1656608474
Continuing the previous post, we learned about the Container Runtime. In this post, we are going to learn about a rather exciting topic how Kubernetes uses the Container Runtime and the types of Container Runtime that Kubernetes uses.
#devops #kubernetes #docker #containers
https://medium.com/@hmquan08011996/kubernetes-story-how-kubernetes-works-with-container-runtime-ce618a306f64
1656607879
Continuing the previous post, we learned about the two main components of building Containers are Linux Namespaces and Cgroups. In this post, we are going to learn what is Container Runtime and how does it work with Container?
https://medium.com/@hmquan08011996/kubernetes-story-deep-into-container-runtime-db1a41ed2132
1656585844
If we do DevOps, we are probably familiar with Kubernetes, Docker, and Containers. But have we ever wondered what the hell is docker? What are containers? Docker is a container? Docker is not a container and I will explain what it is in this post.
1654887300
The Moby Project
Moby is an open-source project created by Docker to enable and accelerate software containerization.
It provides a "Lego set" of toolkit components, the framework for assembling them into custom container-based systems, and a place for all container enthusiasts and professionals to experiment and exchange ideas. Components include container build tools, a container registry, orchestration tools, a runtime and more, and these can be used as building blocks in conjunction with other tools and projects.
Moby is an open project guided by strong principles, aiming to be modular, flexible and without too strong an opinion on user experience. It is open to the community to help set its direction.
The Moby Project is intended for engineers, integrators and enthusiasts looking to modify, hack, fix, experiment, invent and build systems based on containers. It is not for people looking for a commercially supported system, but for people who want to work and learn with open source code.
The components and tools in the Moby Project are initially the open source components that Docker and the community have built for the Docker Project. New projects can be added if they fit with the community goals. Docker is committed to using Moby as the upstream for the Docker Product. However, other projects are also encouraged to use Moby as an upstream, and to reuse the components in diverse ways, and all these uses will be treated in the same way. External maintainers and contributors are welcomed.
The Moby project is not intended as a location for support or feature requests for Docker products, but as a place for contributors to work on open source code, fix bugs, and make the code more useful. The releases are supported by the maintainers, community and users, on a best efforts basis only, and are not intended for customers who want enterprise or commercial support; Docker EE is the appropriate product for these use cases.
Legal
Brought to you courtesy of our legal counsel. For more context, please see the NOTICE document in this repo.
Use and transfer of Moby may be subject to certain restrictions by the United States and other governments.
It is your responsibility to ensure that your use and/or transfer does not violate applicable laws.
For more information, please see https://www.bis.doc.gov
Author: Moby
Source Code: https://github.com/moby/moby
License: Apache-2.0 license
1654871116
Dockerコンテナーがブラックボックスになる場合があります。基になるイメージを作成した場合でも、パブリックイメージを使用している場合でも、フラッピングコンテナはイライラします。コンテナの実行方法とコンテナのログ処理方法が原因で、何が起こっているのかを把握するのは難しい場合があります。
この記事では、特に厄介なコンテナーのトラブルシューティングに使用できるいくつかの基本的なコマンドとパラメーターについて説明します。コンテナが起動しない場合、断続的に爆発する場合、または画像の詳細をさらに詳しく知りたい場合は、これらのシンプルなオプションが実際のゲームチェンジャーです。
1.ログとタイムスタンプの改善
最初の最も簡単な例は、Dockerがすでに提供しているロギングツールを使用することです。ほとんどの人は、コンテナ内のログを確認する方法をすでに知っています。
docker logs <container_id>
しかし、この特定のコンテナが長期間実行されていて、ログがテキサスのサイズである場合はどうなるでしょうか。--tail
このような場合は、次のパラメータを追加するだけです。
docker logs --tail 10 <container_id>
このオプションを使用すると、ログ--tail
の最後の行だけを表示できます。n
見たい行数を渡すと、最も関連性の高い最新の情報に直接ジャンプできます。
コンテナ内からのログ出力にデフォルトでタイムスタンプが含まれていない場合は、タイムスタンプを追加することもできます。Dockerを使用すると、各行の先頭にタイムスタンプを付ける-t
フラグを渡すことができます。log
docker logs -t <container_id>
これらのオプションを組み合わせて、正確なトラブルシューティング機器を形成することもできます。これで、コンテナ内で何も変更しなくても、何かがいつ発生したかを正確に知ることができます。
2.rootとしてコマンドを実行する
デフォルトのrootユーザーとして実行されるイメージを使用している場合、これは問題ではありません。rootとして実行せず、代わりに非特権ユーザーを使用する場合、これは優れたトラブルシューティングツールです。
実行する場合:
docker exec -it <container_id> /bin/sh
これは常に、基になるイメージで定義されたユーザーとして実行されます。このユーザーがroot権限を持っていない場合、トラブルシューティングのために実行中のコンテナーで実行を試みるのは難しい場合があります(特に何かをインストールする必要がある場合)。
rootユーザーとしてコンテナーにジャンプする場合は、代わりに以下を渡すだけです。
docker exec -u 0 -it <container_id> /bin/sh
これにより、DockerにIDを持つユーザーを使用するように指示されます0
。これはルートです。これで、コンテナに入ると、完全な権限でデバッグする準備が整います。
3.コンテナをイメージとしてコミットする
これは、Dockerの見過ごされがちな機能です。実際には、既存のコンテナから新しいイメージを作成できます。これは、コンテナをいじって、いくつかのバグを修正するためにいくつかの変更を加えた場合、すぐにそのコンテナから新しいコンテナを起動できることを意味します。Dockerfileを再構築する必要はありません。
次のコマンドは、既存のコンテナから新しいイメージをコミットします。
docker commit <container_name> <new_image>
これにより、指定した名前で新しいイメージが作成され、すぐにそれを使用して新しいコンテナーを起動できます。
このコマンドのもう1つの追加の利点はcommit
、コミットプロセス中に実際にDockerfile構文をコマンドに渡すことができることです。既存のコンテナをコミットしたいが、その中の環境変数の1つを変更したい場合は、--change
フラグを使用してそれを渡すことができます。
docker commit --change="ENV foo=bar" <container_name> <new_image>
コマンドに複数の異なるものを渡すとchanges
、commit
コマンドラインで非常にきめ細かい画像を作成できます。
4.一致する画像ハッシュ
しばらくの間存在していたコンテナのトラブルシューティングを行っている場合、それが構築されたイメージの特定のバージョンがわからない場合があります。DockerHubやElasticContainerRegistryなどのコンテナーレジストリを使用する場合は、イメージのハッシュを簡単に取得して、コンテナーと比較できます。
コンテナに関するすべてのメタデータを取得する簡単な方法は、inspect
コマンドを使用することです。これは問題ありませんが、大量の情報が得られます。画像ハッシュだけが必要な場合は、次のような小さな書式設定の魔法を使用して取得できます。
docker inspect --format "{{ .Image }}" <container_id>
これにより、コンテナが実行されている画像のsha256ハッシュが出力されます。ハッシュをレジストリ内のハッシュと比較して、いつビルドされたかを判断できます。
これで、どのバージョンがどこで実行されているかを完全に確認できます。
5.ビルドキャッシュをスキップする
ビルドが失敗する理由、バグがある理由、または行った変更が含まれていない理由を理解するのに本当に苦労している場合は、キャッシュを削除する時期かもしれません。Dockerはレイヤーへの変更を認識し、必要に応じて再構築する必要がありますが、最初からやり直すという安心感が必要な場合もあります。
既存のビルドキャッシュを利用せずにイメージをビルドする場合は、次のコマンドを実行できます。
docker build --tag <tag> --no-cache .
これにより、キャッシュ内に以前に作成されたアイテムはすべて無視され、すべてがゼロから作成されます。画像の複数の反復を処理していて、いくつかのレイヤーに非常に微妙な変更を含めるようにしたい場合に便利です。
読んでくれてありがとう!
このストーリーは、もともとhttps://betterprogramming.pub/5-simple-tips-for-debugging-docker-containers-271cb3dee77aで公開されました。
1654870942
A veces, los contenedores Docker pueden ser una caja negra. Ya sea que haya creado la imagen subyacente o esté usando una pública, un contenedor que se agita es frustrante. Averiguar qué está pasando puede ser difícil debido a la forma en que se ejecutan los contenedores y cómo manejan el registro.
En este artículo, exploraremos algunos comandos y parámetros básicos que puede usar para solucionar problemas de contenedores particularmente quisquillosos. Si el contenedor no se inicia, explota intermitentemente o simplemente desea obtener más información sobre los detalles de la imagen, estas opciones simples son un verdadero cambio de juego.
1. Mejor registro y marcas de tiempo
El primer y más simple ejemplo es usar las herramientas de registro que ya proporciona Docker. La mayoría de la gente ya sabe cómo mirar los registros dentro de un contenedor:
docker logs <container_id>
Pero, ¿qué pasa si este contenedor en particular ha estado funcionando durante mucho tiempo y tiene un registro del tamaño de Texas? En casos como este, simplemente puede agregar el --tail
parámetro adicional:
docker logs --tail 10 <container_id>
Usando la --tail
opción puede ver solo las últimas n
líneas del registro. Pasar la cantidad de líneas que desea ver le permite saltar directamente a la información más relevante y reciente.
Si su salida de registro desde dentro del contenedor no contiene marcas de tiempo de forma predeterminada, también puede agregarlas. Docker le permite pasar la -t
bandera a log
la que antepondrá cada línea con una marca de tiempo:
docker logs -t <container_id>
Estas opciones también se pueden combinar para formar un instrumento de solución de problemas preciso. Ahora podrá saber exactamente cuándo sucedió algo sin tener que alterar nada dentro del contenedor.
2. Ejecutar comandos como root
Si está utilizando una imagen que se ejecuta como usuario raíz predeterminado, entonces esto no es un problema. Cuando no se ejecuta como root y en su lugar utiliza un usuario sin privilegios, esta es una gran herramienta de solución de problemas.
Si tu corres:
docker exec -it <container_id> /bin/sh
Esto siempre se ejecutará como lo define el usuario en la imagen subyacente. Si este usuario no tiene privilegios de raíz, puede ser difícil intentar ejecutarlo en un contenedor en ejecución para solucionar problemas (especialmente si necesita instalar algo).
Si desea saltar al contenedor como usuario raíz, todo lo que tiene que hacer es pasar lo siguiente:
docker exec -u 0 -it <container_id> /bin/sh
Esto le indicará a Docker que use el usuario que tiene ID 0
. Esta es la raíz. Ahora, cuando ingrese al contenedor, estará listo para depurar con todos los privilegios.
3. Comprometer un contenedor como imagen
Esta es una característica de Docker que a menudo se pasa por alto. De hecho, puede crear una nueva imagen a partir de un contenedor existente. Esto significa que si ha estado jugando con un contenedor y ha realizado algunos cambios para corregir algunos errores, puede generar nuevos contenedores de inmediato. Ni siquiera tiene que ir a reconstruir el Dockerfile.
El siguiente comando confirmará una nueva imagen del contenedor existente:
docker commit <container_name> <new_image>
Esto creará una nueva imagen con el nombre que especifique y puede usarla inmediatamente para crear nuevos contenedores.
Otro beneficio adicional del commit
comando es que puede pasarle la sintaxis de Dockerfile durante el proceso de confirmación. Si quisiera confirmar un contenedor existente pero cambiar una de las variables de entorno en él, podría usar la --change
bandera para pasar eso:
docker commit --change="ENV foo=bar" <container_name> <new_image>
Puede pasar varios comandos diferentes para facilitar la creación de imágenes impresionantemente granulares en la línea de comandos changes
.commit
4. Hash de imágenes coincidentes
Si está solucionando problemas de un contenedor que existe desde hace un tiempo, es posible que no sepa con qué versión particular de una imagen se creó. Si usa un registro de contenedor como Docker Hub o Elastic Container Registry, puede obtener fácilmente el hash de la imagen para compararlo con su contenedor.
Una forma rápida de capturar todos los metadatos sobre un contenedor es usar el inspect
comando. Esto está bien, pero te da un montón de información. Si todo lo que busca es el hash de la imagen, puede obtenerlo usando un poco de magia de formato como esta:
docker inspect --format "{{ .Image }}" <container_id>
Esto debería generar el hash sha256 de la imagen que se está ejecutando el contenedor. El hash se puede comparar con el de su registro para determinar cuándo se creó.
Ahora puede estar absolutamente seguro de qué versión se está ejecutando y dónde.
5. Omitir el caché de compilación
Si realmente tiene dificultades para entender por qué falla una compilación, tiene errores o simplemente no incluye algunos cambios que realizó, entonces podría ser el momento de eliminar el caché. Aunque Docker debe reconocer los cambios en las capas y reconstruir según sea necesario, a veces necesita la tranquilidad de comenzar desde cero.
Si desea crear una imagen sin aprovechar ningún caché de compilación existente, puede ejecutar el siguiente comando:
docker build --tag <tag> --no-cache .
Esto ignorará cualquier elemento construido previamente en el caché y forzará que todo se construya desde cero. Útil si está trabajando en varias iteraciones de una imagen y desea asegurarse de incluir cambios muy sutiles en algunas capas.
¡Gracias por leer!
Esta historia se publicó originalmente en https://betterprogramming.pub/5-simple-tips-for-debugging-docker-containers-271cb3dee77a
1654515600
Docker CLI is Dart library for controlling docker images and containers.
Docker CLI wraps the docker cli tooling.
Example:
/// If we don't have the image pull it.
var alpineImage = Docker().pull('alpine');
/// If the container exists then lets delete it so we can recreate it.
var existing = Docker().findContainerByName('alpine_sleep_inifinity');
if (existing != null) {
existing.delete();
}
/// create container named alpine_sleep_inifinity
var container = alpineImage.create('alpine_sleep_inifinity',
argString: 'sleep infinity');
if (Docker().findContainerByName('alpine_sleep_inifinity') == null) {
print('Huston we have a container');
}
// start the container.
container.start();
sleep(2);
/// stop the container.
container.stop();
while (container.isRunning)
{
sleep(1);
}
container.delete();
Docker().volumes;
Run this command:
With Dart:
$ dart pub add docker2
With Flutter:
$ flutter pub add docker2
This will add a line like this to your package's pubspec.yaml (and run an implicit dart pub get
):
dependencies:
docker2: ^2.2.5
Alternatively, your editor might support dart pub get
or flutter pub get
. Check the docs for your editor to learn more.
Now in your Dart code, you can use:
import 'package:docker2/docker2.dart';
example/example.dart
import 'package:dcli/dcli.dart';
import 'package:docker2/docker2.dart';
void main(List<String> args) {
final image = Docker().findImageByName('alpine');
if (image != null) {
image.delete();
}
/// If we don't have the image pull it.
final alpineImage = Docker().pull('alpine');
/// If the container exists then lets delete it so we can recreate it.
final existing = Docker().findContainerByName('alpine_sleep_inifinity');
if (existing != null) {
existing.delete();
}
/// create container named alpine_sleep_inifinity
final container =
alpineImage.create('alpine_sleep_inifinity', argString: 'sleep infinity');
if (Docker().findContainerByName('alpine_sleep_inifinity') == null) {
print('Huston we have a container');
}
// start the container.
container.start();
sleep(2);
/// stop the container.
container.stop();
while (container.isRunning) {
sleep(1);
}
container.delete();
}
Author: Noojee
Source Code: https://github.com/noojee/docker2
License: MIT license
1652736720
Clair
Note: The main
branch may be in an unstable or even broken state during development. Please use releases instead of the main
branch in order to get stable binaries.
Clair is an open source project for the static analysis of vulnerabilities in application containers (currently including OCI and docker).
Clients use the Clair API to index their container images and can then match it against known vulnerabilities.
Our goal is to enable a more transparent view of the security of container-based infrastructure. Thus, the project was named Clair
after the French term which translates to clear, bright, transparent.
The book contains all the documentation on Clair's architecture and operation.
See CONTRIBUTING for details on submitting patches and the contribution workflow.
Author: quay
Source Code: https://github.com/quay/clair
License: Apache-2.0 License
1652086800
flake8-multiline-containers
A Flake8 plugin to ensure a consistent format for multiline containers.
Install from pip
with:
pip install flake8-multiline-containers
Code | Rule |
---|---|
JS101 | Multi-line container not broken after opening character |
JS102 | Multi-line container does not close on same column as opening |
# Right: Opens and closes on same line
foo = {'a': 'hello', 'b': 'world'}
# Right: Line break after parenthesis, closes on same column as opening
foo = {
'a': 'hello',
'b': 'world',
}
# Right: Line break after parenthesis, closes on same column as opening
foo = [
'hello', 'world',
]
# Wrong: JS101
foo = {'a': 'hello',
'b': 'world',
}
# Wrong: JS101, JS102
foo = {'a': 'hello',
'b': 'world'}
# Wrong: JS101, JS102
foo = {'hello',
'world'
}
Author: jsfehler
Source Code: https://github.com/jsfehler/flake8-multiline-containers
License: MIT license
1650683240
miniboss is a Python application for locally running a collection of interdependent docker services, individually rebuilding and restarting them, and managing application state with lifecycle hooks. Services definitions can be written in Python, allowing the use of programming logic instead of markup.
First and foremost, good old Python instead of YAML. docker-compose
is in the school of yaml-as-service-description, which means that going beyond a static description of a service set necessitates templates, or some kind of scripting. One could just as well use a full-blown programming language, while trying to keep simple things simple. Another thing sorely missing in docker-compose
is lifecycle hooks, i.e. a mechanism whereby scripts can be executed when the state of a container changes. Lifecycle hooks have been requested multiple times, but were not deemed to be in the domain of docker-compose
.
miniboss is on PyPi; you can install it with the following:
pip install miniboss
Here is a very simple service specification:
#! /usr/bin/env python3
import miniboss
miniboss.group_name('readme-demo')
class Database(miniboss.Service):
name = "appdb"
image = "postgres:10.6"
env = {"POSTGRES_PASSWORD": "dbpwd",
"POSTGRES_USER": "dbuser",
"POSTGRES_DB": "appdb" }
ports = {5432: 5433}
class Application(miniboss.Service):
name = "python-todo"
image = "afroisalreadyin/python-todo:0.0.1"
env = {"DB_URI": "postgresql://dbuser:dbpwd@appdb:5432/appdb"}
dependencies = ["appdb"]
ports = {8080: 8080}
stop_signal = "SIGINT"
if __name__ == "__main__":
miniboss.cli()
The first use of miniboss is in the call to miniboss.group_name
, which specifies a name for this group of services. If you don't set it, sluggified form of the directory name will be used. Group name is used to identify the services and the network defined in a miniboss file. Setting it manually to a non-default value will allow miniboss to manage multiple collections in the same directory.
A service is defined by subclassing miniboss.Service
and overriding, in the minimal case, the fields image
and name
. The env
field specifies the environment variables. As in the case of the appdb
service, you can use ordinary variables anywhere Python accepts them. The other available fields are explained in the section Service definition fields. In the above example, we are creating two services: The application service python-todo
(a simple Flask todo application defined in the sample-apps
directory) depends on appdb
(a Postgresql container), specified through the dependencies
field. As in docker-compose
, this means that python-todo
will get started after appdb
reaches running status.
The miniboss.cli
function is the main entry point; you need to call it in the main section of your script. Let's run the script above without arguments, which leads to the following output:
Usage: miniboss-main.py [OPTIONS] COMMAND [ARGS]...
Options:
--help Show this message and exit.
Commands:
start
stop
We can start our small collection of services by running ./miniboss-main.py start
. After spitting out some logging text, you will see that starting the containers failed, with the python-todo
service throwing an error that it cannot reach the database. The reason for this error is that the Postgresql process has started, but is still initializing, and does not accept connections yet. The standard way of dealing with this issue is to include backoff code in your application that checks on the database port regularly, until the connection is accepted. miniboss
offers an alternative with lifecycle events. For the time being, you can simply rerun ./miniboss-main.py start
, which will restart only the python-todo
service, as the other one is already running. You should be able to navigate to http://localhost:8080
and view the todo app page.
You can also exclude services from the list of services to be started with the --exclude
argument; ./miniboss-main.py start --exclude python-todo
will start only appdb
. If you exclude a service that is depended on by another, you will get an error. If a service fails to start (i.e. container cannot be started or the lifecycle events fail), it and all the other services that depend on it are registered as failed.
Once you are done working with a collection, you can stop the running services with miniboss-main.py stop
. This will stop the services in the reverse order of dependency, i.e. first python-todo
and then appdb
. Exclusion is possible also when stopping services with the same --exclude
argument. Running ./miniboss-main.py stop --exclude appdb
will stop only the python-todo
service. If you exclude a service whose dependency will be stopped, you will get an error. If, in addition to stopping the service containers, you want to remove them, include the option --remove
. If you don't remove the containers, miniboss will restart the existing containers (modulo changes in service definition) instead of creating new ones the next time it's called with start
. This behavior can be modified with the always_start_new
field; see the details in Service definition fields.
miniboss also allows you to reload a specific service by building a new container image from a directory. You need to provide the path to the directory in which the Dockerfile and build context of a service resides in order to use this feature. You can also provide an alternative Dockerfile name. Here is an example:
class Application(miniboss.Service):
name = "python-todo"
image = "afroisalreadyin/python-todo:0.0.1"
env = {"DB_URI": "postgresql://dbuser:dbpwd@appdb:5432/appdb"}
dependencies = ["appdb"]
ports = {8080: 8080}
build_from = "python-todo/"
dockerfile = "Dockerfile"
The build_from
option has to be a path relative to the main miniboss file. With such a service configuration, you can run ./miniboss-main.py reload python-todo
, which will cause miniboss to build the container image, stop the running service container, and restart the new image. Since the context generated at start is saved in a file, any context values used in the service definition are available to the new container.
One of the differentiating feature of miniboss is lifecycle events, which are hooks that can be customized to execute code at certain points in a service's or the whole collection's lifecycle.
For per-service events, miniboss.Service
has three methods that can be overriden in order to correctly change states and execute actions on the container:
Service.pre_start()
: Executed before the service is started. Can be used for things like initializing mount directory contents or downloading online content.
Service.ping()
: Executed repeatedly right after the service starts with a 0.1 second delay between executions. If this method does not return True
within a given timeout value (can be set with the --timeout
argument, default is 300 seconds), the service is registered as failed. Any exceptions in this method will be propagated, and also cause the service to fail. If there is already a service instance running, it is not pinged.
Service.post_start()
: This method is executed after a successful ping
. It can be used to prime a service by e.g. creating data on it, or bringing it to a certain state. You can also use the global context in this method; see The global context for details. If there is already a service running, or an existing container image is started insted of creating a new one, this method is not called.
These methods are noop by default. A service is not registered as properly started before lifecycle methods are executed successfully; only then are the dependant services started.
The ping
method is particularly useful if you want to avoid the situation described above, where a container starts, but the main process has not completed initializing before any dependent services start. Here is an example for how one would ping the appdb
service to make sure the Postgresql database is accepting connections:
import psycopg2
class Database(miniboss.Service):
# fields same as above
def ping(self):
try:
connection = psycopg2.connect("postgresql://dbuser:dbpwd@localhost:5433/appdb")
cur = connection.cursor()
cur.execute('SELECT 1')
except psycopg2.OperationalError:
return False
else:
return True
One thing to pay attention to is that, in the call to psycopg2.connect
, we are using localhost:5433
as host and port, whereas the python-todo
environment variable DBURI
has appdb:5433
instead. This is because the ping
method is executed on the host computer. The next section explains the details.
It is possible to hook into collection change commands using the following hooks. You can call them on the base miniboss
module and set a hook by passing it in as the sole argument, e.g. as follows:
import miniboss
def print_services(service_list):
print("Started ", ' '.join(service_list))
miniboss.on_start_services(print_services)
on_start_services
hook is called after the miniboss.start
command is executed. The single argument is a list of the names of the services that were successfully started.
on_stop_services
hook is called after the miniboss.stop
command is executed. The single argument is a list of the services that were stopped.
on_reload_service
hook is called after the miniboss.reload
command is executed. The single argument is the name of the service that was reloaded.
miniboss starts services on an isolated bridge network, mapping no ports by default. The name of this service can be specified with the --network-name
argument when starting a group. If it's not specified, the name will be generated from the group name by prefixing it with miniboss-
. On the collection network, services can be contacted under the service name as hostname, on the ports they are listening on. The appdb
Postgresql service above, for example, can be contacted on the port 5432, the default port on which Postgresql listens. This is the reason the host part of the DB_URI
environment variable on the python-todo
service is appdb:5432
. If you want to reach appdb
on the port 5433
from the host system, which would be necessary to implement the ping
method as above, you need to make this mapping explicit with the ports
field of the service definition. This field accepts a dictionary of integer keys and values. The key is the service container port, and the value is the host port. In the case of appdb
, the Postgresql port of the container is mapped to port 5433 on the local machine, in order not to collide with any local Postgresql instances. With this configuration, the appdb
database can be accessed at localhost:5433
.
The object miniboss.Context
, derived from the standard dict class, can be used to store values that are accessible to other service definitions, especially in the env
field. For example, if you create a user in the post_start
method of a service, and would like to make the ID of this user available to a dependant service, you can set it on the context with Context['user_id'] = user.id
. In the definition of the second service, you can refer to this value in a field with the standard Python keyword formatting syntax, as in the following:
class DependantService(miniboss.Service):
# other fields
env = {'USER_ID': '{user_id}'}
You can of course also programmatically access it as Context['user_id']
once a value has been set.
When a service collection is started, the generated context is saved in the file .miniboss-context
, in order to be used when the same containers are restarted or a specific service is reloaded.
name
: The name of the service. Must be non-empty and unique for one miniboss definition module. The container can be contacted on the network under this name; it must therefore be a valid hostname.
image
: Container image of the service. Must be non-empty. You can use a repository URL here; if the image is not locally available, it will be pulled. You are highly advised to specify a tag, even if it's latest
, because otherwise miniboss will not be able to identify which container image was used for a service, and start a new container each time. If the tag of the image
is latest
, and the build_from
directory option is specified, the container image will be built each time the service is started.
entrypoint
: Container entrypoint, the executable that is run when the container starts. See Docker documentation for details.
cmd
: CMD
option for a container. See Docker documentation for details.
user
: USER
option for a container See Docker documentation for details.
dependencies
: A list of the dependencies of a service by name. If there are any invalid or circular dependencies, an exception will be raised.
env
: Environment variables to be injected into the service container, as a dict. The values of this dict can contain extrapolations from the global context; these extrapolations are executed when the service starts.
ports
: A mapping of the ports that must be exposed on the running host. Keys are ports local to the container, values are the ports of the running host. See Ports and hosts for more details on networking.
volumes
: Directories to be mounted inside the services as a volume, on which mount points. The value of volumes
can be either a list of strings, in the format "directory:mount_point:mode"
, or in the dictionary format {directory: {"bind": mount_point, "mode": mode}}
. In both cases, mode
is optional. See the Using volumes section of Docker Python SDK documentation for details.
always_start_new
: Whether to create a new container each time a service is started or restart an existing but stopped container. Default value is False
, meaning that by default existing container will be restarted.
stop_signal
: Which stop signal Docker should use to stop the container, by name (not by integer value, so don't use values from the signal
standard library module here). Default is SIGTERM
. Accepted values are SIGINT
, SIGTERM
, SIGKILL
and SIGQUIT
.
build_from
: The directory from which a service can be reloaded. It should be either absolute, or relative to the main script. Required if you want to be able to reload a service. If this option is specified, and the tag of the image
option is latest
, the container image will be built each time the service is started.
dockerfile
: Dockerfile to use when building a service from the build_from
directory. Default is Dockerfile
.
build_from
Download Details:
Author: afroisalreadyinu
Source Code: https://github.com/afroisalreadyinu/miniboss
License: MIT
#python #testing #docker #containers
1649925544
Kubernetes, also known as K8s, is an open source system for managing containerized applications across multiple hosts. It provides basic mechanisms for deployment, maintenance, and scaling of applications.
Kubernetes builds upon a decade and a half of experience at Google running production workloads at scale using a system called Borg, combined with best-of-breed ideas and practices from the community.
Kubernetes is hosted by the Cloud Native Computing Foundation (CNCF). If your company wants to help shape the evolution of technologies that are container-packaged, dynamically scheduled, and microservices-oriented, consider joining the CNCF. For details about who's involved and how Kubernetes plays a role, read the CNCF announcement.
See our documentation on kubernetes.io.
Try our interactive tutorial.
Take a free course on Scalable Microservices with Kubernetes.
To use Kubernetes code as a library in other applications, see the list of published components. Use of the k8s.io/kubernetes
module or k8s.io/kubernetes/...
packages as libraries is not supported.
The community repository hosts all information about building Kubernetes from source, how to contribute code and documentation, who to contact about what, etc.
If you want to build Kubernetes right away there are two options:
You have a working Go environment.
mkdir -p $GOPATH/src/k8s.io
cd $GOPATH/src/k8s.io
git clone https://github.com/kubernetes/kubernetes
cd kubernetes
make
You have a working Docker environment.
git clone https://github.com/kubernetes/kubernetes
cd kubernetes
make quick-release
For the full story, head over to the developer's documentation.
If you need support, start with the troubleshooting guide, and work your way through the process that we've outlined.
That said, if you have questions, reach out to us one way or another.
The Calendar has the list of all the meetings in Kubernetes community in a single location.
The User Case Studies website has real-world use cases of organizations across industries that are deploying/migrating to Kubernetes.
Kubernetes project is governed by a framework of principles, values, policies and processes to help our community and constituents towards our shared goals.
The Kubernetes Community is the launching point for learning about how we organize ourselves.
The Kubernetes Steering community repo is used by the Kubernetes Steering Committee, which oversees governance of the Kubernetes project.
The Kubernetes Enhancements repo provides information about Kubernetes releases, as well as feature tracking and backlogs.
Download Details:
Author: kubernetes
Source Code: https://github.com/kubernetes/kubernetes
License: Apache-2.0 License
#go #kubernetes #containers
1645427564
From app testing to reducing infrastructure costs and beyond, Docker has many great use cases. But developers should remember that, like any technology, Docker has limitations. But which use cases does Docker support? When should or shouldn't you use Docker as an alternative to VMs or other application deployment techniques?
1643452020
Let’s See How The Communication Between Docker Containers Is Done. Containers are a form of operating system virtualization. A single container might be used to run anything from a small microservice or software process to a larger application. Inside a container are all the necessary executables, binary code, libraries, and configuration files.
1641521524
aiodi is a Container for the Dependency Injection in Python.
Use the package manager pip to install aiodi.
pip install aiodi
from abc import ABC, abstractmethod
from logging import Logger, getLogger, NOTSET, StreamHandler, Formatter
from os import getenv
from aiodi import Container
from typing import Optional, Union
_CONTAINER: Optional[Container] = None
def get_simple_logger(
name: Optional[str] = None,
level: Union[str, int] = NOTSET,
fmt: str = '[%(asctime)s] - %(name)s - %(levelname)s - %(message)s',
) -> Logger:
logger = getLogger(name)
logger.setLevel(level)
handler = StreamHandler()
handler.setLevel(level)
formatter = Formatter(fmt)
handler.setFormatter(formatter)
logger.addHandler(handler)
return logger
class GreetTo(ABC):
@abstractmethod
def __call__(self, who: str) -> None:
pass
class GreetToWithPrint(GreetTo):
def __call__(self, who: str) -> None:
print('Hello ' + who)
class GreetToWithLogger(GreetTo):
_logger: Logger
def __init__(self, logger: Logger) -> None:
self._logger = logger
def __call__(self, who: str) -> None:
self._logger.info('Hello ' + who)
def container() -> Container:
global _CONTAINER
if _CONTAINER:
return _CONTAINER
di = Container({'env': {
'name': getenv('APP_NAME', 'aiodi'),
'log_level': getenv('APP_LEVEL', 'INFO'),
}})
di.resolve([
(
Logger,
get_simple_logger,
{
'name': di.resolve_parameter(lambda di_: di_.get('env.name', typ=str)),
'level': di.resolve_parameter(lambda di_: di_.get('env.log_level', typ=str)),
},
),
(GreetTo, GreetToWithLogger), # -> (GreetTo, GreetToWithLogger, {})
GreetToWithPrint, # -> (GreetToWithPrint, GreetToWithPrint, {})
])
di.set('who', 'World!')
# ...
_CONTAINER = di
return di
def main() -> None:
di = container()
di.get(Logger).info('Just simple call get with the type')
for greet_to in di.get(GreetTo, instance_of=True):
greet_to(di.get('who'))
if __name__ == '__main__':
main()
Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.
Please make sure to update tests as appropriate.
Download Details:
Author: ticdenis
Source Code: https://github.com/ticdenis/python-aiodi
License: MIT License
1639553534
Image is one necessary thing that you must plan when you want to containerize your apps. Building a large image means you need more data to transfer between your image repository, CI/CD platform, and deployment server. Creating a smaller container is a must to save time. There’s no need to be difficult when it comes to reducing container image size. Especially with Go apps, it has already come with a binary, which means it doesn’t need any environmental server like Nginx, Node, Etc.
In this article, you will learn how to reduce your Go apps container image using Docker. You can also use another builder like Buildah that used by Podman. In this case, you will reduce your container image’s size using a multi-stage build with a distroless image, UPX, and especially for Go apps, utilize the ldflags.