Suparnar Taina

Suparnar Taina

1601780784

JavaScript Interview-Questions: Functions

JavaScript has been the most used programming language for many years now, yet people continue to struggle to grasp it. This article sets out to discuss some of the most frequently asked questions in JavaScript.

Question

What is the value of **x **& y ?

const fn = (a, ...numbers, x, y) => {
    console.log(x, y)
};

Solution

SyntaxError: Rest parameter must be last formal parameter

Rest parameters must always be the last argument to a function.


Question

Guess the output of the following code:

var hero = {
    _name: 'John Doe',
    getSecretIdentity: function (){
        return this._name;
    }
};
var stoleSecretIdentity = hero.getSecretIdentity;
console.log(stoleSecretIdentity());
console.log(hero.getSecretIdentity());

#javascript #interview-questions

What is GEEK

Buddha Community

JavaScript Interview-Questions: Functions

Top 130 Android Interview Questions - Crack Technical Interview Now!

Android Interview Questions and Answers from Beginner to Advanced level

DataFlair is committed to provide you all the resources to make you an android professional. We started with android tutorials along with practicals, then we published Real-time android projects along with source code. Now, we come up with frequently asked android interview questions, which will help you in showing expertise in your next interview.

android interview questions

Android Interview Questions – Get ready for your next interview

Android – one of the hottest technologies, which is having a bright future. Get ready to crack your next interview with the following android interview questions. These interview questions start with basic and cover deep concepts along with advanced topics.

Android Interview Questions for Freshers

1. What is Android?

Android is an open-source mobile operating system that is based on the modified versions of Linux kernel. Though it was mainly designed for smartphones, now it is being used for Tablets, Televisions, Smartwatches, and other Android wearables.

2. Who is the inventor of Android Technology?

The inventors of Android Technology are- Andry Rubin, Nick Sears, and Rich Miner.

3. What is the latest version of Android?

The latest version of Android is Android 10.0, known as Android Q. The upcoming major Android release is Android 11, which is the 18th version of Android. [Note: Keep checking the versions, it is as of June 2020.]

4. How many Android versions can you recall right now?

Till now, there are 17 versions of Android, which have their names in alphabetical order. The 18th version of Android is also going to come later this year. The versions of Android are here:

  • Android 1.0 – Its release is 23 September 2008.
  • Android 1.1 – Its release date is 9 February 2009.
  • Android 1.5 – Its name is Cupcake, Released on 27 April 2009.
  • Android 1.6 – Its name is Donut, Released on 15 September 2009.
  • Android 2.0 – Its name is Eclair, Released on 26 October 2009
  • Android 2.2 – Its name is Froyo, Released on 20 May 2010.
  • Android 2.3 – Its name is Gingerbread, Released on 06 December 2010.
  • Android 3.0 – Its name is Honeycomb, Released on 22 February 2011.
  • Android 4.0 – Its name is Ice Cream Sandwich, Released on 18 October 2011.
  • Android 4.1 – Its name is Jelly Bean, Released on 9 July 2012.
  • Android 4.4 – Its name is KitKat, Released on 31 October 2013.
  • Android 5.0 – Its name is Lollipop, Released on 12 November 2014.
  • Android 6.0 – Its name is Marshmallow, Released on 5 October 2015.
  • Android 7.0 – Its name is Nougat, Released on 22 August 2016.
  • Android 8.0 – Its name is Oreo, Released on 21 August 2017.
  • Android 9.0 – Its name is Pie, Released on 6 August 2018.
  • Android 10.0 – Its name is Android Q, Released on 3 September 2019.
  • Android 11.0 – As of now, it is Android 11.

5. Explain the Android Architecture with its components.

This is a popular android developer interview question

Android Architecture consists of 5 components that are-

a. Linux Kernel: It is the foundation of the Android Architecture that resides at the lowest level. It provides the level of abstraction for hardware devices and upper layer components. Linux Kernel also provides various important hardware drivers that act as software interfaces for hardwares like camera, bluetooth, etc.

b. Native Libraries: These are the libraries for Android that are written in C/C++. These libraries are useful to build many core services like ART and HAL. It provides support for core features.

c. Android Runtime: It is an Android Runtime Environment. Android Operating System uses it during the execution of the app. It performs the translation of the application bytecode into the native instructions. The runtime environment of the device then executes these native instructions.

d. Application Framework: Application Framework provides many java classes and interfaces for app development. And it also provides various high-level services. This complete Application framework makes use of Java.

e. Applications: This is the topmost layer of Android Architecture. It provides applications for the end-user, so they can use the android device and compute the tasks.

6. What are the services that the Application framework provides?

The Android application framework has the following key services-

a. Activity Manager: It uses testing and debugging methods.

b. Content provider: It provides the data from application to other layers.

c. Resource Manager: This provides users access to resources.

d. Notification Manager: This gives notification to the users regarding actions taking place in the background.

e. View System: It is the base class for widgets, and it is also responsible for event handling.

7. What are the important features of Linux Kernel?

The important features of the Linux Kernel are as follows:

a. Power Management: Linux Kernel does power management to enhance and improve the battery life of the device.

b. Memory Management: It is useful for the maximum utilization of the available memory of the device.

c. Device Management: It includes managing all the hardware device drivers. It maximizes the utilization of the available resources.

d. Security: It ensures that no application has any such permission that it affects any other application in order to maintain security.

e. Multi-tasking: Multi-tasking provides the users the ease of doing multiple tasks at the same time.

8. What are the building blocks of an Android Application?

This is a popular android interview question for freshers.

The main components of any Android application are- Activity, Services, Content Provider, and Broadcast Receiver. You can understand them as follows:

a. Activity- It is a class that acts as the entry point representing a single screen to the user. It is like a window to show the user interface.

b. Services- Services are the longest-running component that runs in the background.

c. Content Provider- The content provider is an essential component that allows apps to share data between themselves.

d. Broadcast receivers- Broadcast receiver is another most crucial application component. It helps the apps to receive and respond to broadcast messages from the system or some other application.

9. What are the important components of Android Application?

The Components of Android application are listed below:

  1. Widgets
  2. Intents
  3. Views
  4. Notification
  5. Fragments
  6. Layout XML files
  7. Resources

10. What are the widgets?

Widgets are the variations of Broadcast receivers. They are an important part of home screen customization. They often display some data and also allow users to perform actions on them. Mostly they display the app icon on the screen.

11. Can you name some types of widgets?

Mentioned below are the types of widgets-

a. Informative Widgets: These widgets show some important information. Like, the clock widget or a weather widget.

b. Collective Widgets: They are the collection of some types of elements. For example, a music widget that lets us change, skip, or forward the song.

c. Control Widgets: These widgets help us control the actions within the application through it. Like an email widget that helps check the recent mails.

d. Hybrid Widgets: Hybrid widgets are those that consist of at least two or more types of widgets.

12. What are Intents?

Intents are an important part of Android Applications. They enable communication between components of the same application as well as separate applications. The Intent signals the Android system about a certain event that has occurred.

13. Explain the types of intents briefly?

Intent is of three types that are-

a. Implicit Intents: Implicit intents are those in which there is no description of the component name but only the action.

b. Explicit Intents: In explicit intents, the target component is present by declaring the name of the component.

c. Pending Intents: These are those intents that act as a shield over the Intent objects. It covers the intent objects and grants permission to the external app components to access them.

14. What is a View?

A view is an important building block that helps in designing the user interface of the application. It can be a rectangular box or a circular shape, for example, Text View, Edit Text, Buttons, etc. Views occupy a certain area of the screen, and it is also responsible for event handling. A view is the superclass of all the graphical user interface components.

15. What do you understand by View Group?

It is the subclass of the ViewClass. It gives an invisible container to hold layouts or views. You can understand view groups as special views that are capable of holding other views, that are Child View.

16. What do you understand about Shared Preferences?

It is a simple mechanism for data storage in Android. In this, there is no need to create files, and using APIs, it stores the data in XML files. It stores the data in the pair of key-values. SharedPreferences class lets the user save the values and retrieve them when required. Using SharedPreferences we can save primitive data like- boolean, float, integer, string and long.

17. What is a Notification?

A notification is just like a message that shows up outside the Application UI to provide reminders to the users. They remind the user about a message received, or some other timely information from the app.

18. Give names of Notification types.

There are three types of notifications namely-

a. Toast Notification- This notification is the one that fades away sometime after it pops up.

b. Status Notification- This notification stays till the user takes some action on it.

c. Dialog Notification- This notification is the result of an Active Activity.

19. What are fragments?

A fragment is a part of the complete user interface. These are present in Activity, and an activity can have one or more fragments at the same time. We can reuse a fragment in multiple activities as well.

20. What are the types of fragments?

There are three types of fragments that are: Single Fragment, List Fragment, Fragment Transactions.

  1. Single Transactions can only show a single view for the user.
  2. List Fragments have a special list view feature that provides a list from which the user can select one.
  3. Fragment Transactions are helpful for the transition between one fragment to the other.

Frequently asked Android Interview Questions and Answers

21. What are Layout XML files?

Layout XML files contain the structure for the user interface of the application. The XML file also contains various different layouts and views, and they also specify various GUI components that are there in Activity or fragments.

22. What are Resources in Android Application?

The resources in Android Apps defines images, texts, strings, colors, etc. Everything in resources directory is referenced in the source code of the app so that we can use them.

23. Can you develop Android Apps with languages other than Java? If so, name some.

Yes, there are many languages that we can work with, for the development of Android Applications. To name some, I would say Java, Python, C, C++, Kotlin, C#, Corona/LUA.

24. What are the states of the Activity Lifecycle?

Activity lifecycle has the following four stages-

a. Running State: As soon as the activity starts, it is the first state.

b. Paused State: When some other activity starts without closing the previous one, the running activity turns into the Paused state.

c. Resume State: When the activity opens again after being in pause state, it comes into the Resume State.

d. Stopped State: When the user closes the application or stops using it, the activity goes to the Stopped state.

25. What are some methods of Activity?

The methods of Activity are as follows:

  • onCreate()
  • onStart()
  • onPause()
  • onRestart()
  • onResume()
  • onStop()
  • onDestroy()

26. How can you launch an activity in Android?

We launch an activity using Intents. For this we need to use intent as follows:

  1. ntent intent_name= new Intent(this, Activity_name.class);
  2. startActivity(intent_name);

27. What is the service lifecycle?

There are two states of a service that are-

a. Started State: This is when the service starts its execution. A Services come in start state only through the startService() method.

b. Bounded State: A service is in the bounded state when it calls the method bindService().

28. What are some methods of Services?

The methods of service are as follows-

  • onStartCommand()
  • onBind()
  • onCreate()
  • onUnbind()
  • onDestroy()
  • onRebind()

29. What are the types of Broadcast?

Broadcasts are of two types that are-

a. Ordered Broadcast: Ordered broadcasts are Synchronous and work in a proper order. It decides the order by using the priority assigned to the broadcasts.

b. Normal Broadcast: These are asynchronous and unordered. They are more efficient as they run unorderly and all at once. But, they lack full utilization of the results.

30. What are useful impotent folders in Android?

The impotent folders in an Android application are-

  1. build.xml- It is responsible for the build of Android applications.
  2. bin/ – The bin folder works as a staging area to wrap the files packages into the APK.
  3. src/ – The src is a folder where all the source files of the project are present.
  4. res/ – The res is the resource folder that stores values of the resources that are used in the application. These resources can be colors, styles, strings, dimensions, etc.
  5. assets/ – It provides a facility to include files like text, XML, fonts, music, and video in the Android application.

31. What are the important files for Android Application when working on Android Studio?

This is an important android studio interview question

There are following three files that we need to work on for an application to work-

a. The AndroidManifest.xml file: It has all the information about the application.

b. The MainActivity.java file: It is the app file that actually gets converted to the dalvik executable and runs the application. It is written in java.

c. The Activity_main.xml file: It is the layout file that is available in the res/layout directory. It is another mostly used file while developing the application.

32. Which database do you use for Android Application development?

The database that we use for Android Applications is SQLite. It is because SQLite is lightweight and specially developed for Android Apps. SQLite works the same way as SQL using the same commands.

33. Tell us some features of Android OS.

The best features of Android include-

  1. Multi-tasking
  2. Support for a great range of languages
  3. Support for split-screen
  4. High connectivity with 5G support
  5. Motion Control

34. Why did you learn Android development?

Learning Android Studio is a good idea because of the following-

  1. It has a low application development cost.
  2. It is an open-source platform.
  3. It has multi-platform support as well as Multi-carrier support.
  4. It is open for customizations.
  5. Android is a largely used operating system throughout the world.

35. What are the different ways of storage supported in Android?

The various storage ways supported in Android are as follows:

  1. Shared Preference
  2. Internal Storage
  3. External Storage
  4. SQLite Databases
  5. Network Connection

36. What are layouts?

Layout is nothing but arrangements of elements on the device screen. These elements can be images, tests, videos, anything. They basically define the structure of the Android user interface to make it user friendly.

37. How many layout types are there?

The type of layouts used in Android Apps are as follows:

  1. Linear Layout
  2. Relative Layout
  3. Constraint Layout
  4. Table Layout
  5. Frame Layout
  6. Absolute Layout
  7. Scrollview layout

38. What is an APK?

An APK stands for Android Package that is a file format of Android Applications. Android OS uses this package for the distribution and installation of the Android Application.

39. What is an Android Manifest file?

The manifest file describes all the essential information about the project application for build tools, Android operating system, and google play. This file is a must for every Android project that we develop, and it is present in the root of the project source set.

#android tutorials #android basic interview questions #android basic questions #android developer interview questions #android interview question and answer #android interview questions #android interview questions for experienced #android interview questions for fresher

A Collection Of Swift Tips & Tricks That I've Shared on Twitter

⚠️ This list is no longer being updated. For my latest Swift tips, checkout the "Tips" section on Swift by Sundell.

Swift tips & tricks ⚡️

One of the things I really love about Swift is how I keep finding interesting ways to use it in various situations, and when I do - I usually share them on Twitter. Here's a collection of all the tips & tricks that I've shared so far. Each entry has a link to the original tweet, if you want to respond with some feedback or question, which is always super welcome! 🚀

Also make sure to check out all of my other Swift content:

#102 Making async tests faster and more stable

🚀 Here are some quick tips to make async tests faster & more stable:

  • 😴 Avoid sleep() - use expectations instead
  • ⏱ Use generous timeouts to avoid flakiness on CI
  • 🧐 Put all assertions at the end of each test, not inside closures
// BEFORE:

class MentionDetectorTests: XCTestCase {
    func testDetectingMention() {
        let detector = MentionDetector()
        let string = "This test was written by @johnsundell."

        detector.detectMentions(in: string) { mentions in
            XCTAssertEqual(mentions, ["johnsundell"])
        }
        
        sleep(2)
    }
}

// AFTER:

class MentionDetectorTests: XCTestCase {
    func testDetectingMention() {
        let detector = MentionDetector()
        let string = "This test was written by @johnsundell."

        var mentions: [String]?
        let expectation = self.expectation(description: #function)

        detector.detectMentions(in: string) {
            mentions = $0
            expectation.fulfill()
        }

        waitForExpectations(timeout: 10)
        XCTAssertEqual(mentions, ["johnsundell"])
    }
}

For more on async testing, check out "Unit testing asynchronous Swift code".

#101 Adding support for Apple Pencil double-taps

✍️ Adding support for the new Apple Pencil double-tap feature is super easy! All you have to do is to create a UIPencilInteraction, add it to a view, and implement one delegate method. Hopefully all pencil-compatible apps will soon adopt this.

let interaction = UIPencilInteraction()
interaction.delegate = self
view.addInteraction(interaction)

extension ViewController: UIPencilInteractionDelegate {
    func pencilInteractionDidTap(_ interaction: UIPencilInteraction) {
        // Handle pencil double-tap
    }
}

For more on using this and other iPad Pro features, check out "Building iPad Pro features in Swift".

#100 Combining values with functions

😎 Here's a cool function that combines a value with a function to return a closure that captures that value, so that it can be called without any arguments. Super useful when working with closure-based APIs and we want to use some of our properties without having to capture self.

func combine<A, B>(_ value: A, with closure: @escaping (A) -> B) -> () -> B {
    return { closure(value) }
}

// BEFORE:

class ProductViewController: UIViewController {
    override func viewDidLoad() {
        super.viewDidLoad()

        buyButton.handler = { [weak self] in
            guard let self = self else {
                return
            }
            
            self.productManager.startCheckout(for: self.product)
        }
    }
}

// AFTER:

class ProductViewController: UIViewController {
    override func viewDidLoad() {
        super.viewDidLoad()

        buyButton.handler = combine(product, with: productManager.startCheckout)
    }
}

#99 Dependency injection using functions

💉 When I'm only using a single function from a dependency, I love to inject that function as a closure, instead of having to create a protocol and inject the whole object. Makes dependency injection & testing super simple.

final class ArticleLoader {
    typealias Networking = (Endpoint) -> Future<Data>
    
    private let networking: Networking
    
    init(networking: @escaping Networking = URLSession.shared.load) {
        self.networking = networking
    }
    
    func loadLatest() -> Future<[Article]> {
        return networking(.latestArticles).decode()
    }
}

For more on this technique, check out "Simple Swift dependency injection with functions".

#98 Using a custom exception handler

💥 It's cool that you can easily assign a closure as a custom NSException handler. This is super useful when building things in Playgrounds - since you can't use breakpoints - so instead of just signal SIGABRT, you'll get the full exception description if something goes wrong.

NSSetUncaughtExceptionHandler { exception in
    print(exception)
}

#97 Using type aliases to give semantic meaning to primitives

❤️ I love that in Swift, we can use the type system to make our code so much more self-documenting - one way of doing so is to use type aliases to give the primitive types that we use a more semantic meaning.

extension List.Item {
    // Using type aliases, we can give semantic meaning to the
    // primitive types that we use, without having to introduce
    // wrapper types.
    typealias Index = Int
}

extension List {
    enum Mutation {
        // Our enum cases now become a lot more self-documenting,
        // without having to add additional parameter labels to
        // explain them.
        case add(Item, Item.Index)
        case update(Item, Item.Index)
        case remove(Item.Index)
    }
}

For more on self-documenting code, check out "Writing self-documenting Swift code".

#96 Specializing protocols using constraints

🤯 A little late night prototyping session reveals that protocol constraints can not only be applied to extensions - they can also be added to protocol definitions!

This is awesome, since it lets us easily define specialized protocols based on more generic ones.

protocol Component {
    associatedtype Container
    func add(to container: Container)
}

// Protocols that inherit from other protocols can include
// constraints to further specialize them.
protocol ViewComponent: Component where Container == UIView {
    associatedtype View: UIView
    var view: View { get }
}

extension ViewComponent {
    func add(to container: UIView) {
        container.addSubview(view)
    }
}

For more on specializing protocols, check out "Specializing protocols in Swift".

#95 Unwrapping an optional or throwing an error

📦 Here's a super handy extension on Swift's Optional type, which gives us a really nice API for easily unwrapping an optional, or throwing an error in case the value turned out to be nil:

extension Optional {
    func orThrow(_ errorExpression: @autoclosure () -> Error) throws -> Wrapped {
        switch self {
        case .some(let value):
            return value
        case .none:
            throw errorExpression()
        }
    }
}

let file = try loadFile(at: path).orThrow(MissingFileError())

For more ways that optionals can be extended, check out "Extending optionals in Swift".

#94 Testing code that uses static APIs

👩‍🔬 Testing code that uses static APIs can be really tricky, but there's a way that it can often be done - using Swift's first class function capabilities!

Instead of accessing that static API directly, we can inject the function we want to use, which enables us to mock it!

// BEFORE

class FriendsLoader {
    func loadFriends(then handler: @escaping (Result<[Friend]>) -> Void) {
        Networking.loadData(from: .friends) { result in
            ...
        }
    }
}

// AFTER

class FriendsLoader {
    typealias Handler<T> = (Result<T>) -> Void
    typealias DataLoadingFunction = (Endpoint, @escaping Handler<Data>) -> Void

    func loadFriends(using dataLoading: DataLoadingFunction = Networking.loadData,
                     then handler: @escaping Handler<[Friend]>) {
        dataLoading(.friends) { result in
            ...
        }
    }
}

// MOCKING IN TESTS

let dataLoading: FriendsLoader.DataLoadingFunction = { _, handler in
    handler(.success(mockData))
}

friendsLoader.loadFriends(using: dataLoading) { result in
    ...
}

#93 Matching multiple enum cases with associated values

🐾 Swift's pattern matching capabilities are so powerful! Two enum cases with associated values can even be matched and handled by the same switch case - which is super useful when handling state changes with similar data.

enum DownloadState {
    case inProgress(progress: Double)
    case paused(progress: Double)
    case cancelled
    case finished(Data)
}

func downloadStateDidChange(to state: DownloadState) {
    switch state {
    case .inProgress(let progress), .paused(let progress):
        updateProgressView(with: progress)
    case .cancelled:
        showCancelledMessage()
    case .finished(let data):
        process(data)
    }
}

#92 Multiline string literals

🅰 One really nice benefit of Swift multiline string literals - even for single lines of text - is that they don't require quotes to be escaped. Perfect when working with things like HTML, or creating a custom description for an object.

let html = highlighter.highlight("Array<String>")

XCTAssertEqual(html, """
<span class="type">Array</span>&lt;<span class="type">String</span>&gt;
""")

#91 Reducing sequences

💎 While it's very common in functional programming, the reduce function might be a bit of a hidden gem in Swift. It provides a super useful way to transform a sequence into a single value.

extension Sequence where Element: Equatable {
    func numberOfOccurrences(of target: Element) -> Int {
        return reduce(0) { result, element in
            guard element == target else {
                return result
            }

            return result + 1
        }
    }
}

You can read more about transforming collections in "Transforming collections in Swift".

#90 Avoiding manual Codable implementations

📦 When I use Codable in Swift, I want to avoid manual implementations as much as possible, even when there's a mismatch between my code structure and the JSON I'm decoding.

One way that can often be achieved is to use private data containers combined with computed properties.

struct User: Codable {
    let name: String
    let age: Int

    var homeTown: String { return originPlace.name }

    private let originPlace: Place
}

private extension User {
    struct Place: Codable {
        let name: String
    }
}

extension User {
    struct Container: Codable {
        let user: User
    }
}

#89 Using feature flags instead of feature branches

🚢 Instead of using feature branches, I merge almost all of my code directly into master - and then I use feature flags to conditionally enable features when they're ready. That way I can avoid merge conflicts and keep shipping!

extension ListViewController {
    func addSearchIfNeeded() {
        // Rather than having to keep maintaining a separate
        // feature branch for a new feature, we can use a flag
        // to conditionally turn it on.
        guard FeatureFlags.searchEnabled else {
            return
        }

        let resultsVC = SearchResultsViewController()
        let searchVC = UISearchController(
            searchResultsController: resultsVC
        )

        searchVC.searchResultsUpdater = resultsVC
        navigationItem.searchController = searchVC
    }
}

You can read more about feature flags in "Feature flags in Swift".

#88 Lightweight data hierarchies using tuples

💾 Here I'm using tuples to create a lightweight hierarchy for my data, giving me a nice structure without having to introduce any additional types.

struct CodeSegment {
    var tokens: (
        previous: String?,
        current: String
    )

    var delimiters: (
        previous: Character?
        next: Character?
    )
}

handle(segment.tokens.current)

You can read more about tuples in "Using tuples as lightweight types in Swift"

#87 The rule of threes

3️⃣ Whenever I have 3 properties or local variables that share the same prefix, I usually try to extract them into their own method or type. That way I can avoid massive types & methods, and also increase readability, without falling into a "premature optimization" trap.

Before

public func generate() throws {
    let contentFolder = try folder.subfolder(named: "content")

    let articleFolder = try contentFolder.subfolder(named: "posts")
    let articleProcessor = ContentProcessor(folder: articleFolder)
    let articles = try articleProcessor.process()

    ...
}

After

public func generate() throws {
    let contentFolder = try folder.subfolder(named: "content")
    let articles = try processArticles(in: contentFolder)
    ...
}

private func processArticles(in folder: Folder) throws -> [ContentItem] {
    let folder = try folder.subfolder(named: "posts")
    let processor = ContentProcessor(folder: folder)
    return try processor.process()
}

#86 Useful Codable extensions

👨‍🔧 Here's two extensions that I always add to the Encodable & Decodable protocols, which for me really make the Codable API nicer to use. By using type inference for decoding, a lot of boilerplate can be removed when the compiler is already able to infer the resulting type.

extension Encodable {
    func encoded() throws -> Data {
        return try JSONEncoder().encode(self)
    }
}

extension Data {
    func decoded<T: Decodable>() throws -> T {
        return try JSONDecoder().decode(T.self, from: self)
    }
}

let data = try user.encoded()

// By using a generic type in the decoded() method, the
// compiler can often infer the type we want to decode
// from the current context.
try userDidLogin(data.decoded())

// And if not, we can always supply the type, still making
// the call site read very nicely.
let otherUser = try data.decoded() as User

#85 Using shared UserDefaults suites

📦 UserDefaults is a lot more powerful than what it first might seem like. Not only can it store more complex values (like dates & dictionaries) and parse command line arguments - it also enables easy sharing of settings & lightweight data between apps in the same App Group.

let sharedDefaults = UserDefaults(suiteName: "my-app-group")!
let useDarkMode = sharedDefaults.bool(forKey: "dark-mode")

// This value is put into the shared suite.
sharedDefaults.set(true, forKey: "dark-mode")

// If you want to treat the shared settings as read-only (and add
// local overrides on top of them), you can simply add the shared
// suite to the standard UserDefaults.
let combinedDefaults = UserDefaults.standard
combinedDefaults.addSuite(named: "my-app-group")

// This value is a local override, not added to the shared suite.
combinedDefaults.set(true, forKey: "app-specific-override")

#84 Custom UIView backing layers

🎨 By overriding layerClass you can tell UIKit what CALayer class to use for a UIView's backing layer. That way you can reduce the amount of layers, and don't have to do any manual layout.

final class GradientView: UIView {
    override class var layerClass: AnyClass { return CAGradientLayer.self }

    var colors: (start: UIColor, end: UIColor)? {
        didSet { updateLayer() }
    }

    private func updateLayer() {
        let layer = self.layer as! CAGradientLayer
        layer.colors = colors.map { [$0.start.cgColor, $0.end.cgColor] }
    }
}

#83 Auto-Equatable enums with associated values

✅ That the compiler now automatically synthesizes Equatable conformances is such a huge upgrade for Swift! And the cool thing is that it works for all kinds of types - even for enums with associated values! Especially useful when using enums for verification in unit tests.

struct Article: Equatable {
    let title: String
    let text: String
}

struct User: Equatable {
    let name: String
    let age: Int
}

extension Navigator {
    enum Destination: Equatable {
        case profile(User)
        case article(Article)
    }
}

func testNavigatingToArticle() {
    let article = Article(title: "Title", text: "Text")
    controller.select(article)
    XCTAssertEqual(navigator.destinations, [.article(article)])
}

#82 Defaults for associated types

🤝 Associated types can have defaults in Swift - which is super useful for types that are not easily inferred (for example when they're not used for a specific instance method or property).

protocol Identifiable {
    associatedtype RawIdentifier: Codable = String

    var id: Identifier<Self> { get }
}

struct User: Identifiable {
    let id: Identifier<User>
    let name: String
}

struct Group: Identifiable {
    typealias RawIdentifier = Int

    let id: Identifier<Group>
    let name: String
}

#81 Creating a dedicated identifier type

🆔 If you want to avoid using plain strings as identifiers (which can increase both type safety & readability), it's really easy to create a custom Identifier type that feels just like a native Swift type, thanks to protocols!

More on this topic in "Type-safe identifiers in Swift".

struct Identifier: Hashable {
    let string: String
}

extension Identifier: ExpressibleByStringLiteral {
    init(stringLiteral value: String) {
        string = value
    }
}

extension Identifier: CustomStringConvertible {
    var description: String {
        return string
    }
}

extension Identifier: Codable {
    init(from decoder: Decoder) throws {
        let container = try decoder.singleValueContainer()
        string = try container.decode(String.self)
    }

    func encode(to encoder: Encoder) throws {
        var container = encoder.singleValueContainer()
        try container.encode(string)
    }
}

struct Article: Codable {
    let id: Identifier
    let title: String
}

let article = Article(id: "my-article", title: "Hello world!")

#80 Assigning optional tuple members to variables

🙌 A really cool thing about using tuples to model the internal state of a Swift type, is that you can unwrap an optional tuple's members directly into local variables.

Very useful in order to group multiple optional values together for easy unwrapping & handling.

class ImageTransformer {
    private var queue = [(image: UIImage, transform: Transform)]()

    private func processNext() {
        // When unwrapping an optional tuple, you can assign the members
        // directly to local variables.
        guard let (image, transform) = queue.first else {
            return
        }

        let context = Context()
        context.draw(image)
        context.apply(transform)
        ...
    }
}

#79 Struct convenience initializers

❤️ I love to structure my code using extensions in Swift. One big benefit of doing so when it comes to struct initializers, is that defining a convenience initializer doesn't remove the default one the compiler generates - best of both worlds!

struct Article {
    let date: Date
    var title: String
    var text: String
    var comments: [Comment]
}

extension Article {
    init(title: String, text: String) {
        self.init(date: Date(), title: title, text: text, comments: [])
    }
}

let articleA = Article(title: "Best Cupcake Recipe", text: "...")

let articleB = Article(
    date: Date(),
    title: "Best Cupcake Recipe",
    text: "...",
    comments: [
        Comment(user: currentUser, text: "Yep, can confirm!")
    ]
)

#78 Usages of throwing functions

🏈 A big benefit of using throwing functions for synchronous Swift APIs is that the caller can decide whether they want to treat the return value as optional (try?) or required (try).

func loadFile(named name: String) throws -> File {
    guard let url = urlForFile(named: name) else {
        throw File.Error.missing
    }

    do {
        let data = try Data(contentsOf: url)
        return File(url: url, data: data)
    } catch {
        throw File.Error.invalidData(error)
    }
}

let requiredFile = try loadFile(named: "AppConfig.json")

let optionalFile = try? loadFile(named: "UserSettings.json")

#77 Nested generic types

🐝 Types that are nested in generics automatically inherit their parent's generic types - which is super useful when defining accessory types (for things like states or outcomes).

struct Task<Input, Output> {
    typealias Closure = (Input) throws -> Output

    let closure: Closure
}

extension Task {
    enum Result {
        case success(Output)
        case failure(Error)
    }
}

#76 Equatable & Hashable structures

🤖 Now that the Swift compiler automatically synthesizes Equatable & Hashable conformances for value types, it's easier than ever to setup model structures with nested types that are all Equatable/Hashable!

typealias Value = Hashable & Codable

struct User: Value {
    var name: String
    var age: Int
    var lastLoginDate: Date?
    var settings: Settings
}

extension User {
    struct Settings: Value {
        var itemsPerPage: Int
        var theme: Theme
    }
}

extension User.Settings {
    enum Theme: String, Value {
        case light
        case dark
    }
}

You can read more about using nested types in Swift here.

#75 Conditional conformances

🎉 Swift 4.1 is here! One of the key features it brings is conditional conformances, which lets you have a type only conform to a protocol under certain constraints.

protocol UnboxTransformable {
    associatedtype RawValue

    static func transform(_ value: RawValue) throws -> Self?
}

extension Array: UnboxTransformable where Element: UnboxTransformable {
    typealias RawValue = [Element.RawValue]

    static func transform(_ value: RawValue) throws -> [Element]? {
        return try value.compactMap(Element.transform)
    }
}

I also have an article with lots of more info on conditional conformances here. Paul Hudson also has a great overview of all Swift 4.1 features here.

#74 Generic type aliases

🕵️‍♀️ A cool thing about Swift type aliases is that they can be generic! Combine that with tuples and you can easily define simple generic types.

typealias Pair<T> = (T, T)

extension Game {
    func calculateScore(for players: Pair<Player>) -> Int {
        ...
    }
}

You can read more about using tuples as lightweight types here.

#73 Parsing command line arguments using UserDefaults

☑️ A really cool "hidden" feature of UserDefaults is that it contains any arguments that were passed to the app at launch!

Super useful both in Swift command line tools & scripts, but also to temporarily override a value when debugging iOS apps.

let defaults = UserDefaults.standard
let query = defaults.string(forKey: "query")
let resultCount = defaults.integer(forKey: "results")

#72 Using the & operator

👏 Swift's & operator is awesome! Not only can you use it to compose protocols, you can compose other types too! Very useful if you want to hide concrete types & implementation details.

protocol LoadableFromURL {
    func load(from url: URL)
}

class ContentViewController: UIViewController, LoadableFromURL {
    func load(from url: URL) {
        ...
    }
}

class ViewControllerFactory {
    func makeContentViewController() -> UIViewController & LoadableFromURL {
        return ContentViewController()
    }
}

#71 Capturing multiple values in mocks

🤗 When capturing values in mocks, using an array (instead of just a single value) makes it easy to verify that only a certain number of values were passed.

Perfect for protecting against "over-calling" something.

class UserManagerTests: XCTestCase {
    func testObserversCalledWhenUserFirstLogsIn() {
        let manager = UserManager()

        let observer = ObserverMock()
        manager.addObserver(observer)

        // First login, observers should be notified
        let user = User(id: 123, name: "John")
        manager.userDidLogin(user)
        XCTAssertEqual(observer.users, [user])

        // If the same user logs in again, observers shouldn't be notified
        manager.userDidLogin(user)
        XCTAssertEqual(observer.users, [user])
    }
}

private extension UserManagerTests {
    class ObserverMock: UserManagerObserver {
        private(set) var users = [User]()

        func userDidChange(to user: User) {
            users.append(user)
        }
    }
}

#70 Reducing the need for mocks

👋 When writing tests, you don't always need to create mocks - you can create stubs using real instances of things like errors, URLs & UserDefaults.

Here's how to do that for some common tasks/object types in Swift:

// Create errors using NSError (#function can be used to reference the name of the test)
let error = NSError(domain: #function, code: 1, userInfo: nil)

// Create non-optional URLs using file paths
let url = URL(fileURLWithPath: "Some/URL")

// Reference the test bundle using Bundle(for:)
let bundle = Bundle(for: type(of: self))

// Create an explicit UserDefaults object (instead of having to use a mock)
let userDefaults = UserDefaults(suiteName: #function)

// Create queues to control/await concurrent operations
let queue = DispatchQueue(label: #function)

For when you actually do need mocking, check out "Mocking in Swift".

#69 Using "then" as an external parameter label for closures

⏱ I've started using "then" as an external parameter label for completion handlers. Makes the call site read really nicely (Because I do ❤️ conversational API design) regardless of whether trailing closure syntax is used or not.

protocol DataLoader {
    // Adding type aliases to protocols can be a great way to
    // reduce verbosity for parameter types.
    typealias Handler = (Result<Data>) -> Void
    associatedtype Endpoint

    func loadData(from endpoint: Endpoint, then handler: @escaping Handler)
}

loader.loadData(from: .messages) { result in
    ...
}

loader.loadData(from: .messages, then: { result in
    ...
})

#68 Combining lazily evaluated sequences with the builder pattern

😴 Combining lazily evaluated sequences with builder pattern-like properties can lead to some pretty sweet APIs for configurable sequences in Swift.

Also useful for queries & other things you "build up" and then execute.

// Extension adding builder pattern-like properties that return
// a new sequence value with the given configuration applied
extension FileSequence {
    var recursive: FileSequence {
        var sequence = self
        sequence.isRecursive = true
        return sequence
    }

    var includingHidden: FileSequence {
        var sequence = self
        sequence.includeHidden = true
        return sequence
    }
}

// BEFORE

let files = folder.makeFileSequence(recursive: true, includeHidden: true)

// AFTER

let files = folder.files.recursive.includingHidden

Want an intro to lazy sequences? Check out "Swift sequences: The art of being lazy".

#67 Faster & more stable UI tests

My top 3 tips for faster & more stable UI tests:

📱 Reset the app's state at the beginning of every test.

🆔 Use accessibility identifiers instead of UI strings.

⏱ Use expectations instead of waiting time.

func testOpeningArticle() {
    // Launch the app with an argument that tells it to reset its state
    let app = XCUIApplication()
    app.launchArguments.append("--uitesting")
    app.launch()
    
    // Check that the app is displaying an activity indicator
    let activityIndicator = app.activityIndicator.element
    XCTAssertTrue(activityIndicator.exists)
    
    // Wait for the loading indicator to disappear = content is ready
    expectation(for: NSPredicate(format: "exists == 0"),
                evaluatedWith: activityIndicator)
                
    // Use a generous timeout in case the network is slow
    waitForExpectations(timeout: 10)
    
    // Tap the cell for the first article
    app.tables.cells["Article.0"].tap()
    
    // Assert that a label with the accessibility identifier "Article.Title" exists
    let label = app.staticTexts["Article.Title"]
    XCTAssertTrue(label.exists)
}

#66 Accessing the clipboard from a Swift script

📋 It's super easy to access the contents of the clipboard from a Swift script. A big benefit of Swift scripting is being able to use Cocoa's powerful APIs for Mac apps.

import Cocoa

let clipboard = NSPasteboard.general.string(forType: .string)

#65 Using tuples for view state

🎯 Using Swift tuples for view state can be a super nice way to group multiple properties together and render them reactively using the layout system.

By using a tuple we don't have to either introduce a new type or make our view model-aware.

class TextView: UIView {
    var state: (title: String?, text: String?) {
        // By telling UIKit that our view needs layout and binding our
        // state in layoutSubviews, we can react to state changes without
        // doing unnecessary layout work.
        didSet { setNeedsLayout() }
    }

    private let titleLabel = UILabel()
    private let textLabel = UILabel()

    override func layoutSubviews() {
        super.layoutSubviews()

        titleLabel.text = state.title
        textLabel.text = state.text

        ...
    }
}

#64 Throwing tests and LocalizedError

⚾️ Swift tests can throw, which is super useful in order to avoid complicated logic or force unwrapping. By making errors conform to LocalizedError, you can also get a nice error message in Xcode if there's a failure.

class ImageCacheTests: XCTestCase {
    func testCachingAndLoadingImage() throws {
        let bundle = Bundle(for: type(of: self))
        let cache = ImageCache(bundle: bundle)
        
        // Bonus tip: You can easily load images from your test
        // bundle using this UIImage initializer
        let image = try require(UIImage(named: "sample", in: bundle, compatibleWith: nil))
        try cache.cache(image, forKey: "key")
        
        let cachedImage = try cache.image(forKey: "key")
        XCTAssertEqual(image, cachedImage)
    }
}

enum ImageCacheError {
    case emptyKey
    case dataConversionFailed
}

// When using throwing tests, making your errors conform to
// LocalizedError will render a much nicer error message in
// Xcode (per default only the error code is shown).
extension ImageCacheError: LocalizedError {
    var errorDescription: String? {
        switch self {
        case .emptyKey:
            return "An empty key was given"
        case .dataConversionFailed:
            return "Failed to convert the given image to Data"
        }
    }
}

For more information, and the implementation of the require method used above, check out "Avoiding force unwrapping in Swift unit tests".

#63 The difference between static and class properties

✍️ Unlike static properties, class properties can be overridden by subclasses (however, they can't be stored, only computed).

class TableViewCell: UITableViewCell {
    class var preferredHeight: CGFloat { return 60 }
}

class TallTableViewCell: TableViewCell {
    override class var preferredHeight: CGFloat { return 100 }
}

#62 Creating extensions with static factory methods

👨‍🎨 Creating extensions with static factory methods can be a great alternative to subclassing in Swift, especially for things like setting up UIViews, CALayers or other kinds of styling.

It also lets you remove a lot of styling & setup from your view controllers.

extension UILabel {
    static func makeForTitle() -> UILabel {
        let label = UILabel()
        label.font = .boldSystemFont(ofSize: 24)
        label.textColor = .darkGray
        label.adjustsFontSizeToFitWidth = true
        label.minimumScaleFactor = 0.75
        return label
    }

    static func makeForText() -> UILabel {
        let label = UILabel()
        label.font = .systemFont(ofSize: 16)
        label.textColor = .black
        label.numberOfLines = 0
        return label
    }
}

class ArticleViewController: UIViewController {
    lazy var titleLabel = UILabel.makeForTitle()
    lazy var textLabel = UILabel.makeForText()
}

#61 Child view controller auto-resizing

🧒 An awesome thing about child view controllers is that they're automatically resized to match their parent, making them a super nice solution for things like loading & error views.

class ListViewController: UIViewController {
    func loadItems() {
        let loadingViewController = LoadingViewController()
        add(loadingViewController)

        dataLoader.loadItems { [weak self] result in
            loadingViewController.remove()
            self?.handle(result)
        }
    }
}

For more about child view controller (including the add and remove methods used above), check out "Using child view controllers as plugins in Swift".

#60 Using zip

🤐 Using the zip function in Swift you can easily combine two sequences. Super useful when using two sequences to do some work, since zip takes care of all the bounds-checking.

func render(titles: [String]) {
    for (label, text) in zip(titleLabels, titles) {
        print(text)
        label.text = text
    }
}

#59 Defining custom option sets

🎛 The awesome thing about option sets in Swift is that they can automatically either be passed as a single member or as a set. Even cooler is that you can easily define your own option sets as well, perfect for options and other non-exclusive values.

// Option sets are awesome, because you can easily pass them
// both using dot syntax and array literal syntax, like when
// using the UIView animation API:
UIView.animate(withDuration: 0.3,
               delay: 0,
               options: .allowUserInteraction,
               animations: animations)

UIView.animate(withDuration: 0.3,
               delay: 0,
               options: [.allowUserInteraction, .layoutSubviews],
               animations: animations)

// The cool thing is that you can easily define your own option
// sets as well, by defining a struct that has an Int rawValue,
// that will be used as a bit mask.
extension Cache {
    struct Options: OptionSet {
        static let saveToDisk = Options(rawValue: 1)
        static let clearOnMemoryWarning = Options(rawValue: 1 << 1)
        static let clearDaily = Options(rawValue: 1 << 2)

        let rawValue: Int
    }
}

// We can now use Cache.Options just like UIViewAnimationOptions:
Cache(options: .saveToDisk)
Cache(options: [.saveToDisk, .clearDaily])

#58 Using the where clause with associated types

🙌 Using the where clause when designing protocol-oriented APIs in Swift can let your implementations (or others' if it's open source) have a lot more freedom, especially when it comes to collections.

See "Using generic type constraints in Swift 4" for more info.

public protocol PathFinderMap {
    associatedtype Node
    // Using the 'where' clause for associated types, we can
    // ensure that a type meets certain requirements (in this
    // case that it's a sequence with Node elements).
    associatedtype NodeSequence: Sequence where NodeSequence.Element == Node

    // Instead of using a concrete type (like [Node]) here, we
    // give implementors of this protocol more freedom while
    // still meeting our requirements. For example, one
    // implementation might use Set<Node>.
    func neighbors(of node: Node) -> NodeSequence
}

#57 Using first class functions when iterating over a dictionary

👨‍🍳 Combine first class functions in Swift with the fact that Dictionary elements are (Key, Value) tuples and you can build yourself some pretty awesome functional chains when iterating over a Dictionary.

func makeActor(at coordinate: Coordinate, for building: Building) -> Actor {
    let actor = Actor()
    actor.position = coordinate.point
    actor.animation = building.animation
    return actor
}

func render(_ buildings: [Coordinate : Building]) {
    buildings.map(makeActor).forEach(add)
}

#56 Calling instance methods as static functions

😎 In Swift, you can call any instance method as a static function and it will return a closure representing that method. This is how running tests using SPM on Linux works.

More about this topic in my blog post "First class functions in Swift".

// This produces a '() -> Void' closure which is a reference to the
// given view's 'removeFromSuperview' method.
let closure = UIView.removeFromSuperview(view)

// We can now call it just like we would any other closure, and it
// will run 'view.removeFromSuperview()'
closure()

// This is how running tests using the Swift Package Manager on Linux
// works, you return your test functions as closures:
extension UserManagerTests {
    static var allTests = [
        ("testLoggingIn", testLoggingIn),
        ("testLoggingOut", testLoggingOut),
        ("testUserPermissions", testUserPermissions)
    ]
}

#55 Dropping suffixes from method names to support multiple arguments

👏 One really nice benefit of dropping suffixes from method names (and just using verbs, when possible) is that it becomes super easy to support both single and multiple arguments, and it works really well semantically.

extension UIView {
    func add(_ subviews: UIView...) {
        subviews.forEach(addSubview)
    }
}

view.add(button)
view.add(label)

// By dropping the "Subview" suffix from the method name, both
// single and multiple arguments work really well semantically.
view.add(button, label)

#54 Constraining protocols to classes to ensure mutability

👽 Using the AnyObject (or class) constraint on protocols is not only useful when defining delegates (or other weak references), but also when you always want instances to be mutable without copying.

// By constraining a protocol with 'AnyObject' it can only be adopted
// by classes, which means all instances will always be mutable, and
// that it's the original instance (not a copy) that will be mutated.
protocol DataContainer: AnyObject {
    var data: Data? { get set }
}

class UserSettingsManager {
    private var settings: Settings
    private let dataContainer: DataContainer

    // Since DataContainer is a protocol, we an easily mock it in
    // tests if we use dependency injection
    init(settings: Settings, dataContainer: DataContainer) {
        self.settings = settings
        self.dataContainer = dataContainer
    }

    func saveSettings() throws {
        let data = try settings.serialize()

        // We can now assign properties on an instance of our protocol
        // because the compiler knows it's always going to be a class
        dataContainer.data = data
    }
}

#53 String-based enums in string interpolation

🍣 Even if you define a custom raw value for a string-based enum in Swift, the full case name will be used in string interpolation.

Super useful when using separate raw values for JSON, while still wanting to use the full case name in other contexts.

extension Building {
    // This enum has custom raw values that are used when decoding
    // a value, for example from JSON.
    enum Kind: String {
        case castle = "C"
        case town = "T"
        case barracks = "B"
        case goldMine = "G"
        case camp = "CA"
        case blacksmith = "BL"
    }

    var animation: Animation {
        return Animation(
            // When used in string interpolation, the full case name is still used.
            // For 'castle' this will be 'buildings/castle'.
            name: "buildings/\(kind)",
            frameCount: frameCount,
            frameDuration: frameDuration
        )
    }
}

#52 Expressively comparing a value with a list of candidates

👨‍🔬 Continuing to experiment with expressive ways of comparing a value with a list of candidates in Swift. Adding an extension on Equatable is probably my favorite approach so far.

extension Equatable {
    func isAny(of candidates: Self...) -> Bool {
        return candidates.contains(self)
    }
}

let isHorizontal = direction.isAny(of: .left, .right)

See tip #35 for my previous experiment.

#51 UIView bounds and transforms

📐 A really interesting side-effect of a UIView's bounds being its rect within its own coordinate system is that transforms don't affect it at all. That's why it's usually a better fit than frame when doing layout calculations of subviews.

let view = UIView()
view.frame.size = CGSize(width: 100, height: 100)
view.transform = CGAffineTransform(scaleX: 2, y: 2)

print(view.frame) // (-50.0, -50.0, 200.0, 200.0)
print(view.bounds) // (0.0, 0.0, 100.0, 100.0)

#50 UIKit default arguments

👏 It's awesome that many UIKit APIs with completion handlers and other optional parameters import into Swift with default arguments (even though they are written in Objective-C). Getting rid of all those nil arguments is so nice!

// BEFORE: All parameters are specified, just like in Objective-C

viewController.present(modalViewController, animated: true, completion: nil)

modalViewController.dismiss(animated: true, completion: nil)

viewController.transition(from: loadingViewController,
                          to: contentViewController,
                          duration: 0.3,
                          options: [],
                          animations: animations,
                          completion: nil)

// AFTER: Since many UIKit APIs with completion handlers and other
// optional parameters import into Swift with default arguments,
// we can make our calls shorter

viewController.present(modalViewController, animated: true)

modalViewController.dismiss(animated: true)

viewController.transition(from: loadingViewController,
                          to: contentViewController,
                          duration: 0.3,
                          animations: animations)

#49 Avoiding Massive View Controllers

✂️ Avoiding Massive View Controllers is all about finding the right levels of abstraction and splitting things up.

My personal rule of thumb is that as soon as I have 3 methods or properties that have the same prefix, I break them out into their own type.

// BEFORE

class LoginViewController: UIViewController {
    private lazy var signUpLabel = UILabel()
    private lazy var signUpImageView = UIImageView()
    private lazy var signUpButton = UIButton()
}

// AFTER

class LoginViewController: UIViewController {
    private lazy var signUpView = SignUpView()
}

class SignUpView: UIView {
    private lazy var label = UILabel()
    private lazy var imageView = UIImageView()
    private lazy var button = UIButton()
}

#48 Extending optionals

❤️ I love the fact that optionals are enums in Swift - it makes it so easy to extend them with convenience APIs for certain types. Especially useful when doing things like data validation on optional values.

func validateTextFields() -> Bool {
    guard !usernameTextField.text.isNilOrEmpty else {
        return false
    }

    ...

    return true
}

// Since all optionals are actual enum values in Swift, we can easily
// extend them for certain types, to add our own convenience APIs

extension Optional where Wrapped == String {
    var isNilOrEmpty: Bool {
        switch self {
        case let string?:
            return string.isEmpty
        case nil:
            return true
        }
    }
}

// Since strings are now Collections in Swift 4, you can even
// add this property to all optional collections:

extension Optional where Wrapped: Collection {
    var isNilOrEmpty: Bool {
        switch self {
        case let collection?:
            return collection.isEmpty
        case nil:
            return true
        }
    }
}

#47 Using where with for-loops

🗺 Using the where keyword can be a super nice way to quickly apply a filter in a for-loop in Swift. You can of course use map, filter and forEach, or guard, but for simple loops I think this is very expressive and nice.

func archiveMarkedPosts() {
    for post in posts where post.isMarked {
        archive(post)
    }
}

func healAllies() {
    for player in players where player.isAllied(to: currentPlayer) {
        player.heal()
    }
}

#46 Variable shadowing

👻 Variable shadowing can be super useful in Swift, especially when you want to create a local copy of a parameter value in order to use it as state within a closure.

init(repeatMode: RepeatMode, closure: @escaping () -> UpdateOutcome) {
    // Shadow the argument with a local, mutable copy
    var repeatMode = repeatMode
    
    self.closure = {
        // With shadowing, there's no risk of accidentially
        // referring to the immutable version
        switch repeatMode {
        case .forever:
            break
        case .times(let count):
            guard count > 0 else {
                return .finished
            }
            
            // We can now capture the mutable version and use
            // it for state in a closure
            repeatMode = .times(count - 1)
        }
        
        return closure()
    }
}

#45 Using dot syntax for static properties and initializers

✒️ Dot syntax is one of my favorite features of Swift. What's really cool is that it's not only for enums, any static method or property can be used with dot syntax - even initializers! Perfect for convenience APIs and default parameters.

public enum RepeatMode {
    case times(Int)
    case forever
}

public extension RepeatMode {
    static var never: RepeatMode {
        return .times(0)
    }

    static var once: RepeatMode {
        return .times(1)
    }
}

view.perform(animation, repeated: .once)

// To make default parameters more compact, you can even use init with dot syntax

class ImageLoader {
    init(cache: Cache = .init(), decoder: ImageDecoder = .init()) {
        ...
    }
}

#44 Calling functions as closures with a tuple as parameters

🚀 One really cool aspect of Swift having first class functions is that you can pass any function (or even initializer) as a closure, and even call it with a tuple containing its parameters!

// This function lets us treat any "normal" function or method as
// a closure and run it with a tuple that contains its parameters
func call<Input, Output>(_ function: (Input) -> Output, with input: Input) -> Output {
    return function(input)
}

class ViewFactory {
    func makeHeaderView() -> HeaderView {
        // We can now pass an initializer as a closure, and a tuple
        // containing its parameters
        return call(HeaderView.init, with: loadTextStyles())
    }
    
    private func loadTextStyles() -> (font: UIFont, color: UIColor) {
        return (theme.font, theme.textColor)
    }
}

class HeaderView {
    init(font: UIFont, textColor: UIColor) {
        ...
    }
}

#43 Enabling static dependency injection

💉 If you've been struggling to test code that uses static APIs, here's a technique you can use to enable static dependency injection without having to modify any call sites:

// Before: Almost impossible to test due to the use of singletons

class Analytics {
    static func log(_ event: Event) {
        Database.shared.save(event)
        
        let dictionary = event.serialize()
        NetworkManager.shared.post(dictionary, to: eventURL)
    }
}

// After: Much easier to test, since we can inject mocks as arguments

class Analytics {
    static func log(_ event: Event,
                    database: Database = .shared,
                    networkManager: NetworkManager = .shared) {
        database.save(event)
        
        let dictionary = event.serialize()
        networkManager.post(dictionary, to: eventURL)
    }
}

#42 Type inference for lazy properties in Swift 4

🎉 In Swift 4, type inference works for lazy properties and you don't need to explicitly refer to self!

// Swift 3

class PurchaseView: UIView {
    private lazy var buyButton: UIButton = self.makeBuyButton()
    
    private func makeBuyButton() -> UIButton {
        let button = UIButton()
        button.setTitle("Buy", for: .normal)
        button.setTitleColor(.blue, for: .normal)
        return button
    }
}

// Swift 4

class PurchaseView: UIView {
    private lazy var buyButton = makeBuyButton()
    
    private func makeBuyButton() -> UIButton {
        let button = UIButton()
        button.setTitle("Buy", for: .normal)
        button.setTitleColor(.blue, for: .normal)
        return button
    }
}

#41 Converting Swift errors to NSError

😎 You can turn any Swift Error into an NSError, which is super useful when pattern matching with a code 👍. Also, switching on optionals is pretty cool!

let task = urlSession.dataTask(with: url) { data, _, error in
    switch error {
    case .some(let error as NSError) where error.code == NSURLErrorNotConnectedToInternet:
        presenter.showOfflineView()
    case .some(let error):
        presenter.showGenericErrorView()
    case .none:
        presenter.renderContent(from: data)
    }
}

task.resume()

Also make sure to check out Kostas Kremizas' tip about how you can pattern match directly against a member of URLError.

#40 Making UIImage macOS compatible

🖥 Here's an easy way to make iOS model code that uses UIImage macOS compatible - like me and Gui Rambo discussed on the Swift by Sundell Podcast.

// Either put this in a separate file that you only include in your macOS target or wrap the code in #if os(macOS) / #endif

import Cocoa

// Step 1: Typealias UIImage to NSImage
typealias UIImage = NSImage

// Step 2: You might want to add these APIs that UIImage has but NSImage doesn't.
extension NSImage {
    var cgImage: CGImage? {
        var proposedRect = CGRect(origin: .zero, size: size)

        return cgImage(forProposedRect: &proposedRect,
                       context: nil,
                       hints: nil)
    }

    convenience init?(named name: String) {
        self.init(named: Name(name))
    }
}

// Step 3: Profit - you can now make your model code that uses UIImage cross-platform!
struct User {
    let name: String
    let profileImage: UIImage
}

#39 Internally mutable protocol-oriented APIs

🤖 You can easily define a protocol-oriented API that can only be mutated internally, by using an internal protocol that extends a public one.

// Declare a public protocol that acts as your immutable API
public protocol ModelHolder {
    associatedtype Model
    var model: Model { get }
}

// Declare an extended, internal protocol that provides a mutable API
internal protocol MutableModelHolder: ModelHolder {
    var model: Model { get set }
}

// You can now implement the requirements using 'public internal(set)'
public class UserHolder: MutableModelHolder {
    public internal(set) var model: User

    internal init(model: User) {
        self.model = model
    }
}

#38 Switching on a set

🎛 You can switch on a set using array literals as cases in Swift! Can be really useful to avoid many if/else if statements.

class RoadTile: Tile {
    var connectedDirections = Set<Direction>()

    func render() {
        switch connectedDirections {
        case [.up, .down]:
            image = UIImage(named: "road-vertical")
        case [.left, .right]:
            image = UIImage(named: "road-horizontal")
        default:
            image = UIImage(named: "road")
        }
    }
}

#37 Adding the current locale to cache keys

🌍 When caching localized content in an app, it's a good idea to add the current locale to all keys, to prevent bugs when switching languages.

func cache(_ content: Content, forKey key: String) throws {
    let data = try wrap(content) as Data
    let key = localize(key: key)
    try storage.store(data, forKey: key)
}

func loadCachedContent(forKey key: String) -> Content? {
    let key = localize(key: key)
    let data = storage.loadData(forKey: key)
    return data.flatMap { try? unbox(data: $0) }
}

private func localize(key: String) -> String {
    return key + "-" + Bundle.main.preferredLocalizations[0]
}

#36 Setting up tests to avoid retain cycles with weak references

🚳 Here's an easy way to setup a test to avoid accidental retain cycles with object relationships (like weak delegates & observers) in Swift:

func testDelegateNotRetained() {
    // Assign the delegate (weak) and also retain it using a local var
    var delegate: Delegate? = DelegateMock()
    controller.delegate = delegate
    XCTAssertNotNil(controller.delegate)
    
    // Release the local var, which should also release the weak reference
    delegate = nil
    XCTAssertNil(controller.delegate)
}

#35 Expressively matching a value against a list of candidates

👨‍🔬 Playing around with an expressive way to check if a value matches any of a list of candidates in Swift:

// Instead of multiple conditions like this:

if string == "One" || string == "Two" || string == "Three" {

}

// You can now do:

if string == any(of: "One", "Two", "Three") {

}

You can find a gist with the implementation here.

#34 Organizing code using extensions

👪 APIs in a Swift extension automatically inherit its access control level, making it a neat way to organize public, internal & private APIs.

public extension Animation {
    init(textureNamed textureName: String) {
        frames = [Texture(name: textureName)]
    }
    
    init(texturesNamed textureNames: [String], frameDuration: TimeInterval = 1) {
        frames = textureNames.map(Texture.init)
        self.frameDuration = frameDuration
    }
    
    init(image: Image) {
        frames = [Texture(image: image)]
    }
}

internal extension Animation {
    func loadFrameImages() -> [Image] {
        return frames.map { $0.loadImageIfNeeded() }
    }
}

#33 Using map to transform an optional into a Result type

🗺 Using map you can transform an optional value into an optional Result type by simply passing in the enum case.

enum Result<Value> {
    case value(Value)
    case error(Error)
}

class Promise<Value> {
    private var result: Result<Value>?
    
    init(value: Value? = nil) {
        result = value.map(Result.value)
    }
}

#32 Assigning to self in struct initializers

👌 It's so nice that you can assign directly to self in struct initializers in Swift. Very useful when adding conformance to protocols.

extension Bool: AnswerConvertible {
    public init(input: String) throws {
        switch input.lowercased() {
        case "y", "yes", "👍":
            self = true
        default:
            self = false
        }
    }
}

#31 Recursively calling closures as inline functions

☎️ Defining Swift closures as inline functions enables you to recursively call them, which is super useful in things like custom sequences.

class Database {
    func records(matching query: Query) -> AnySequence<Record> {
        var recordIterator = loadRecords().makeIterator()
        
        func iterate() -> Record? {
            guard let nextRecord = recordIterator.next() else {
                return nil
            }
            
            guard nextRecord.matches(query) else {
                // Since the closure is an inline function, it can be recursively called,
                // in this case in order to advance to the next item.
                return iterate()
            }
            
            return nextRecord
        }
        
        // AnySequence/AnyIterator are part of the standard library and provide an easy way
        // to define custom sequences using closures.
        return AnySequence { AnyIterator(iterate) }
    }
}

Rob Napier points out that using the above might cause crashes if used on a large databaset, since Swift has no guaranteed Tail Call Optimization (TCO).

Slava Pestov also points out that another benefit of inline functions vs closures is that they can have their own generic parameter list.

#30 Passing self to required Objective-C dependencies

🏖 Using lazy properties in Swift, you can pass self to required Objective-C dependencies without having to use force-unwrapped optionals.

class DataLoader: NSObject {
    lazy var urlSession: URLSession = self.makeURLSession()
    
    private func makeURLSession() -> URLSession {
        return URLSession(configuration: .default, delegate: self, delegateQueue: .main)
    }
}

class Renderer {
    lazy var displayLink: CADisplayLink = self.makeDisplayLink()
    
    private func makeDisplayLink() -> CADisplayLink {
        return CADisplayLink(target: self, selector: #selector(screenDidRefresh))
    }
}

#29 Making weak or lazy properties readonly

👓 If you have a property in Swift that needs to be weak or lazy, you can still make it readonly by using private(set).

class Node {
    private(set) weak var parent: Node?
    private(set) lazy var children = [Node]()

    func add(child: Node) {
        children.append(child)
        child.parent = self
    }
}

#28 Defining static URLs using string literals

🌏 Tired of using URL(string: "url")! for static URLs? Make URL conform to ExpressibleByStringLiteral and you can now simply use "url" instead.

extension URL: ExpressibleByStringLiteral {
    // By using 'StaticString' we disable string interpolation, for safety
    public init(stringLiteral value: StaticString) {
        self = URL(string: "\(value)").require(hint: "Invalid URL string literal: \(value)")
    }
}

// We can now define URLs using static string literals 🎉
let url: URL = "https://www.swiftbysundell.com"
let task = URLSession.shared.dataTask(with: "https://www.swiftbysundell.com")

// In Swift 3 or earlier, you also have to implement 2 additional initializers
extension URL {
    public init(extendedGraphemeClusterLiteral value: StaticString) {
        self.init(stringLiteral: value)
    }

    public init(unicodeScalarLiteral value: StaticString) {
        self.init(stringLiteral: value)
    }
}

To find the extension that adds the require() method on Optional that I use above, check out Require.

#27 Manipulating points, sizes and frames using math operators

✚ I'm always careful with operator overloading, but for manipulating things like sizes, points & frames I find them super useful.

extension CGSize {
    static func *(lhs: CGSize, rhs: CGFloat) -> CGSize {
        return CGSize(width: lhs.width * rhs, height: lhs.height * rhs)
    }
}

button.frame.size = image.size * 2

If you like the above idea, check out CGOperators, which contains math operator overloads for all Core Graphics' vector types.

#26 Using closure types in generic constraints

🔗 You can use closure types in generic constraints in Swift. Enables nice APIs for handling sequences of closures.

extension Sequence where Element == () -> Void {
    func callAll() {
        forEach { $0() }
    }
}

extension Sequence where Element == () -> String {
    func joinedResults(separator: String) -> String {
        return map { $0() }.joined(separator: separator)
    }
}

callbacks.callAll()
let names = nameProviders.joinedResults(separator: ", ")

(If you're using Swift 3, you have to change Element to Iterator.Element)

#25 Using associated enum values to avoid state-specific optionals

🎉 Using associated enum values is a super nice way to encapsulate mutually exclusive state info (and avoiding state-specific optionals).

// BEFORE: Lots of state-specific, optional properties

class Player {
    var isWaitingForMatchMaking: Bool
    var invitingUser: User?
    var numberOfLives: Int
    var playerDefeatedBy: Player?
    var roundDefeatedIn: Int?
}

// AFTER: All state-specific information is encapsulated in enum cases

class Player {
    enum State {
        case waitingForMatchMaking
        case waitingForInviteResponse(from: User)
        case active(numberOfLives: Int)
        case defeated(by: Player, roundNumber: Int)
    }
    
    var state: State
}

#24 Using enums for async result types

👍 I really like using enums for all async result types, even boolean ones. Self-documenting, and makes the call site a lot nicer to read too!

protocol PushNotificationService {
    // Before
    func enablePushNotifications(completionHandler: @escaping (Bool) -> Void)
    
    // After
    func enablePushNotifications(completionHandler: @escaping (PushNotificationStatus) -> Void)
}

enum PushNotificationStatus {
    case enabled
    case disabled
}

service.enablePushNotifications { status in
    if status == .enabled {
        enableNotificationsButton.removeFromSuperview()
    }
}

#23 Working on async code in a playground

🏃 Want to work on your async code in a Swift Playground? Just set needsIndefiniteExecution to true to keep it running:

import PlaygroundSupport

PlaygroundPage.current.needsIndefiniteExecution = true

DispatchQueue.main.asyncAfter(deadline: .now() + 3) {
    let greeting = "Hello after 3 seconds"
    print(greeting)
}

To stop the playground from executing, simply call PlaygroundPage.current.finishExecution().

#22 Overriding self with a weak reference

💦 Avoid memory leaks when accidentially refering to self in closures by overriding it locally with a weak reference:

Swift >= 4.2

dataLoader.loadData(from: url) { [weak self] result in
    guard let self = self else { 
        return 
    }

    self.cache(result)
    
    ...

Swift < 4.2

dataLoader.loadData(from: url) { [weak self] result in
    guard let `self` = self else {
        return
    }

    self.cache(result)
    
    ...

Note that the reason the above currently works is because of a compiler bug (which I hope gets turned into a properly supported feature soon).

#21 Using DispatchWorkItem

🕓 Using dispatch work items you can easily cancel a delayed asynchronous GCD task if you no longer need it:

let workItem = DispatchWorkItem {
    // Your async code goes in here
}

// Execute the work item after 1 second
DispatchQueue.main.asyncAfter(deadline: .now() + 1, execute: workItem)

// You can cancel the work item if you no longer need it
workItem.cancel()

#20 Combining a sequence of functions

➕ While working on a new Swift developer tool (to be open sourced soon 😉), I came up with a pretty neat way of organizing its sequence of operations, by combining their functions into a closure:

internal func +<A, B, C>(lhs: @escaping (A) throws -> B,
                         rhs: @escaping (B) throws -> C) -> (A) throws -> C {
    return { try rhs(lhs($0)) }
}

public func run() throws {
    try (determineTarget + build + analyze + output)()
}

If you're familiar with the functional programming world, you might know the above technique as the pipe operator (thanks to Alexey Demedreckiy for pointing this out!)

#19 Chaining optionals with map() and flatMap()

🗺 Using map() and flatMap() on optionals you can chain multiple operations without having to use lengthy if lets or guards:

// BEFORE

guard let string = argument(at: 1) else {
    return
}

guard let url = URL(string: string) else {
    return
}

handle(url)

// AFTER

argument(at: 1).flatMap(URL.init).map(handle)

#18 Using self-executing closures for lazy properties

🚀 Using self-executing closures is a great way to encapsulate lazy property initialization:

class StoreViewController: UIViewController {
    private lazy var collectionView: UICollectionView = {
        let layout = UICollectionViewFlowLayout()
        let view = UICollectionView(frame: self.view.bounds, collectionViewLayout: layout)
        view.delegate = self
        view.dataSource = self
        return view
    }()
    
    override func viewDidLoad() {
        super.viewDidLoad()
        view.addSubview(collectionView)
    }
}

#17 Speeding up Swift package tests

⚡️ You can speed up your Swift package tests using the --parallel flag. For Marathon, the tests execute 3 times faster that way!

swift test --parallel

#16 Avoiding mocking UserDefaults

🛠 Struggling with mocking UserDefaults in a test? The good news is: you don't need mocking - just create a real instance:

class LoginTests: XCTestCase {
    private var userDefaults: UserDefaults!
    private var manager: LoginManager!
    
    override func setUp() {
        super.setup()
        
        userDefaults = UserDefaults(suiteName: #file)
        userDefaults.removePersistentDomain(forName: #file)
        
        manager = LoginManager(userDefaults: userDefaults)
    }
}

#15 Using variadic parameters

👍 Using variadic parameters in Swift, you can create some really nice APIs that take a list of objects without having to use an array:

extension Canvas {
    func add(_ shapes: Shape...) {
        shapes.forEach(add)
    }
}

let circle = Circle(center: CGPoint(x: 5, y: 5), radius: 5)
let lineA = Line(start: .zero, end: CGPoint(x: 10, y: 10))
let lineB = Line(start: CGPoint(x: 0, y: 10), end: CGPoint(x: 10, y: 0))

let canvas = Canvas()
canvas.add(circle, lineA, lineB)
canvas.render()

#14 Referring to enum cases with associated values as closures

😮 Just like you can refer to a Swift function as a closure, you can do the same thing with enum cases with associated values:

enum UnboxPath {
    case key(String)
    case keyPath(String)
}

struct UserSchema {
    static let name = key("name")
    static let age = key("age")
    static let posts = key("posts")
    
    private static let key = UnboxPath.key
}

#13 Using the === operator to compare objects by instance

📈 The === operator lets you check if two objects are the same instance. Very useful when verifying that an array contains an instance in a test:

protocol InstanceEquatable: class, Equatable {}

extension InstanceEquatable {
    static func ==(lhs: Self, rhs: Self) -> Bool {
        return lhs === rhs
    }
}

extension Enemy: InstanceEquatable {}

func testDestroyingEnemy() {
    player.attack(enemy)
    XCTAssertTrue(player.destroyedEnemies.contains(enemy))
}

#12 Calling initializers with dot syntax and passing them as closures

😎 Cool thing about Swift initializers: you can call them using dot syntax and pass them as closures! Perfect for mocking dates in tests.

class Logger {
    private let storage: LogStorage
    private let dateProvider: () -> Date
    
    init(storage: LogStorage = .init(), dateProvider: @escaping () -> Date = Date.init) {
        self.storage = storage
        self.dateProvider = dateProvider
    }
    
    func log(event: Event) {
        storage.store(event: event, date: dateProvider())
    }
}

#11 Structuring UI tests as extensions on XCUIApplication

📱 Most of my UI testing logic is now categories on XCUIApplication. Makes the test cases really easy to read:

func testLoggingInAndOut() {
    XCTAssertFalse(app.userIsLoggedIn)
    
    app.launch()
    app.login()
    XCTAssertTrue(app.userIsLoggedIn)
    
    app.logout()
    XCTAssertFalse(app.userIsLoggedIn)
}

func testDisplayingCategories() {
    XCTAssertFalse(app.isDisplayingCategories)
    
    app.launch()
    app.login()
    app.goToCategories()
    XCTAssertTrue(app.isDisplayingCategories)
}

#10 Avoiding default cases in switch statements

🙂 It’s a good idea to avoid “default” cases when switching on Swift enums - it’ll “force you” to update your logic when a new case is added:

enum State {
    case loggedIn
    case loggedOut
    case onboarding
}

func handle(_ state: State) {
    switch state {
    case .loggedIn:
        showMainUI()
    case .loggedOut:
        showLoginUI()
    // Compiler error: Switch must be exhaustive
    }
}

#9 Using the guard statement in many different scopes

💂 It's really cool that you can use Swift's 'guard' statement to exit out of pretty much any scope, not only return from functions:

// You can use the 'guard' statement to...

for string in strings {
    // ...continue an iteration
    guard shouldProcess(string) else {
        continue
    }
    
    // ...or break it
    guard !shouldBreak(for: string) else {
        break
    }
    
    // ...or return
    guard !shouldReturn(for: string) else {
        return
    }
    
    // ..or throw an error
    guard string.isValid else {
        throw StringError.invalid(string)
    }
    
    // ...or exit the program
    guard !shouldExit(for: string) else {
        exit(1)
    }
}

#8 Passing functions & operators as closures

❤️ Love how you can pass functions & operators as closures in Swift. For example, it makes the syntax for sorting arrays really nice!

let array = [3, 9, 1, 4, 6, 2]
let sorted = array.sorted(by: <)

#7 Using #function for UserDefaults key consistency

🗝 Here's a neat little trick I use to get UserDefault key consistency in Swift (#function expands to the property name in getters/setters). Just remember to write a good suite of tests that'll guard you against bugs when changing property names.

extension UserDefaults {
    var onboardingCompleted: Bool {
        get { return bool(forKey: #function) }
        set { set(newValue, forKey: #function) }
    }
}

#6 Using a name already taken by the standard library

📛 Want to use a name already taken by the standard library for a nested type? No problem - just use Swift. to disambiguate:

extension Command {
    enum Error: Swift.Error {
        case missing
        case invalid(String)
    }
}

#5 Using Wrap to implement Equatable

📦 Playing around with using Wrap to implement Equatable for any type, primarily for testing:

protocol AutoEquatable: Equatable {}

extension AutoEquatable {
    static func ==(lhs: Self, rhs: Self) -> Bool {
        let lhsData = try! wrap(lhs) as Data
        let rhsData = try! wrap(rhs) as Data
        return lhsData == rhsData
    }
}

#4 Using typealiases to reduce the length of method signatures

📏 One thing that I find really useful in Swift is to use typealiases to reduce the length of method signatures in generic types:

public class PathFinder<Object: PathFinderObject> {
    public typealias Map = Object.Map
    public typealias Node = Map.Node
    public typealias Path = PathFinderPath<Object>
    
    public static func possiblePaths(for object: Object, at rootNode: Node, on map: Map) -> Path.Sequence {
        return .init(object: object, rootNode: rootNode, map: map)
    }
}

#3 Referencing either external or internal parameter name when writing docs

📖 You can reference either the external or internal parameter label when writing Swift docs - and they get parsed the same:

// EITHER:

class Foo {
    /**
    *   - parameter string: A string
    */
    func bar(with string: String) {}
}

// OR:

class Foo {
    /**
    *   - parameter with: A string
    */
    func bar(with string: String) {}
}

#2 Using auto closures

👍 Finding more and more uses for auto closures in Swift. Can enable some pretty nice APIs:

extension Dictionary {
    mutating func value(for key: Key, orAdd valueClosure: @autoclosure () -> Value) -> Value {
        if let value = self[key] {
            return value
        }
        
        let value = valueClosure()
        self[key] = value
        return value
    }
}

#1 Namespacing with nested types

🚀 I’ve started to become a really big fan of nested types in Swift. Love the additional namespacing it gives you!

public struct Map {
    public struct Model {
        public let size: Size
        public let theme: Theme
        public var terrain: [Position : Terrain.Model]
        public var units: [Position : Unit.Model]
        public var buildings: [Position : Building.Model]
    }
    
    public enum Direction {
        case up
        case right
        case down
        case left
    }
    
    public struct Position {
        public var x: Int
        public var y: Int
    }
    
    public enum Size: String {
        case small = "S"
        case medium = "M"
        case large = "L"
        case extraLarge = "XL"
    }
}

Download Details:

Author: JohnSundell
Source code: https://github.com/JohnSundell/SwiftTips

License: MIT license
#swift 

Vincent Lab

Vincent Lab

1605017502

The Difference Between Regular Functions and Arrow Functions in JavaScript

Other then the syntactical differences. The main difference is the way the this keyword behaves? In an arrow function, the this keyword remains the same throughout the life-cycle of the function and is always bound to the value of this in the closest non-arrow parent function. Arrow functions can never be constructor functions so they can never be invoked with the new keyword. And they can never have duplicate named parameters like a regular function not using strict mode.

Here are a few code examples to show you some of the differences
this.name = "Bob";

const person = {
name: “Jon”,

<span style="color: #008000">// Regular function</span>
func1: <span style="color: #0000ff">function</span> () {
    console.log(<span style="color: #0000ff">this</span>);
},

<span style="color: #008000">// Arrow function</span>
func2: () =&gt; {
    console.log(<span style="color: #0000ff">this</span>);
}

}

person.func1(); // Call the Regular function
// Output: {name:“Jon”, func1:[Function: func1], func2:[Function: func2]}

person.func2(); // Call the Arrow function
// Output: {name:“Bob”}

The new keyword with an arrow function
const person = (name) => console.log("Your name is " + name);
const bob = new person("Bob");
// Uncaught TypeError: person is not a constructor

If you want to see a visual presentation on the differences, then you can see the video below:

#arrow functions #javascript #regular functions #arrow functions vs normal functions #difference between functions and arrow functions

Sigrid  Farrell

Sigrid Farrell

1623718560

Top 10 Critical Spring Boot Interview Questions and Answers [For Beginners & Experienced]

offers powerful features for the rapid development of deployment-ready applications. It is the most used and best java framework for the development of scalable microservices and web applications.

If you want to become a domain expert, you have come to the right place. We have curated some the most repeatedly asked spring boot interview questions and answers to help you ace the interview.

Basic Spring Boot Interview Questions And Answers

Technical Spring Boot Interview Questions And Answers

Conclusion

#full stack development #interview question answer #spring boot interview questions answer #top spring boot interview questions #top 10 critical spring boot interview questions #answers

Derek  Champlin

Derek Champlin

1597209420

Oracle Coding Interview Questions

Daily coding problems

They are a wide variety of questions inspired by real programming interviews, with in-depth solutions that clearly take you through each core concept.

Get exceptionally good at coding interviews by solving one problem every day.

We will together solve these problems using JavaScript.

Problem #1

Question

We say a number is sparse if there are no adjacent ones in its binary representation.

For example, 21 (10101) is sparse, but 22 (10110) is not. For a given input N, find the smallest sparse number greater than or equal to N.

Do this in faster than O(N log N) time.

Solution

First of all, convert a integer to binary as follows.

Then we implement the following get_next_sparse(num) function that returns the smallest sparse number greater than or equal num.

We loop through an array of string and break when the current digit and previous digit are equal to the string of 1 and then create the array of zeros as follows.

#technology #interview #interview-questions #javascript #javascript-tips