new-commit

You will need to resolve the differences between the code that was added in your new commit (in the example, everything from the middle line to new-commit) and your HEAD.

If you want to keep one branch's version of the code, you can use --ours or --theirs:

(main*)$ git checkout --ours README.md
  • When merging, use --ours to keep changes from the local branch, or --theirs to keep changes from the other branch.
  • When rebasing, use --theirs to keep changes from the local branch, or --ours to keep changes from the other branch. For an explanation of this swap, see this note in the Git documentation.

If the merges are more complicated, you can use a visual diff editor:

(main*)$ git mergetool -t opendiff

After you have resolved all conflicts and tested your code, git add the files you have changed, and then continue the rebase with git rebase --continue

(my-branch)$ git add README.md
(my-branch)$ git rebase --continue

If after resolving all the conflicts you end up with an identical tree to what it was before the commit, you need to git rebase --skip instead.

If at any time you want to stop the entire rebase and go back to the original state of your branch, you can do so:

(my-branch)$ git rebase --abort

 

Stash

Stash all edits

To stash all the edits in your working directory

$ git stash

If you also want to stash untracked files, use -u option.

$ git stash -u

Stash specific files

To stash only one file from your working directory

$ git stash push working-directory-path/filename.ext

To stash multiple files from your working directory

$ git stash push working-directory-path/filename1.ext working-directory-path/filename2.ext

 

Stash with message

$ git stash save <message>

or

$ git stash push -m <message>

 

Apply a specific stash from list

First check your list of stashes with message using

$ git stash list

Then apply a specific stash from the list using

$ git stash apply "stash@{n}"

Here, 'n' indicates the position of the stash in the stack. The topmost stash will be position 0.

Furthermore, using a time-based stash reference is also possible.

$ git stash apply "stash@{2.hours.ago}"

 

Stash while keeping unstaged edits

You can manually create a stash commit, and then use git stash store.

$ git stash create
$ git stash store -m <message> CREATED_SHA1

Finding

I want to find a string in any commit

To find a certain string which was introduced in any commit, you can use the following structure:

$ git log -S "string to find"

Commons parameters:

--source means to show the ref name given on the command line by which each commit was reached.

--all means to start from every branch.

--reverse prints in reverse order, it means that will show the first commit that made the change.

 

I want to find by author/committer

To find all commits by author/committer you can use:

$ git log --author=<name or email>
$ git log --committer=<name or email>

Keep in mind that author and committer are not the same. The --author is the person who originally wrote the code; on the other hand, the --committer, is the person who committed the code on behalf of the original author.

I want to list commits containing specific files

To find all commits containing a specific file you can use:

$ git log -- <path to file>

You would usually specify an exact path, but you may also use wild cards in the path and file name:

$ git log -- **/*.js

While using wildcards, it's useful to inform --name-status to see the list of committed files:

$ git log --name-status -- **/*.js

 

I want to view the commit history for a specific function

To trace the evolution of a single function you can use:

$ git log -L :FunctionName:FilePath

Note that you can combine this with further git log options, like revision ranges and commit limits.

Find a tag where a commit is referenced

To find all tags containing a specific commit:

$ git tag --contains <commitid>

Submodules

 

Clone all submodules

$ git clone --recursive git://github.com/foo/bar.git

If already cloned:

$ git submodule update --init --recursive

 

Remove a submodule

Creating a submodule is pretty straight-forward, but deleting them less so. The commands you need are:

$ git submodule deinit submodulename
$ git rm submodulename
$ git rm --cached submodulename
$ rm -rf .git/modules/submodulename

Miscellaneous Objects

Copy a folder or file from one branch to another

$ git checkout <branch-you-want-the-directory-from> -- <folder-name or file-name>

Restore a deleted file

First find the commit when the file last existed:

$ git rev-list -n 1 HEAD -- filename

Then checkout that file:

git checkout deletingcommitid^ -- filename

Delete tag

$ git tag -d <tag_name>
$ git push <remote> :refs/tags/<tag_name>

 

Recover a deleted tag

If you want to recover a tag that was already deleted, you can do so by following these steps: First, you need to find the unreachable tag:

$ git fsck --unreachable | grep tag

Make a note of the tag's hash. Then, restore the deleted tag with following, making use of git update-ref:

$ git update-ref refs/tags/<tag_name> <hash>

Your tag should now have been restored.

Deleted Patch

If someone has sent you a pull request on GitHub, but then deleted their original fork, you will be unable to clone their repository or to use git am as the .diff, .patch URLs become unavailable. But you can checkout the PR itself using GitHub's special refs. To fetch the content of PR#1 into a new branch called pr_1:

$ git fetch origin refs/pull/1/head:pr_1
From github.com:foo/bar
 * [new ref]         refs/pull/1/head -> pr_1

Exporting a repository as a Zip file

$ git archive --format zip --output /full/path/to/zipfile.zip main

Push a branch and a tag that have the same name

If there is a tag on a remote repository that has the same name as a branch you will get the following error when trying to push that branch with a standard $ git push <remote> <branch> command.

$ git push origin <branch>
error: dst refspec same matches more than one.
error: failed to push some refs to '<git server>'

Fix this by specifying you want to push the head reference.

$ git push origin refs/heads/<branch-name>

If you want to push a tag to a remote repository that has the same name as a branch, you can use a similar command.

$ git push origin refs/tags/<tag-name>

Tracking Files

 

I want to change a file name's capitalization, without changing the contents of the file

(main)$ git mv --force myfile MyFile

I want to overwrite local files when doing a git pull

(main)$ git fetch --all
(main)$ git reset --hard origin/main

 

I want to remove a file from Git but keep the file

(main)$ git rm --cached log.txt

I want to revert a file to a specific revision

Assuming the hash of the commit you want is c5f567:

(main)$ git checkout c5f567 -- file1/to/restore file2/to/restore

If you want to revert to changes made just 1 commit before c5f567, pass the commit hash as c5f567~1:

(main)$ git checkout c5f567~1 -- file1/to/restore file2/to/restore

I want to list changes of a specific file between commits or branches

Assuming you want to compare last commit with file from commit c5f567:

$ git diff HEAD:path_to_file/file c5f567:path_to_file/file

Same goes for branches:

$ git diff main:path_to_file/file staging:path_to_file/file

I want Git to ignore changes to a specific file

This works great for config templates or other files that require locally adding credentials that shouldn't be committed.

$ git update-index --assume-unchanged file-to-ignore

Note that this does not remove the file from source control - it is only ignored locally. To undo this and tell Git to notice changes again, this clears the ignore flag:

$ git update-index --no-assume-unchanged file-to-stop-ignoring

Debugging with Git

The git-bisect command uses a binary search to find which commit in your Git history introduced a bug.

Suppose you're on the main branch, and you want to find the commit that broke some feature. You start bisect:

$ git bisect start

Then you should specify which commit is bad, and which one is known to be good. Assuming that your current version is bad, and v1.1.1 is good:

$ git bisect bad
$ git bisect good v1.1.1

Now git-bisect selects a commit in the middle of the range that you specified, checks it out, and asks you whether it's good or bad. You should see something like:

$ Bisecting: 5 revision left to test after this (roughly 5 step)
$ [c44abbbee29cb93d8499283101fe7c8d9d97f0fe] Commit message
$ (c44abbb)$

You will now check if this commit is good or bad. If it's good:

$ (c44abbb)$ git bisect good

and git-bisect will select another commit from the range for you. This process (selecting good or bad) will repeat until there are no more revisions left to inspect, and the command will finally print a description of the first bad commit.

Configuration

I want to add aliases for some Git commands

On OS X and Linux, your git configuration file is stored in ~/.gitconfig. I've added some example aliases I use as shortcuts (and some of my common typos) in the [alias] section as shown below:

[alias]
    a = add
    amend = commit --amend
    c = commit
    ca = commit --amend
    ci = commit -a
    co = checkout
    d = diff
    dc = diff --changed
    ds = diff --staged
    extend = commit --amend -C HEAD
    f = fetch
    loll = log --graph --decorate --pretty=oneline --abbrev-commit
    m = merge
    one = log --pretty=oneline
    outstanding = rebase -i @{u}
    reword = commit --amend --only
    s = status
    unpushed = log @{u}
    wc = whatchanged
    wip = rebase -i @{u}
    zap = fetch -p
    day = log --reverse --no-merges --branches=* --date=local --since=midnight --author=\"$(git config --get user.name)\"
    delete-merged-branches = "!f() { git checkout --quiet main && git branch --merged | grep --invert-match '\\*' | xargs -n 1 git branch --delete; git checkout --quiet @{-1}; }; f"

I want to add an empty directory to my repository

You can’t! Git doesn’t support this, but there’s a hack. You can create a .gitignore file in the directory with the following contents:

 # Ignore everything in this directory
 *
 # Except this file
 !.gitignore

Another common convention is to make an empty file in the folder, titled .gitkeep.

$ mkdir mydir
$ touch mydir/.gitkeep

You can also name the file as just .keep , in which case the second line above would be touch mydir/.keep

I want to cache a username and password for a repository

You might have a repository that requires authentication. In which case you can cache a username and password so you don't have to enter it on every push and pull. Credential helper can do this for you.

$ git config --global credential.helper cache
# Set git to use the credential memory cache
$ git config --global credential.helper 'cache --timeout=3600'
# Set the cache to timeout after 1 hour (setting is in seconds)

To find a credential helper:

$ git help -a | grep credential
# Shows you possible credential helpers

For OS specific credential caching:

$ git config --global credential.helper osxkeychain
# For OSX
$ git config --global credential.helper manager
# Git for Windows 2.7.3+
$ git config --global credential.helper gnome-keyring
# Ubuntu and other GNOME-based distros

More credential helpers can likely be found for different distributions and operating systems.

I want to make Git ignore permissions and filemode changes

$ git config core.fileMode false

If you want to make this the default behaviour for logged-in users, then use:

$ git config --global core.fileMode false

I want to set a global user

To configure user information used across all local repositories, and to set a name that is identifiable for credit when review version history:

$ git config --global user.name “[firstname lastname]”

To set an email address that will be associated with each history marker:

git config --global user.email “[valid-email]”

I've no idea what I did wrong

So, you're screwed - you reset something, or you merged the wrong branch, or you force pushed and now you can't find your commits. You know, at some point, you were doing alright, and you want to go back to some state you were at.

This is what git reflog is for. reflog keeps track of any changes to the tip of a branch, even if that tip isn't referenced by a branch or a tag. Basically, every time HEAD changes, a new entry is added to the reflog. This only works for local repositories, sadly, and it only tracks movements (not changes to a file that weren't recorded anywhere, for instance).

(main)$ git reflog
0a2e358 HEAD@{0}: reset: moving to HEAD~2
0254ea7 HEAD@{1}: checkout: moving from 2.2 to main
c10f740 HEAD@{2}: checkout: moving from main to 2.2

The reflog above shows a checkout from main to the 2.2 branch and back. From there, there's a hard reset to an older commit. The latest activity is represented at the top labeled HEAD@{0}.

If it turns out that you accidentally moved back, the reflog will contain the commit main pointed to (0254ea7) before you accidentally dropped 2 commits.

$ git reset --hard 0254ea7

Using git reset it is then possible to change main back to the commit it was before. This provides a safety net in case history was accidentally changed.

(copied and edited from Source).

 

Git Shortcuts

Git Bash

Once you're comfortable with what the above commands are doing, you might want to create some shortcuts for Git Bash. This allows you to work a lot faster by doing complex tasks in really short commands.

alias sq=squash

function squash() {
    git rebase -i HEAD~$1
}

Copy those commands to your .bashrc or .bash_profile.

PowerShell on Windows

If you are using PowerShell on Windows, you can also set up aliases and functions. Add these commands to your profile, whose path is defined in the $profile variable. Learn more at the About Profiles page on the Microsoft documentation site.

Set-Alias sq Squash-Commits

function Squash-Commits {
  git rebase -i HEAD~$1
}

Other Resources

Books

Tutorials

Scripts and Tools

  • firstaidgit.io A searchable selection of the most frequently asked Git questions
  • git-extra-commands - a collection of useful extra Git scripts
  • git-extras - GIT utilities -- repo summary, repl, changelog population, author commit percentages and more
  • git-fire - git-fire is a Git plugin that helps in the event of an emergency by adding all current files, committing, and pushing to a new branch (to prevent merge conflicts).
  • git-tips - Small Git tips
  • git-town - Generic, high-level Git workflow support! http://www.git-town.com

GUI Clients

  • GitKraken - The downright luxurious Git client,for Windows, Mac & Linux
  • git-cola - another Git client for Windows and OS X
  • GitUp - A newish GUI that has some very opinionated ways of dealing with Git's complications
  • gitx-dev - another graphical Git client for OS X
  • Sourcetree - Simplicity meets power in a beautiful and free Git GUI. For Windows and Mac.
  • Tower - graphical Git client for OS X (paid)
  • tig - terminal text-mode interface for Git
  • Magit - Interface to Git implemented as an Emacs package.
  • GitExtensions - a shell extension, a Visual Studio 2010-2015 plugin and a standalone Git repository tool.
  • Fork - a fast and friendly Git client for Mac (beta)
  • gmaster - a Git client for Windows that has 3-way merge, analyze refactors, semantic diff and merge (beta)
  • gitk - a Git client for linux to allow simple view of repo state.
  • SublimeMerge - Blazing fast, extensible client that provides 3-way merges, powerful search and syntax highlighting, in active development.

Author: K88hudson
Source Code: https://github.com/k88hudson/git-flight-rules 
License: CC-BY-SA-4.0 License

#git