Kasey  Turcotte

Kasey Turcotte

1623927960

Pandas DataFrame vs. Spark DataFrame: When Parallel Computing Matters

With Performance Comparison Analysis and Guided Example of Animated 3D Wireframe Plot

Python is famous for its vast selection of libraries and resources from the open-source community. As a Data Analyst/Engineer/Scientist, one might be familiar with popular packages such as NumpyPandasScikit-learnKeras, and TensorFlow. Together these modules help us extract value out of data and propels the field of analytics. As data continue to become larger and more complex, one other element to consider is a framework dedicated to processing Big Data, such as Apache Spark. In this article, I will demonstrate the capabilities of distributed/cluster computing and present a comparison between the Pandas DataFrame and Spark DataFrame. My hope is to provide more conviction on choosing the right implementation.

Pandas DataFrame

Pandas has become very popular for its ease of use. It utilizes DataFrames to present data in tabular format like a spreadsheet with rows and columns. Importantly, it has very intuitive methods to perform common analytical tasks and a relatively flat learning curve. It loads all of the data into memory on a single machine (one node) for rapid execution. While the Pandas DataFrame has proven to be tremendously powerful in manipulating data, it does have its limits. With data growing at an exponentially rate, complex data processing becomes expensive to handle and causes performance degradation. These operations require parallelization and distributed computing, which the Pandas DataFrame does not support.

Introducing Cluster/Distribution Computing and Spark DataFrame

Apache Spark is an open-source cluster computing framework. With cluster computing, data processing is distributed and performed in parallel by multiple nodes. This is recognized as the MapReduce framework because the division of labor can usually be characterized by sets of the mapshuffle, and reduce operations found in functional programming. Spark’s implementation of cluster computing is unique because processes 1) are executed in-memory and 2) build up a query plan which does not execute until necessary (known as lazy execution). Although Spark’s cluster computing framework has a broad range of utility, we only look at the Spark DataFrame for the purpose of this article. Similar to those found in Pandas, the Spark DataFrame has intuitive APIs, making it easy to implement.

#pandas dataframe vs. spark dataframe: when parallel computing matters #pandas #pandas dataframe #pandas dataframe vs. spark dataframe #spark #when parallel computing matters

What is GEEK

Buddha Community

Pandas DataFrame vs. Spark DataFrame: When Parallel Computing Matters
Kasey  Turcotte

Kasey Turcotte

1623927960

Pandas DataFrame vs. Spark DataFrame: When Parallel Computing Matters

With Performance Comparison Analysis and Guided Example of Animated 3D Wireframe Plot

Python is famous for its vast selection of libraries and resources from the open-source community. As a Data Analyst/Engineer/Scientist, one might be familiar with popular packages such as NumpyPandasScikit-learnKeras, and TensorFlow. Together these modules help us extract value out of data and propels the field of analytics. As data continue to become larger and more complex, one other element to consider is a framework dedicated to processing Big Data, such as Apache Spark. In this article, I will demonstrate the capabilities of distributed/cluster computing and present a comparison between the Pandas DataFrame and Spark DataFrame. My hope is to provide more conviction on choosing the right implementation.

Pandas DataFrame

Pandas has become very popular for its ease of use. It utilizes DataFrames to present data in tabular format like a spreadsheet with rows and columns. Importantly, it has very intuitive methods to perform common analytical tasks and a relatively flat learning curve. It loads all of the data into memory on a single machine (one node) for rapid execution. While the Pandas DataFrame has proven to be tremendously powerful in manipulating data, it does have its limits. With data growing at an exponentially rate, complex data processing becomes expensive to handle and causes performance degradation. These operations require parallelization and distributed computing, which the Pandas DataFrame does not support.

Introducing Cluster/Distribution Computing and Spark DataFrame

Apache Spark is an open-source cluster computing framework. With cluster computing, data processing is distributed and performed in parallel by multiple nodes. This is recognized as the MapReduce framework because the division of labor can usually be characterized by sets of the mapshuffle, and reduce operations found in functional programming. Spark’s implementation of cluster computing is unique because processes 1) are executed in-memory and 2) build up a query plan which does not execute until necessary (known as lazy execution). Although Spark’s cluster computing framework has a broad range of utility, we only look at the Spark DataFrame for the purpose of this article. Similar to those found in Pandas, the Spark DataFrame has intuitive APIs, making it easy to implement.

#pandas dataframe vs. spark dataframe: when parallel computing matters #pandas #pandas dataframe #pandas dataframe vs. spark dataframe #spark #when parallel computing matters

Paula  Hall

Paula Hall

1623396211

Making Pandas fast with Dask parallel computing

So you, my dear Python enthusiast, have been learning Pandas and Matplotlib for a while and have written a super cool code to analyze your data and visualize it. You are ready to run your script that reads a huge file and all of a sudden your laptop starts making un ugly noise and burning like hell. Sounds familiar?

Well, I have got a couple of good news for you: this issue doesn’t need to happen anymore and you no, you don’t need to upgrade your laptop or your server.

Introducing Dask:

Dask is a flexible library for parallel computing with Python. It provides multi-core and distributed parallel execution on larger-than-memory datasets. It figures out how to break up large computations and route parts of them efficiently onto distributed hardware.

A massive cluster is not always the right choice

Today’s laptops and workstations are surprisingly powerful and, if used correctly, can handle datasets and computations for which we previously depended on clusters. A modern laptop has a multi-core CPU, 32GB of RAM, and flash-based hard drives that can stream through data several times faster than HDDs or SSDs of even a year or two ago.

As a result, Dask can empower analysts to manipulate 100GB+ datasets on their laptop or 1TB+ datasets on a workstation without bothering with the cluster at all.

The project has been a massive plus for the Python machine learning Ecosystem because it democratizes big data analysis. Not only can you save money on bigger servers, but also it copies the Pandas API so you can run your Panda script changing very few lines of code.

#making pandas fast with dask parallel computing #dask parallel computing #pandas #pandas fast #dask #dask parallel

akshay L

akshay L

1572939856

Hadoop vs Spark | Hadoop MapReduce vs Spark

In this video on Hadoop vs Spark you will understand about the top Big Data solutions used in the IT industry, and which one should you use for better performance. So in this Hadoop MapReduce vs Spark comparison some important parameters have been taken into consideration to tell you the difference between Hadoop and Spark also which one is preferred over the other in certain aspects in detail.

Why Hadoop is important

Big data hadoop is one of the best technological advances that is finding increased applications for big data and in a lot of industry domains. Data is being generated hugely in each and every industry domain and to process and distribute effectively hadoop is being deployed everywhere and in every industry.

#Hadoop vs Spark #Apache Spark vs Hadoop #Spark vs Hadoop #Difference Between Spark and Hadoop #Intellipaat

Practice Problems: How To Join DataFrames in Pandas

Hey - Nick here! This page is a free excerpt from my $199 course Python for Finance, which is 50% off for the next 50 students.

If you want the full course, click here to sign up.

It’s now time for some practice problems! See below for details on how to proceed.

Course Repository & Practice Problems

All of the code for this course’s practice problems can be found in this GitHub repository.

There are two options that you can use to complete the practice problems:

  • Open them in your browser with a platform called Binder using this link (recommended)
  • Download the repository to your local computer and open them in a Jupyter Notebook using Anaconda (a bit more tedious)

Note that binder can take up to a minute to load the repository, so please be patient.

Within that repository, there is a folder called starter-files and a folder called finished-files. You should open the appropriate practice problems within the starter-files folder and only consult the corresponding file in the finished-files folder if you get stuck.

The repository is public, which means that you can suggest changes using a pull request later in this course if you’d like.

#dataframes #pandas #practice problems: how to join dataframes in pandas #how to join dataframes in pandas #practice #/pandas/issues.

Paula  Hall

Paula Hall

1624431580

How to add a new column to Pandas DataFrame?

In this tutorial, we are going to discuss different ways to add a new column to pandas data frame.


Table of Contents

What is a pandas data frame?

Pandas data frameis a two-dimensional heterogeneous data structure that stores the data in a tabular form with labeled indexes i.e. rows and columns.

Usually, data frames are used when we have to deal with a large dataset, then we can simply see the summary of that large dataset by loading it into a pandas data frame and see the summary of the data frame.

In the real-world scenario, a pandas data frame is created by loading the datasets from an existing CSV file, Excel file, etc.

But pandas data frame can be also created from the listdictionary, list of lists, list of dictionaries, dictionary of ndarray/lists, etc. Before we start discussing how to add a new column to an existing data frame we require a pandas data frame.

#pandas #dataframe #pandas dataframe #column #add a new column #how to add a new column to pandas dataframe