How to Creating Reusable Angular Components

In this article, I want to introduce you to the techniques available with Angular to build components by sharing as much code as possible:

  • Class inheritance
  • Class mixins
  • Component composition

Component Class Inheritance

My least favorite, but also the most used way to share code among Angular components, is ES6 class inheritance using the extends keyword.

ES6 class inheritance is seen as hugely controversial in the Javascript community for various reasons, but it is still incredibly used in the Angular world; when used in the right way and is not abused, the technique is a decent solution for sharing code between components.

Let’s see an example of extending a component with inheritance by creating a component ListComponent, extended by two more abstract classes that extend the functionality of the base class, and then we implement these with the actual Angular component.

A common way of using this technique is to create an abstract class and define there the methods shared by all the subclasses. A subclass may have to implement the abstract methods or override the existing ones.

ListComponent Base class

The Base class is very simple: we simply define the Input items.

export abstract class ListComponent {
  @Input() items: Item[];
}

Next, we want to extend the functionality of a simple list with pagination and selection. Therefore, we proceed and extend BaseList with two more abstract classes.

PageableListComponent

The component PageableListComponent extends ListComponent and adds pagination functionality.

export abstract class PageableListComponent extends ListComponent {
    page = 0;
    itemsPerPage = 2;
    get start() {
     return this.page * this.itemsPerPage;
    }
    get end() {
     return this.page * this.itemsPerPage + this.itemsPerPage;
    }
    get pages() {
      return new Array(this.items.length / this.itemsPerPage);
    }
 
    changePage(page: number) {
      this.page = page;
    }
}

SelectableListComponent

The component SelectableListComponent extends PageableListComponent and adds selection/unselection functionality.


export abstract class SelectableListComponent extends PageableListComponent {
  @Output() selected = new EventEmitter<Item>();
  @Output() unselected = new EventEmitter<Item>();
  
  selectedItems: Item[] = [];
  select(item: Item) {
    this.selected.emit(item);
    this.selectedItems = [...this.selectedItems, item];
  }
 
  unselect(item: Item) {
    this.unselected.emit(item);
    this.selectedItems = this.selectedItems.filter(({value}) => value !== item.value);
  }
  
  isItemSelected(item: Item) {
    return this.selectedItems.some(({value}) => item.value === value);
  }
}

Implementation component: CustomersListComponent

Finally, we create an implementation of the class CustomersListComponent and extend it SelectableListComponent. The template and the component will have access to all the outputs and inputs we specified in the other classes.

@Component({
  selector: 'customers-list',
  template: `
    <div *ngFor="let item of items | slice: start : end">
     <label>
       <input
         type="checkbox"
         [checked]="isItemSelected(item)"
         (change)="
           $event.target.checked ? select(item) : unselect(item)
         "
       />
      {{ item.display }}
     </label>
    </div>
    <div class='pages'>
    <div *ngFor="let p of pages; let i = index;" 
         class='page' 
         [class.selected]="i === page" 
         (click)="changePage(i)"
     >
     {{ i }}
    </div>
  </div>
`
})
export class CustomersListComponent extends SelectableListComponent {}
// USAGE
<customers-list [items]="customers" 
                (selected)="onSelected($event)"               
                (unselected)="onUnselected($event)"
></customers-list>

We can also create a subclass from CustomersListComponent, although the decorator’s metadata will have to be redefined. That means we will need to assign a new selector, template, styles, etc. to the new component. If you want to reuse them, then you can point the URLs to the parent class’:

@Component({
  selector: 'new-customers-list',
  templateUrl: '../customers-list/customers-list.component.html'
})
export class NewCustomersListComponent extends CustomersListComponent {}

Component Class Mixins

In order to share logic between Angular component classes, we can also leverage a less-known method known as Mixins. Mixins allow us to compose multiple small classes that extend the target class but without having to use multiple inheritance.

An Example of Typescript Mixin

Let’s demonstrate what a mixin is with a simple example. First, we define a base class:

class BaseButton {
  label: string;
  disabled: boolean;
}

Next, we define a function that extends the base class with a new mini-class

function themeMixin(BaseClass) {
    return class extends BaseClass {
      theme: string;
    }
}

Finally, we extend the BaseButton class with the mixin:


class PrimaryButton extends themeMixin(BaseButton) {}

Building CustomersListComponent using Mixins

Let’s rewrite the CustomersListComponent example using mixins.

export function pageableListMixin(BaseClass) {
  return class extends BaseClass {
    page = 0;
    itemsPerPage = 2;
    get pages() {
      return new Array(this.items.length / this.itemsPerPage);
    }
 
    changePage(page: number) {
      this.page = page;
    }
    get start() {
     return this.page * this.itemsPerPage;
    }
    get end() {
     return this.page * this.itemsPerPage + this.itemsPerPage;
    }
}
export function selectableListMixin(BaseClass) {
  class SelectableListMixin extends BaseClass {
    @Output() selected = new EventEmitter<Item>();
    @Output() unselected = new EventEmitter<Item>();
  
    selectedItems: Item[] = [];
    select(item: Item) {
      this.selected.emit(item);
      this.selectedItems = [...this.selectedItems, item];
    }
 
    unselect(item: Item) {
      this.unselected.emit(item);
      this.selectedItems = this.selectedItems.filter(({value}) => {
        return value !== item.value;
      });
    }
  
    isItemSelected(item: Item) {
      return this.selectedItems.some(({value}) => {
        return item.value === value;
      });
    }
  }
  
  return SelectableListMixin;
}

Once we define all the mixins we need to compose the component, we import the mixins and pass the Base class as an argument.

Then, we simply extend CustomersListComponent with the mixin CustomersListMixin.

const CustomersListMixin = 
  selectableListMixin(
    pageableListMixin(ListComponent)
  );
@Component(...)
export class CustomersListComponent extends CustomersListMixin {}

While also Mixins have several pitfalls, this is, in my opinion, a more elegant and safer solution to multiple inheritance, at least in the long term.

Component Composition

The component composition is a technique that complements inheritance and mixins: instead of extending a component with more functionality, we can combine multiple smaller components to achieve the same result.

ListComponent: Leveraging the Power of ngTemplateOutlet

The first component we can create is a generic, reusable component ListComponent: its responsibility is to simply render the items based on start and end indexes as provided by the parent component.

As you can see, the component does not dictate how to render each individual item: we let the parent define that by providing ngTemplateOutlet and passing each item as context.


@Component({
  selector: "list",
  template: `
    <div *ngFor="let item of items | slice : start : end">
      <ng-container 
       *ngTemplateOutlet="template; context: { item: item }"
      >
      </ng-container>
    </div>
`
})
export class ListComponent {
  @Input() items: Item[] = [];
  @Input() itemsPerPage = 2;
  @Input() currentPage: number;
  
  @ContentChild('item', { static: false }) 
  template: TemplateRef<any>;
  get start() {
    return this.currentPage * this.itemsPerPage;
  }
  get end() {
    return this.currentPage * this.itemsPerPage + this.itemsPerPage;
   }
}

PaginationComponent

Then, we add a pagination component that takes care of listing the page numbers, and to notify the parent when the user clicks on a page:

@Component({
  selector: "pagination",
  template: `
    <div class="pages">
      <div
       *ngFor="let p of pages; let i = index"
       class="page"
       [class.selected]="i === currentPage
       (click)="pageChanged.emit(i)"
      >{{ i }}
      </div>
   </div>
`
})
export class PaginationComponent {
  @Input() currentPage: number;
  @Input() itemsPerPage = 2;
  @Input() itemsLength: number;
  
  @Output() pageChanged = new EventEmitter<number>();
  
  get pages() {
    return new Array(this.itemsLength / this.itemsPerPage);
  }
}

CustomerComponent

Next, we define a component to represent each item in the list: it takes care of defining how the item is displayed, and dispatch events when the item is selected or unselected:

@Component({
  selector: "customer",
  template: ` 
    <label>
      <input
        type="checkbox"
        [checked]="isSelected"
        (change)="$event.target.checked ? selected.emit(item) : unselected.emit(item)"
      />
      {{ item.display }}
   </label>
`
})
export class CustomerComponent {
  @Input() item: Item;
  @Input() isSelected: boolean;
  @Output() selected = new EventEmitter<Item>();
  @Output() unselected = new EventEmitter<Item>();
}

CustomersListComponent

It’s now time to put things together! We can reuse the previously defined components to compose a list of customers, that is selectable and pageable. These components are all reusable and can be composed with any other list.


@Component({
  selector: "composition-customers-list",
  template: `
    <list
     [items]="items"
     [itemsPerPage]="2"
     [currentPage]="currentPage"
    >
     <ng-template #item let-item="item">
       <customer
        (selected)="selected($event)"
        (unselected)="unselected($event)"
        [item]="item"
        [isSelected]="isItemSelected(item)"
       ></customer>
     </ng-template>
    </list>
 
    <pagination
     [currentPage]="currentPage"
     [itemsLength]="items.length"
     [itemsPerPage]="2"
     (pageChanged)="currentPage = $event"
    ></pagination>
`
})
export class CompositionCustomersListComponent {
  @Input() items = [];
  
  currentPage = 0;
  selectedItems = [];
  
  selected(item) {
    this.selectedItems = [...this.selectedItems, item];
  }
  unselected(item) {
    this.selectedItems = this.selectedItems.filter(({ value }) => value !== item.value);
  }
  isItemSelected(item) {
    return this.selectedItems.some(({ value }) => item.value === value);
  }
}

Component composition is the ultimate way to create highly-reusable, clean, and effective components, and is easily my favorite way of thinking about sharing code and reusability.

Instead of writing God components, we can reuse many smaller ones. Getting right the public API of each component is fundamental for them to work well with the rest of your application.

As you can see above, we still have some repeated logic due to some methods being rewritten for each list we create: that’s why using one technique is not exclusive: we can easily combine this with a mixin that takes care of selection, so we do not have to rewrite it for other lists.

Source code

You can find all the examples’ code at this

In this article, we went through three techniques for sharing code between components.

If it wasn’t clear by now, I am not a fan of inheritance and multiple inheritances, but I think it’s still very important to know and recognize when it’s a good idea to use and when it’s not.

Happy Coding !

#angular

What is GEEK

Buddha Community

How to Creating Reusable Angular Components
Easter  Deckow

Easter Deckow

1655630160

PyTumblr: A Python Tumblr API v2 Client

PyTumblr

Installation

Install via pip:

$ pip install pytumblr

Install from source:

$ git clone https://github.com/tumblr/pytumblr.git
$ cd pytumblr
$ python setup.py install

Usage

Create a client

A pytumblr.TumblrRestClient is the object you'll make all of your calls to the Tumblr API through. Creating one is this easy:

client = pytumblr.TumblrRestClient(
    '<consumer_key>',
    '<consumer_secret>',
    '<oauth_token>',
    '<oauth_secret>',
)

client.info() # Grabs the current user information

Two easy ways to get your credentials to are:

  1. The built-in interactive_console.py tool (if you already have a consumer key & secret)
  2. The Tumblr API console at https://api.tumblr.com/console
  3. Get sample login code at https://api.tumblr.com/console/calls/user/info

Supported Methods

User Methods

client.info() # get information about the authenticating user
client.dashboard() # get the dashboard for the authenticating user
client.likes() # get the likes for the authenticating user
client.following() # get the blogs followed by the authenticating user

client.follow('codingjester.tumblr.com') # follow a blog
client.unfollow('codingjester.tumblr.com') # unfollow a blog

client.like(id, reblogkey) # like a post
client.unlike(id, reblogkey) # unlike a post

Blog Methods

client.blog_info(blogName) # get information about a blog
client.posts(blogName, **params) # get posts for a blog
client.avatar(blogName) # get the avatar for a blog
client.blog_likes(blogName) # get the likes on a blog
client.followers(blogName) # get the followers of a blog
client.blog_following(blogName) # get the publicly exposed blogs that [blogName] follows
client.queue(blogName) # get the queue for a given blog
client.submission(blogName) # get the submissions for a given blog

Post Methods

Creating posts

PyTumblr lets you create all of the various types that Tumblr supports. When using these types there are a few defaults that are able to be used with any post type.

The default supported types are described below.

  • state - a string, the state of the post. Supported types are published, draft, queue, private
  • tags - a list, a list of strings that you want tagged on the post. eg: ["testing", "magic", "1"]
  • tweet - a string, the string of the customized tweet you want. eg: "Man I love my mega awesome post!"
  • date - a string, the customized GMT that you want
  • format - a string, the format that your post is in. Support types are html or markdown
  • slug - a string, the slug for the url of the post you want

We'll show examples throughout of these default examples while showcasing all the specific post types.

Creating a photo post

Creating a photo post supports a bunch of different options plus the described default options * caption - a string, the user supplied caption * link - a string, the "click-through" url for the photo * source - a string, the url for the photo you want to use (use this or the data parameter) * data - a list or string, a list of filepaths or a single file path for multipart file upload

#Creates a photo post using a source URL
client.create_photo(blogName, state="published", tags=["testing", "ok"],
                    source="https://68.media.tumblr.com/b965fbb2e501610a29d80ffb6fb3e1ad/tumblr_n55vdeTse11rn1906o1_500.jpg")

#Creates a photo post using a local filepath
client.create_photo(blogName, state="queue", tags=["testing", "ok"],
                    tweet="Woah this is an incredible sweet post [URL]",
                    data="/Users/johnb/path/to/my/image.jpg")

#Creates a photoset post using several local filepaths
client.create_photo(blogName, state="draft", tags=["jb is cool"], format="markdown",
                    data=["/Users/johnb/path/to/my/image.jpg", "/Users/johnb/Pictures/kittens.jpg"],
                    caption="## Mega sweet kittens")

Creating a text post

Creating a text post supports the same options as default and just a two other parameters * title - a string, the optional title for the post. Supports markdown or html * body - a string, the body of the of the post. Supports markdown or html

#Creating a text post
client.create_text(blogName, state="published", slug="testing-text-posts", title="Testing", body="testing1 2 3 4")

Creating a quote post

Creating a quote post supports the same options as default and two other parameter * quote - a string, the full text of the qote. Supports markdown or html * source - a string, the cited source. HTML supported

#Creating a quote post
client.create_quote(blogName, state="queue", quote="I am the Walrus", source="Ringo")

Creating a link post

  • title - a string, the title of post that you want. Supports HTML entities.
  • url - a string, the url that you want to create a link post for.
  • description - a string, the desciption of the link that you have
#Create a link post
client.create_link(blogName, title="I like to search things, you should too.", url="https://duckduckgo.com",
                   description="Search is pretty cool when a duck does it.")

Creating a chat post

Creating a chat post supports the same options as default and two other parameters * title - a string, the title of the chat post * conversation - a string, the text of the conversation/chat, with diablog labels (no html)

#Create a chat post
chat = """John: Testing can be fun!
Renee: Testing is tedious and so are you.
John: Aw.
"""
client.create_chat(blogName, title="Renee just doesn't understand.", conversation=chat, tags=["renee", "testing"])

Creating an audio post

Creating an audio post allows for all default options and a has 3 other parameters. The only thing to keep in mind while dealing with audio posts is to make sure that you use the external_url parameter or data. You cannot use both at the same time. * caption - a string, the caption for your post * external_url - a string, the url of the site that hosts the audio file * data - a string, the filepath of the audio file you want to upload to Tumblr

#Creating an audio file
client.create_audio(blogName, caption="Rock out.", data="/Users/johnb/Music/my/new/sweet/album.mp3")

#lets use soundcloud!
client.create_audio(blogName, caption="Mega rock out.", external_url="https://soundcloud.com/skrillex/sets/recess")

Creating a video post

Creating a video post allows for all default options and has three other options. Like the other post types, it has some restrictions. You cannot use the embed and data parameters at the same time. * caption - a string, the caption for your post * embed - a string, the HTML embed code for the video * data - a string, the path of the file you want to upload

#Creating an upload from YouTube
client.create_video(blogName, caption="Jon Snow. Mega ridiculous sword.",
                    embed="http://www.youtube.com/watch?v=40pUYLacrj4")

#Creating a video post from local file
client.create_video(blogName, caption="testing", data="/Users/johnb/testing/ok/blah.mov")

Editing a post

Updating a post requires you knowing what type a post you're updating. You'll be able to supply to the post any of the options given above for updates.

client.edit_post(blogName, id=post_id, type="text", title="Updated")
client.edit_post(blogName, id=post_id, type="photo", data="/Users/johnb/mega/awesome.jpg")

Reblogging a Post

Reblogging a post just requires knowing the post id and the reblog key, which is supplied in the JSON of any post object.

client.reblog(blogName, id=125356, reblog_key="reblog_key")

Deleting a post

Deleting just requires that you own the post and have the post id

client.delete_post(blogName, 123456) # Deletes your post :(

A note on tags: When passing tags, as params, please pass them as a list (not a comma-separated string):

client.create_text(blogName, tags=['hello', 'world'], ...)

Getting notes for a post

In order to get the notes for a post, you need to have the post id and the blog that it is on.

data = client.notes(blogName, id='123456')

The results include a timestamp you can use to make future calls.

data = client.notes(blogName, id='123456', before_timestamp=data["_links"]["next"]["query_params"]["before_timestamp"])

Tagged Methods

# get posts with a given tag
client.tagged(tag, **params)

Using the interactive console

This client comes with a nice interactive console to run you through the OAuth process, grab your tokens (and store them for future use).

You'll need pyyaml installed to run it, but then it's just:

$ python interactive-console.py

and away you go! Tokens are stored in ~/.tumblr and are also shared by other Tumblr API clients like the Ruby client.

Running tests

The tests (and coverage reports) are run with nose, like this:

python setup.py test

Author: tumblr
Source Code: https://github.com/tumblr/pytumblr
License: Apache-2.0 license

#python #api 

Tamale  Moses

Tamale Moses

1669003576

Exploring Mutable and Immutable in Python

In this Python article, let's learn about Mutable and Immutable in Python. 

Mutable and Immutable in Python

Mutable is a fancy way of saying that the internal state of the object is changed/mutated. So, the simplest definition is: An object whose internal state can be changed is mutable. On the other hand, immutable doesn’t allow any change in the object once it has been created.

Both of these states are integral to Python data structure. If you want to become more knowledgeable in the entire Python Data Structure, take this free course which covers multiple data structures in Python including tuple data structure which is immutable. You will also receive a certificate on completion which is sure to add value to your portfolio.

Mutable Definition

Mutable is when something is changeable or has the ability to change. In Python, ‘mutable’ is the ability of objects to change their values. These are often the objects that store a collection of data.

Immutable Definition

Immutable is the when no change is possible over time. In Python, if the value of an object cannot be changed over time, then it is known as immutable. Once created, the value of these objects is permanent.

List of Mutable and Immutable objects

Objects of built-in type that are mutable are:

  • Lists
  • Sets
  • Dictionaries
  • User-Defined Classes (It purely depends upon the user to define the characteristics) 

Objects of built-in type that are immutable are:

  • Numbers (Integer, Rational, Float, Decimal, Complex & Booleans)
  • Strings
  • Tuples
  • Frozen Sets
  • User-Defined Classes (It purely depends upon the user to define the characteristics)

Object mutability is one of the characteristics that makes Python a dynamically typed language. Though Mutable and Immutable in Python is a very basic concept, it can at times be a little confusing due to the intransitive nature of immutability.

Objects in Python

In Python, everything is treated as an object. Every object has these three attributes:

  • Identity – This refers to the address that the object refers to in the computer’s memory.
  • Type – This refers to the kind of object that is created. For example- integer, list, string etc. 
  • Value – This refers to the value stored by the object. For example – List=[1,2,3] would hold the numbers 1,2 and 3

While ID and Type cannot be changed once it’s created, values can be changed for Mutable objects.

Check out this free python certificate course to get started with Python.

Mutable Objects in Python

I believe, rather than diving deep into the theory aspects of mutable and immutable in Python, a simple code would be the best way to depict what it means in Python. Hence, let us discuss the below code step-by-step:

#Creating a list which contains name of Indian cities  

cities = [‘Delhi’, ‘Mumbai’, ‘Kolkata’]

# Printing the elements from the list cities, separated by a comma & space

for city in cities:
		print(city, end=’, ’)

Output [1]: Delhi, Mumbai, Kolkata

#Printing the location of the object created in the memory address in hexadecimal format

print(hex(id(cities)))

Output [2]: 0x1691d7de8c8

#Adding a new city to the list cities

cities.append(‘Chennai’)

#Printing the elements from the list cities, separated by a comma & space 

for city in cities:
	print(city, end=’, ’)

Output [3]: Delhi, Mumbai, Kolkata, Chennai

#Printing the location of the object created in the memory address in hexadecimal format

print(hex(id(cities)))

Output [4]: 0x1691d7de8c8

The above example shows us that we were able to change the internal state of the object ‘cities’ by adding one more city ‘Chennai’ to it, yet, the memory address of the object did not change. This confirms that we did not create a new object, rather, the same object was changed or mutated. Hence, we can say that the object which is a type of list with reference variable name ‘cities’ is a MUTABLE OBJECT.

Let us now discuss the term IMMUTABLE. Considering that we understood what mutable stands for, it is obvious that the definition of immutable will have ‘NOT’ included in it. Here is the simplest definition of immutable– An object whose internal state can NOT be changed is IMMUTABLE.

Again, if you try and concentrate on different error messages, you have encountered, thrown by the respective IDE; you use you would be able to identify the immutable objects in Python. For instance, consider the below code & associated error message with it, while trying to change the value of a Tuple at index 0. 

#Creating a Tuple with variable name ‘foo’

foo = (1, 2)

#Changing the index[0] value from 1 to 3

foo[0] = 3
	
TypeError: 'tuple' object does not support item assignment 

Immutable Objects in Python

Once again, a simple code would be the best way to depict what immutable stands for. Hence, let us discuss the below code step-by-step:

#Creating a Tuple which contains English name of weekdays

weekdays = ‘Sunday’, ‘Monday’, ‘Tuesday’, ‘Wednesday’, ‘Thursday’, ‘Friday’, ‘Saturday’

# Printing the elements of tuple weekdays

print(weekdays)

Output [1]:  (‘Sunday’, ‘Monday’, ‘Tuesday’, ‘Wednesday’, ‘Thursday’, ‘Friday’, ‘Saturday’)

#Printing the location of the object created in the memory address in hexadecimal format

print(hex(id(weekdays)))

Output [2]: 0x1691cc35090

#tuples are immutable, so you cannot add new elements, hence, using merge of tuples with the # + operator to add a new imaginary day in the tuple ‘weekdays’

weekdays  +=  ‘Pythonday’,

#Printing the elements of tuple weekdays

print(weekdays)

Output [3]: (‘Sunday’, ‘Monday’, ‘Tuesday’, ‘Wednesday’, ‘Thursday’, ‘Friday’, ‘Saturday’, ‘Pythonday’)

#Printing the location of the object created in the memory address in hexadecimal format

print(hex(id(weekdays)))

Output [4]: 0x1691cc8ad68

This above example shows that we were able to use the same variable name that is referencing an object which is a type of tuple with seven elements in it. However, the ID or the memory location of the old & new tuple is not the same. We were not able to change the internal state of the object ‘weekdays’. The Python program manager created a new object in the memory address and the variable name ‘weekdays’ started referencing the new object with eight elements in it.  Hence, we can say that the object which is a type of tuple with reference variable name ‘weekdays’ is an IMMUTABLE OBJECT.

Also Read: Understanding the Exploratory Data Analysis (EDA) in Python

Where can you use mutable and immutable objects:

Mutable objects can be used where you want to allow for any updates. For example, you have a list of employee names in your organizations, and that needs to be updated every time a new member is hired. You can create a mutable list, and it can be updated easily.

Immutability offers a lot of useful applications to different sensitive tasks we do in a network centred environment where we allow for parallel processing. By creating immutable objects, you seal the values and ensure that no threads can invoke overwrite/update to your data. This is also useful in situations where you would like to write a piece of code that cannot be modified. For example, a debug code that attempts to find the value of an immutable object.

Watch outs:  Non transitive nature of Immutability:

OK! Now we do understand what mutable & immutable objects in Python are. Let’s go ahead and discuss the combination of these two and explore the possibilities. Let’s discuss, as to how will it behave if you have an immutable object which contains the mutable object(s)? Or vice versa? Let us again use a code to understand this behaviour–

#creating a tuple (immutable object) which contains 2 lists(mutable) as it’s elements

#The elements (lists) contains the name, age & gender 

person = (['Ayaan', 5, 'Male'], ['Aaradhya', 8, 'Female'])

#printing the tuple

print(person)

Output [1]: (['Ayaan', 5, 'Male'], ['Aaradhya', 8, 'Female'])

#printing the location of the object created in the memory address in hexadecimal format

print(hex(id(person)))

Output [2]: 0x1691ef47f88

#Changing the age for the 1st element. Selecting 1st element of tuple by using indexing [0] then 2nd element of the list by using indexing [1] and assigning a new value for age as 4

person[0][1] = 4

#printing the updated tuple

print(person)

Output [3]: (['Ayaan', 4, 'Male'], ['Aaradhya', 8, 'Female'])

#printing the location of the object created in the memory address in hexadecimal format

print(hex(id(person)))

Output [4]: 0x1691ef47f88

In the above code, you can see that the object ‘person’ is immutable since it is a type of tuple. However, it has two lists as it’s elements, and we can change the state of lists (lists being mutable). So, here we did not change the object reference inside the Tuple, but the referenced object was mutated.

Also Read: Real-Time Object Detection Using TensorFlow

Same way, let’s explore how it will behave if you have a mutable object which contains an immutable object? Let us again use a code to understand the behaviour–

#creating a list (mutable object) which contains tuples(immutable) as it’s elements

list1 = [(1, 2, 3), (4, 5, 6)]

#printing the list

print(list1)

Output [1]: [(1, 2, 3), (4, 5, 6)]

#printing the location of the object created in the memory address in hexadecimal format

print(hex(id(list1)))

Output [2]: 0x1691d5b13c8	

#changing object reference at index 0

list1[0] = (7, 8, 9)

#printing the list

Output [3]: [(7, 8, 9), (4, 5, 6)]

#printing the location of the object created in the memory address in hexadecimal format

print(hex(id(list1)))

Output [4]: 0x1691d5b13c8

As an individual, it completely depends upon you and your requirements as to what kind of data structure you would like to create with a combination of mutable & immutable objects. I hope that this information will help you while deciding the type of object you would like to select going forward.

Before I end our discussion on IMMUTABILITY, allow me to use the word ‘CAVITE’ when we discuss the String and Integers. There is an exception, and you may see some surprising results while checking the truthiness for immutability. For instance:
#creating an object of integer type with value 10 and reference variable name ‘x’ 

x = 10
 

#printing the value of ‘x’

print(x)

Output [1]: 10

#Printing the location of the object created in the memory address in hexadecimal format

print(hex(id(x)))

Output [2]: 0x538fb560

#creating an object of integer type with value 10 and reference variable name ‘y’

y = 10

#printing the value of ‘y’

print(y)

Output [3]: 10

#Printing the location of the object created in the memory address in hexadecimal format

print(hex(id(y)))

Output [4]: 0x538fb560

As per our discussion and understanding, so far, the memory address for x & y should have been different, since, 10 is an instance of Integer class which is immutable. However, as shown in the above code, it has the same memory address. This is not something that we expected. It seems that what we have understood and discussed, has an exception as well.

Quick checkPython Data Structures

Immutability of Tuple

Tuples are immutable and hence cannot have any changes in them once they are created in Python. This is because they support the same sequence operations as strings. We all know that strings are immutable. The index operator will select an element from a tuple just like in a string. Hence, they are immutable.

Exceptions in immutability

Like all, there are exceptions in the immutability in python too. Not all immutable objects are really mutable. This will lead to a lot of doubts in your mind. Let us just take an example to understand this.

Consider a tuple ‘tup’.

Now, if we consider tuple tup = (‘GreatLearning’,[4,3,1,2]) ;

We see that the tuple has elements of different data types. The first element here is a string which as we all know is immutable in nature. The second element is a list which we all know is mutable. Now, we all know that the tuple itself is an immutable data type. It cannot change its contents. But, the list inside it can change its contents. So, the value of the Immutable objects cannot be changed but its constituent objects can. change its value.

FAQs

1. Difference between mutable vs immutable in Python?

Mutable ObjectImmutable Object
State of the object can be modified after it is created.State of the object can’t be modified once it is created.
They are not thread safe.They are thread safe
Mutable classes are not final.It is important to make the class final before creating an immutable object.

2. What are the mutable and immutable data types in Python?

  • Some mutable data types in Python are:

list, dictionary, set, user-defined classes.

  • Some immutable data types are: 

int, float, decimal, bool, string, tuple, range.

3. Are lists mutable in Python?

Lists in Python are mutable data types as the elements of the list can be modified, individual elements can be replaced, and the order of elements can be changed even after the list has been created.
(Examples related to lists have been discussed earlier in this blog.)

4. Why are tuples called immutable types?

Tuple and list data structures are very similar, but one big difference between the data types is that lists are mutable, whereas tuples are immutable. The reason for the tuple’s immutability is that once the elements are added to the tuple and the tuple has been created; it remains unchanged.

A programmer would always prefer building a code that can be reused instead of making the whole data object again. Still, even though tuples are immutable, like lists, they can contain any Python object, including mutable objects.

5. Are sets mutable in Python?

A set is an iterable unordered collection of data type which can be used to perform mathematical operations (like union, intersection, difference etc.). Every element in a set is unique and immutable, i.e. no duplicate values should be there, and the values can’t be changed. However, we can add or remove items from the set as the set itself is mutable.

6. Are strings mutable in Python?

Strings are not mutable in Python. Strings are a immutable data types which means that its value cannot be updated.

Join Great Learning Academy’s free online courses and upgrade your skills today.


Original article source at: https://www.mygreatlearning.com

#python 

Christa  Stehr

Christa Stehr

1598940617

Install Angular - Angular Environment Setup Process

Angular is a TypeScript based framework that works in synchronization with HTML, CSS, and JavaScript. To work with angular, domain knowledge of these 3 is required.

  1. Installing Node.js and npm
  2. Installing Angular CLI
  3. Creating workspace
  4. Deploying your First App

In this article, you will get to know about the Angular Environment setup process. After reading this article, you will be able to install, setup, create, and launch your own application in Angular. So let’s start!!!

Angular environment setup

Install Angular in Easy Steps

For Installing Angular on your Machine, there are 2 prerequisites:

  • Node.js
  • npm Package Manager
Node.js

First you need to have Node.js installed as Angular require current, active LTS or maintenance LTS version of Node.js

Download and Install Node.js version suitable for your machine’s operating system.

Npm Package Manager

Angular, Angular CLI and Angular applications are dependent on npm packages. By installing Node.js, you have automatically installed the npm Package manager which will be the base for installing angular in your system. To check the presence of npm client and Angular version check of npm client, run this command:

  1. npm -v

Installing Angular CLI

  • Open Terminal/Command Prompt
  • To install Angular CLI, run the below command:
  1. npm install -g @angular/cli

installing angular CLI

· After executing the command, Angular CLI will get installed within some time. You can check it using the following command

  1. ng --version

Workspace Creation

Now as your Angular CLI is installed, you need to create a workspace to work upon your application. Methods for it are:

  • Using CLI
  • Using Visual Studio Code
1. Using CLI

To create a workspace:

  • Navigate to the desired directory where you want to create your workspace using cd command in the Terminal/Command prompt
  • Then in the directory write this command on your terminal and provide the name of the app which you want to create. In my case I have mentioned DataFlair:
  1. Ng new YourAppName

create angular workspace

  • After running this command, it will prompt you to select from various options about the CSS and other functionalities.

angular CSS options

  • To leave everything to default, simply press the Enter or the Return key.

angular setup

#angular tutorials #angular cli install #angular environment setup #angular version check #download angular #install angular #install angular cli

Marcelle  Smith

Marcelle Smith

1591081592

Create a Component Harness For Your Tests With Angular CDK

Learn how to create and consume a custom component harness using Angular CDK. With a step-by-step case study, we run it in unit tests and end-to-end tests.

Updated for Angular CDK and Angular Material version 9.2.

A component harness is a testing API around an Angular directive or component. Component harnesses can be shared between unit tests, integration tests, and end-to-end tests. They result in less brittle tests as implementation details are hidden from test suites.

#angular #angular-cdk #component-harnesses #testing #angular-material

Roberta  Ward

Roberta Ward

1593184320

Basics of Angular: Part-1

What is Angular? What it does? How we implement it in a project? So, here are some basics of angular to let you learn more about angular.

Angular is a Typescript-based open-source front-end web application platform. The Angular Team at Google and a community of individuals and corporations lead it. Angular lets you extend HTML’s syntax to express your apps’ components clearly. The angular resolves challenges while developing a single page and cross-platform applications. So, here the meaning of the single-page applications in angular is that the index.html file serves the app. And, the index.html file links other files to it.

We build angular applications with basic concepts which are NgModules. It provides a compilation context for components. At the beginning of an angular project, the command-line interface provides a built-in component which is the root component. But, NgModule can add a number of additional components. These can be created through a template or loaded from a router. This is what a compilation context about.

What is a Component in Angular?

Components are key features in Angular. It controls a patch of the screen called a view. A couple of components that we create on our own helps to build a whole application. In the end, the root component or the app component holds our entire application. The component has its business logic that it does to support the view inside the class. The class interacts with the view through an API of properties and methods. All the components added by us in the application are not linked to the index.html. But, they link to the app.component.html through the selectors. A component can be a component and not only a typescript class by adding a decorator @Component. Then, for further access, a class can import it. The decorator contains some metadata like selector, template, and style. Here’s an example of how a component decorator looks like:

@Component({
    selector: 'app-root',
    templateUrl: 'app.component.html',
    styleUrls: ['app.component.scss']
})

Role of App Module

Modules are the package of functionalities of our app. It gives Angular the information about which features does my app has and what feature it uses. It is an empty Typescript class, but we transform it by adding a decorator @NgModule. So, we have four properties that we set up on the object pass to @NgModule. The four properties are declarations, imports, providers, and bootstrap. All the built-in new components add up to the declarations array in @NgModule.

@NgModule({
declarations: [
  AppComponent,
],
imports: [
  BrowserModule,
  HttpClientModule,
  AppRoutingModule,
  FormsModule
],
bootstrap: [AppComponent]
})

What is Data Binding?

Data Binding is the communication between the Typescript code of the component and the template. So, we have different kinds of data binding given below:

  • When there is a requirement to output data from our Typescript code in the HTML template. String interpolation handles this purpose like {{data}} in HTML file. Property Binding is also used for this purpose like [property] = “data”.
  • When we want to trigger any event like clicking a button. Event Binding works while we react to user events like (event) = “expression”.
  • When we can react to user events and output something at the same time. Two-way Binding is used like [(ngModel)] = “data”.

image for understanding data binding

#angular #javascript #tech blogs #user interface (ui) #angular #angular fundamentals #angular tutorial #basics of angular