1679737080
При создании приложений React, которые извлекают контент из внешних источников, загрузка которых занимает некоторое время, всегда полезно обеспечить приятное взаимодействие с пользователем, привлекая пользователей и удерживая их внимание с помощью загрузчика, поскольку это помогает пользователям лучше понять, что происходит. чем оставить их спекулировать.
В этом руководстве мы узнаем, как отображать анимацию загрузчика при загрузке приложения и извлечении контента из внешних источников с помощью библиотеки react-spinners.
С этой целью мы создадим небольшое приложение, которое извлекает котировки, с экраном загрузки во время извлечения котировки:
Если вы хотите узнать больше о создании счетчиков с нуля, прочитайте нашу статью «Как создать анимацию загрузки в React с нуля» !
Давайте начнем с рассмотрения нашей разметки React. По сути, у нас есть два <div>элемента в родительском <div> элементе (для простоты) — один , loader-containerа второй — main-content:
import React from 'react';
const App = () => {
return (
<div className="container">
<div className="loader-container">
<div className="spinner"></div>
</div>
<div className="main-content">
<h1>Hello World!</h1>
<p>
This is a demo Project to show how to add animated loading with React.
</p>
<div className="buttons">
<button className="btn">
<a href="#">Read Article</a>
</button>
<button className="btn get-quote">
Generate Quote
</button>
</div>
<div className="quote-section">
<blockquote className="quote">
If you do not express your own original ideas, if you do not listen
to your own being, you will have betrayed yourself.
</blockquote>
- <span className="author">Rollo May</span>
</div>
</div>
</div>
);
};
export default App;
Пока что мы создали только файл <div>для нашего загрузчика. Теперь давайте посмотрим, как мы можем добавить его и активировать при загрузке некоторого контента.
Примечание. Вы можете проверить этот репозиторий и при необходимости перепроверить код, читая это руководство.
react-spinnerпредставляет собой набор множества счетчиков, которые мы можем использовать в наших приложениях React. Чтобы использовать счетчик React, мы должны сначала установить библиотеку в каталог нашего проекта, выполнив любую из следующих команд:
$ npm install --save react-spinners
// Or
$ yarn add react-spinners
Как только это будет сделано, мы теперь можем импортировать конкретный загрузчик, который мы хотим использовать (в данном случае a ClipLoader), и установить некоторые стили, такие как размер и цвет:
import React, { useState, useEffect } from 'react';
import ClipLoader from 'react-spinners/ClipLoader';
const App = () => {
const [loadingInProgress, setLoading] = useState(false);
<!-- ... -->
return (
<div className="container">
{loadingInProgress ? (
<div className="loader-container">
<ClipLoader color={'#fff'} size={150} />
</div>
) : (
<div className="main-content">
<h1>Hello World!</h1>
<p>
This is a demo Project to show how to add animated loading with
React.
</p>
<div className="buttons">
<button className="btn">
<a href="#">Read Article</a>
</button>
<button className="btn get-quote" onClick={getRandomQuote}>
Generate Quote
</button>
</div>
<div className="quote-section">
<blockquote className="quote">{quote.content}</blockquote>-{' '}
<span className="author">{quote.author}</span>
</div>
</div>
)}
</div>
);
};
export default App;
В react-spinnerбиблиотеке есть много полезных функций, например, мы можем использовать ее для обработки загрузки без использования тернарных операторов:
<ClipLoader color={'#fff'} loading={loadingInProgress} size={150} />
Вместо использования тернарного оператора для отображения содержимого на основе значения переменной loadingInProgressмы просто использовали loading={loadingInProgress}вместо этого.
Мы также можем изменить CSS, используемый для управления, spinner-iconиспользуя overrideатрибут:
import { useState } from "react";
import { css } from "@emotion/react";
import ClipLoader from "react-spinners/ClipLoader";
const override = css`
display: block;
margin: 0 auto;
border-color: red;
`;
function App() {
let [loadingInProgress, setLoading] = useState(true);
return (
<div className="container">
<ClipLoader color={'#fff'} loading={loadingInProgress} css={override} size={150} />
// ...
</div>
);
}
export default App;
Примечание: мы можем прочитать больше react-spinnerв документации , где мы также можем увидеть список доступных грешников.
В этом кратком руководстве мы рассмотрели, как можно react-spinnersдобавить счетчик загрузки к элементу в React.
Оригинальный источник статьи по адресу: https://stackabuse.com/
1679733300
当创建从需要一些时间加载的外部源获取内容的 React 应用程序时,通过吸引用户并将他们的注意力保持在加载器上来提供愉快的用户体验始终是一个好主意,因为这有助于用户了解正在发生的事情,而不是而不是让他们去猜测。
在本指南中,我们将学习如何利用库在加载应用程序和从外部源检索内容时显示加载器动画react-spinners。
为此 - 我们将构建一个获取报价的小型应用程序,并在获取报价时显示加载屏幕:
如果您想了解有关从头开始创建微调器的更多信息,请阅读我们的“如何从头开始在 React 中创建加载动画”!
让我们先看看我们的 React 标记。基本上,我们在父级<div>中有两个元素(为了简单起见)——一个是 the ,第二个是: <div>loader-containermain-content
import React from 'react';
const App = () => {
return (
<div className="container">
<div className="loader-container">
<div className="spinner"></div>
</div>
<div className="main-content">
<h1>Hello World!</h1>
<p>
This is a demo Project to show how to add animated loading with React.
</p>
<div className="buttons">
<button className="btn">
<a href="#">Read Article</a>
</button>
<button className="btn get-quote">
Generate Quote
</button>
</div>
<div className="quote-section">
<blockquote className="quote">
If you do not express your own original ideas, if you do not listen
to your own being, you will have betrayed yourself.
</blockquote>
- <span className="author">Rollo May</span>
</div>
</div>
</div>
);
};
export default App;
到目前为止,我们只<div>为我们的装载机创建了一个。现在,让我们看看如何添加它并在加载某些内容时触发它。
注意:您可以查看此存储库并在阅读本指南时根据需要交叉检查代码。
react-spinner是我们可以在 React 应用程序中使用的许多微调器的集合。要使用 React 微调器,我们必须首先通过运行以下任一命令在项目目录中安装该库:
$ npm install --save react-spinners
// Or
$ yarn add react-spinners
完成后,我们现在可以导入我们想要使用的特定加载器(在本例中为 a ClipLoader)并设置一些样式,如大小和颜色:
import React, { useState, useEffect } from 'react';
import ClipLoader from 'react-spinners/ClipLoader';
const App = () => {
const [loadingInProgress, setLoading] = useState(false);
<!-- ... -->
return (
<div className="container">
{loadingInProgress ? (
<div className="loader-container">
<ClipLoader color={'#fff'} size={150} />
</div>
) : (
<div className="main-content">
<h1>Hello World!</h1>
<p>
This is a demo Project to show how to add animated loading with
React.
</p>
<div className="buttons">
<button className="btn">
<a href="#">Read Article</a>
</button>
<button className="btn get-quote" onClick={getRandomQuote}>
Generate Quote
</button>
</div>
<div className="quote-section">
<blockquote className="quote">{quote.content}</blockquote>-{' '}
<span className="author">{quote.author}</span>
</div>
</div>
)}
</div>
);
};
export default App;
该react-spinner库有很多有用的特性,例如,我们可以使用它来处理加载而无需使用三元运算符:
<ClipLoader color={'#fff'} loading={loadingInProgress} size={150} />
我们没有使用三元运算符来显示基于变量值的内容loadingInProgress,而是简单地使用了loading={loadingInProgress}。
spinner-icon我们还可以通过使用属性来更改用于控制的 CSS override:
import { useState } from "react";
import { css } from "@emotion/react";
import ClipLoader from "react-spinners/ClipLoader";
const override = css`
display: block;
margin: 0 auto;
border-color: red;
`;
function App() {
let [loadingInProgress, setLoading] = useState(true);
return (
<div className="container">
<ClipLoader color={'#fff'} loading={loadingInProgress} css={override} size={150} />
// ...
</div>
);
}
export default App;
注意:react-spinner我们可以在文档中阅读更多相关信息,在那里我们也可以看到可用罪人的列表。
在这个简短的指南中,我们了解了如何react-spinners在 React 中使用向元素添加加载微调器。
原始文章来源:https: //stackabuse.com/
1679729416
When creating React applications that fetch content from external sources that take some time to load, it is always a good idea to provide a pleasant user experience by engaging users and keeping their attention with a loader, as this helps users understand what is going on rather than leaving them to speculate.
In this guide, we will learn how to display loader animation when loading an application and retrieving content from external sources, by utilizing the
react-spinners
library.
To that end - we'll build a small application that fetches quotes, with a loading screen while a quote is being fetched:
If you'd like to learn more about creating spinners from scratch, read our "How to Create a Loading Animation in React from Scratch"!
Let's begin by looking at our React markup. Basically, we have two <div>
elements in the parent <div>
(for the sake of simplicity) - one is the loader-container
and the second is the main-content
:
import React from 'react';
const App = () => {
return (
<div className="container">
<div className="loader-container">
<div className="spinner"></div>
</div>
<div className="main-content">
<h1>Hello World!</h1>
<p>
This is a demo Project to show how to add animated loading with React.
</p>
<div className="buttons">
<button className="btn">
<a href="#">Read Article</a>
</button>
<button className="btn get-quote">
Generate Quote
</button>
</div>
<div className="quote-section">
<blockquote className="quote">
If you do not express your own original ideas, if you do not listen
to your own being, you will have betrayed yourself.
</blockquote>
- <span className="author">Rollo May</span>
</div>
</div>
</div>
);
};
export default App;
So far, we've only created a <div>
for our loader. Now, let's see how we can add it and trigger it when some content loads.
Note: You can check out this repository and cross-check the code if need be while reading this guide.
react-spinner
is a collection of many spinners that we can use in our React applications. To use React spinner, we must first install the library in our project's directory by running any of the following command:
$ npm install --save react-spinners
// Or
$ yarn add react-spinners
Once that is done, we can now import the particular loader we want to use (in this case, a ClipLoader
) and set some styling like size and color:
import React, { useState, useEffect } from 'react';
import ClipLoader from 'react-spinners/ClipLoader';
const App = () => {
const [loadingInProgress, setLoading] = useState(false);
<!-- ... -->
return (
<div className="container">
{loadingInProgress ? (
<div className="loader-container">
<ClipLoader color={'#fff'} size={150} />
</div>
) : (
<div className="main-content">
<h1>Hello World!</h1>
<p>
This is a demo Project to show how to add animated loading with
React.
</p>
<div className="buttons">
<button className="btn">
<a href="#">Read Article</a>
</button>
<button className="btn get-quote" onClick={getRandomQuote}>
Generate Quote
</button>
</div>
<div className="quote-section">
<blockquote className="quote">{quote.content}</blockquote>-{' '}
<span className="author">{quote.author}</span>
</div>
</div>
)}
</div>
);
};
export default App;
The react-spinner
library has a lot of useful features, for example, we can use it to handle loading without using ternary operators:
<ClipLoader color={'#fff'} loading={loadingInProgress} size={150} />
Instead of using ternary operator to display the content based on the value of the loadingInProgress
variable, we've simply used loading={loadingInProgress}
instead.
We can also alter the CSS used to control the spinner-icon
by using an override
attribute:
import { useState } from "react";
import { css } from "@emotion/react";
import ClipLoader from "react-spinners/ClipLoader";
const override = css`
display: block;
margin: 0 auto;
border-color: red;
`;
function App() {
let [loadingInProgress, setLoading] = useState(true);
return (
<div className="container">
<ClipLoader color={'#fff'} loading={loadingInProgress} css={override} size={150} />
// ...
</div>
);
}
export default App;
Note: We can read more about react-spinner
in the documentation, where we can see a list of available sinners as well.
In this short guide, we've taken a look at how you can use react-spinners
to add a loading spinner to an element in React.
Original article source at: https://stackabuse.com/
1679389560
Complex Loader Management Hook for React.
react-wait is a React Hook helps to manage multiple loading states on the page without any conflict. It's based on a very simple idea that manages an Array
of multiple loading states. The built-in loader component listens its registered loader and immediately become loading state.
React.Suspense
?:React has its own Suspense feature to manage all the async works. For now it only supports code-splitting (not data-fetching).
useWait
allows you to manage waiting experiences much more explicitly and not only for Promised/async patterns but also complete loading management.
Overview
Here's a quick overview that what's useWait
for:
import { useWait, Waiter } from "react-wait";
function A() {
const { isWaiting } = useWait();
return (
<div>
{isWaiting("creating user") ? "Creating User..." : "Nothing happens"}
</div>
);
}
function B() {
const { anyWaiting } = useWait();
return (
<div>
{anyWaiting() ? "Something happening on app..." : "Nothing happens"}
</div>
);
}
function C() {
const { startWaiting, endWaiting, isWaiting } = useWait();
function createUser() {
startWaiting("creating user");
// Faking the async work:
setTimeout(() => {
endWaiting("creating user");
}, 1000);
}
return (
<button disabled={isWaiting("creating user")} onClick={createUser}>
<Wait on="creating user" fallback={<Spinner />}>
Create User
</Wait>
</button>
);
}
ReactDOM.render(
<Waiter>
<C />
</Waiter>,
document.getElementById("root")
);
Quick Start
If you are a try and learn developer, you can start trying the react-wait now using codesandbox.io.
yarn add react-wait
import { Waiter, useWait } from "react-wait";
function UserCreateButton() {
const { startWaiting, endWaiting, isWaiting, Wait } = useWait();
return (
<button
onClick={() => startWaiting("creating user")}
disabled={isWaiting("creating user")}
>
<Wait on="creating user" fallback={<div>Creating user!</div>}>
Create User
</Wait>
</button>
);
}
Waiter
Context ProviderAnd you should wrap your App
with Waiter
component. It's actually a Context.Provider
that provides a loading context to the component tree.
const rootElement = document.getElementById("root");
ReactDOM.render(
<Waiter>
<App />
</Waiter>,
rootElement
);
$ yarn add react-wait
# or if you using npm
$ npm install react-wait
react-wait provides some helpers to you to use in your templates.
anyWaiting()
Returns boolean value if any loader exists in context.
const { anyWaiting } = useWait();
return <button disabled={anyWaiting()}>Disabled while waiting</button>;
isWaiting(waiter String)
Returns boolean value if given loader exists in context.
const { isWaiting } = useWait();
return (
<button disabled={isWaiting("creating user")}>
Disabled while creating user
</button>
);
startWaiting(waiter String)
Starts the given waiter.
const { startWaiting } = useWait();
return <button onClick={() => startWaiting("message")}>Start</button>;
endWaiting(waiter String)
Stops the given waiter.
const { end } = useWait();
return <button onClick={() => endWaiting("message")}>Stop</button>;
Wait
Componentfunction Component() {
const { Wait } = useWait();
return (
<Wait on="the waiting message" fallback={<div>Waiting...</div>}>
The content after waiting done
</Wait>
);
}
Better example for a button
with loading state:
<button disabled={isWaiting("creating user")}>
<Wait on="creating user" fallback={<div>Creating User...</div>}>
Create User
</Wait>
</button>
With reusable loader components, you will be able to use custom loader components as example below. This will allow you to create better user loading experience.
function Spinner() {
return <img src="spinner.gif" />;
}
Now you can use your spinner everywhere using waiting
attribute:
<button disabled={isWaiting("creating user")}>
<Wait on="creating user" fallback={<Spinner />}>
Create User
</Wait>
</button>
createWaitingContext(context String)
To keep your code DRY you can create a Waiting Context
using createWaitingContext
.
function CreateUserButton() {
const { createWaitingContext } = useWait();
// All methods will be curried with "creating user" on.
const { startWaiting, endWaiting, isWaiting, Wait } = createWaitingContext(
"creating user"
);
function createUser() {
startWaiting();
setTimeout(endWaiting, 1000);
}
return (
<Button disabled={isWaiting()} onClick={createUser}>
<Wait fallback="Creating User...">Create User</Wait>
</Button>
);
}
Read the Medium post "Managing Complex Waiting Experiences on Web UIs".
Since react-wait based on a very simple idea, it can be implemented on other frameworks.
Author: F
Source Code: https://github.com/f/react-wait
License: MIT license
1677931757
When creating React applications that fetch content from external sources that take some time to load, it is always a good idea to provide a pleasant user experience by engaging users and keeping their attention with a loader, as this helps users understand what is going on rather than leaving them to speculate.
In this guide, we will learn how to display loader animation when loading an application and retrieving content from external sources, by utilizing the
react-spinners
library.
To that end - we'll build a small application that fetches quotes, with a loading screen while a quote is being fetched:
If you'd like to learn more about creating spinners from scratch, read our "How to Create a Loading Animation in React from Scratch"!
Let's begin by looking at our React markup. Basically, we have two <div>
elements in the parent <div>
(for the sake of simplicity) - one is the loader-container
and the second is the main-content
:
import React from 'react';
const App = () => {
return (
<div className="container">
<div className="loader-container">
<div className="spinner"></div>
</div>
<div className="main-content">
<h1>Hello World!</h1>
<p>
This is a demo Project to show how to add animated loading with React.
</p>
<div className="buttons">
<button className="btn">
<a href="#">Read Article</a>
</button>
<button className="btn get-quote">
Generate Quote
</button>
</div>
<div className="quote-section">
<blockquote className="quote">
If you do not express your own original ideas, if you do not listen
to your own being, you will have betrayed yourself.
</blockquote>
- <span className="author">Rollo May</span>
</div>
</div>
</div>
);
};
export default App;
So far, we've only created a <div>
for our loader. Now, let's see how we can add it and trigger it when some content loads.
Note: You can check out this repository and cross-check the code if need be while reading this guide.
react-spinner
is a collection of many spinners that we can use in our React applications. To use React spinner, we must first install the library in our project's directory by running any of the following command:
$ npm install --save react-spinners
// Or
$ yarn add react-spinners
Once that is done, we can now import the particular loader we want to use (in this case, a ClipLoader
) and set some styling like size and color:
import React, { useState, useEffect } from 'react';
import ClipLoader from 'react-spinners/ClipLoader';
const App = () => {
const [loadingInProgress, setLoading] = useState(false);
<!-- ... -->
return (
<div className="container">
{loadingInProgress ? (
<div className="loader-container">
<ClipLoader color={'#fff'} size={150} />
</div>
) : (
<div className="main-content">
<h1>Hello World!</h1>
<p>
This is a demo Project to show how to add animated loading with
React.
</p>
<div className="buttons">
<button className="btn">
<a href="#">Read Article</a>
</button>
<button className="btn get-quote" onClick={getRandomQuote}>
Generate Quote
</button>
</div>
<div className="quote-section">
<blockquote className="quote">{quote.content}</blockquote>-{' '}
<span className="author">{quote.author}</span>
</div>
</div>
)}
</div>
);
};
export default App;
The react-spinner
library has a lot of useful features, for example, we can use it to handle loading without using ternary operators:
<ClipLoader color={'#fff'} loading={loadingInProgress} size={150} />
Instead of using ternary operator to display the content based on the value of the loadingInProgress
variable, we've simply used loading={loadingInProgress}
instead.
We can also alter the CSS used to control the spinner-icon
by using an override
attribute:
import { useState } from "react";
import { css } from "@emotion/react";
import ClipLoader from "react-spinners/ClipLoader";
const override = css`
display: block;
margin: 0 auto;
border-color: red;
`;
function App() {
let [loadingInProgress, setLoading] = useState(true);
return (
<div className="container">
<ClipLoader color={'#fff'} loading={loadingInProgress} css={override} size={150} />
// ...
</div>
);
}
export default App;
Note: We can read more about
react-spinner
in the documentation, where we can see a list of available sinners as well.
In this short guide, we've taken a look at how you can use react-spinners
to add a loading spinner to an element in React.
Original article source at: https://stackabuse.com
1677751200
When creating React applications that fetch content from external sources that take some time to load, it is always a good idea to provide a pleasant user experience by engaging users and keeping their attention with a loader, as this helps users understand what is going on rather than leaving them to speculate.
In this guide, we will learn how to display loader animation when loading an application and retrieving content from external sources, by utilizing the
react-spinners
library.
To that end - we'll build a small application that fetches quotes, with a loading screen while a quote is being fetched:
If you'd like to learn more about creating spinners from scratch, read our "How to Create a Loading Animation in React from Scratch"!
Let's begin by looking at our React markup. Basically, we have two <div>
elements in the parent <div>
(for the sake of simplicity) - one is the loader-container
and the second is the main-content
:
import React from 'react';
const App = () => {
return (
<div className="container">
<div className="loader-container">
<div className="spinner"></div>
</div>
<div className="main-content">
<h1>Hello World!</h1>
<p>
This is a demo Project to show how to add animated loading with React.
</p>
<div className="buttons">
<button className="btn">
<a href="#">Read Article</a>
</button>
<button className="btn get-quote">
Generate Quote
</button>
</div>
<div className="quote-section">
<blockquote className="quote">
If you do not express your own original ideas, if you do not listen
to your own being, you will have betrayed yourself.
</blockquote>
- <span className="author">Rollo May</span>
</div>
</div>
</div>
);
};
export default App;
So far, we've only created a <div>
for our loader. Now, let's see how we can add it and trigger it when some content loads.
Note: You can check out this repository and cross-check the code if need be while reading this guide.
react-spinner
is a collection of many spinners that we can use in our React applications. To use React spinner, we must first install the library in our project's directory by running any of the following command:
$ npm install --save react-spinners
// Or
$ yarn add react-spinners
Once that is done, we can now import the particular loader we want to use (in this case, a ClipLoader
) and set some styling like size and color:
import React, { useState, useEffect } from 'react';
import ClipLoader from 'react-spinners/ClipLoader';
const App = () => {
const [loadingInProgress, setLoading] = useState(false);
<!-- ... -->
return (
<div className="container">
{loadingInProgress ? (
<div className="loader-container">
<ClipLoader color={'#fff'} size={150} />
</div>
) : (
<div className="main-content">
<h1>Hello World!</h1>
<p>
This is a demo Project to show how to add animated loading with
React.
</p>
<div className="buttons">
<button className="btn">
<a href="#">Read Article</a>
</button>
<button className="btn get-quote" onClick={getRandomQuote}>
Generate Quote
</button>
</div>
<div className="quote-section">
<blockquote className="quote">{quote.content}</blockquote>-{' '}
<span className="author">{quote.author}</span>
</div>
</div>
)}
</div>
);
};
export default App;
The react-spinner
library has a lot of useful features, for example, we can use it to handle loading without using ternary operators:
<ClipLoader color={'#fff'} loading={loadingInProgress} size={150} />
Instead of using ternary operator to display the content based on the value of the loadingInProgress
variable, we've simply used loading={loadingInProgress}
instead.
We can also alter the CSS used to control the spinner-icon
by using an override
attribute:
import { useState } from "react";
import { css } from "@emotion/react";
import ClipLoader from "react-spinners/ClipLoader";
const override = css`
display: block;
margin: 0 auto;
border-color: red;
`;
function App() {
let [loadingInProgress, setLoading] = useState(true);
return (
<div className="container">
<ClipLoader color={'#fff'} loading={loadingInProgress} css={override} size={150} />
// ...
</div>
);
}
export default App;
Note: We can read more about
react-spinner
in the documentation, where we can see a list of available sinners as well.
In this short guide, we've taken a look at how you can use react-spinners
to add a loading spinner to an element in React.
Original article source at: https://stackabuse.com/
1673466300
With MarkLogic being a document-oriented database, data is commonly stored in a JSON or XML document format.
If the data to bring into the MarkLogic is not already structured in JSON or XML means if it is currently in a relational database, there are various ways to export or transform it from the source.
For example, many relational databases provide an option to export relational data in XML or in JSON format, or a SQL script could be written to fetch the data from the database, outputting it in an XML or JSON structure. Or, using Marklogic rows from a .csv file can be imported as XML and JSON documents.
In any case, it is normal to first denormalize the data being exported from the relational database to first put the content back together in its original state. Denormalization, which naturally occurs when working with documents in their original form, greatly reduces the need for joins and acceleration performance.
As we know that schema is something having a set of rules for a particular structure of the database. While we talk about data quality then schemas are helpful as quality matters a lot with quality reliability and a proper actional database is going to present.
Now if we talk about the schema-agnostic then it is something the database is not bounded by any schema but it is aware of it. Schemas are optional in MarkLogic. Data is going to be loaded in its original data form. To address a group of documents within a database, directories, collections and internal structure of documents can be used. With MarkLogic easily supports data from disparate systems all in the same database.
When loading a document, it is the best choice to have one document per entity. Marklogic is the most performant with many small documents, rather than one large document. The target document size is 1KB to 100KB but can be larger.
For Example, rather than loading a bunch of students all as one document, have each student be a document.
Whenever defining a document remember that use XML document and attribute names or JSON property names. Make document names human-readable so do not create generic names. Using this convention help indexes be efficient.
<items>
<item>
<product> Mouse </product>
<price> 1000 </price>
<quantity> 3 </quantity>
</item>
<item>
<product> Keyboard </product>
<price> 2000 </price>
<quantity> 2 </quantity>
</item>
</items>
As documents are loaded, all the words in each document and the structure of each document, are indexed. So documents are easily searchable.
The document can be loaded into the MarkLogic in many ways:
To read a document, the URI of the document is used.
XQuery Example : fn:doc("college/course-101.json")
JavaScript Example : fn:doc("account/order-202.json")
Rest API Example : curl --abc --user admin:admin: -X GET "http://localhost:8055/v1/document?uri=/accounting/order-10072.json"
MLCP has the feature of splitting the long XML documents, where each occurrence of a designated element becomes an individual XML document in the database. This is useful when multiple records are all contained within one large XML file. Such as a list of students, courses, details, etc.
The -input_file_type aggregates option is used to split a large document into individual documents. The aggregate_record-element option is used element used to designate a new document. The -uri_id is used to create a URI for each document.
While it is fine to have a mix of XML and JSON documents in the same database, it is also possible to transform content from one format to other. You can easily transform the files by following the below steps.
xquery version "1.0-ml";
import module namespace json = "http://abc.com/xdmp/json" at "abc/json/json.xqy";
json:transform-to-json(fn:doc("doc-01.xml"), json:config("custom"))
A Marklogic content pump can be used to import the rows from the .csv file to a MarkLogic database. We are able to the data during the process or afterward in the database. Ways to modify content once it is already in the database include using the data movement SDK, XQuery, Js, etc.
As we know that MarkLogic is a database that facilitates many things like we can load the data, indexing the data, transforming the data, and splitting the data.
References:
Original article source at: https://blog.knoldus.com/
1673345400
Windless makes it easy to implement invisible layout loading view.
![]() | ![]() | ![]() |
CocoaPods is a dependency manager for Cocoa projects. You can install it with the following command:
$ gem install cocoapods
CocoaPods 1.1+ is required to build Windless 4.0+.
To integrate Windless into your Xcode project using CocoaPods, specify it in your Podfile
:
source 'https://github.com/CocoaPods/Specs.git'
platform :ios, '8.0'
use_frameworks!
target '<Your Target Name>' do
pod 'Windless', '~> 0.1.5'
end
Then, run the following command:
$ pod install
Carthage is a decentralized dependency manager that builds your dependencies and provides you with binary frameworks.
You can install Carthage with Homebrew using the following command:
$ brew update
$ brew install carthage
To integrate Windless into your Xcode project using Carthage, specify it in your Cartfile
:
github "Interactive-Studio/Windless" ~> 0.1.5
Run carthage update
to build the framework and drag the built Windless.framework
into your Xcode project.
If you prefer not to use either of the aforementioned dependency managers, you can integrate Windless into your project manually.
import Windless
class ViewController: UIViewController {
lazy var contentsView = UIView()
var subView1 = UIView()
var subView2 = UIView()
override func viewDidLoad() {
super.viewDidLoad()
self.view.addSubview(contentsView)
contentsView.addSubview(subView1)
contentsView.addSubview(subView2)
// start
contentsView.windless
.setupWindlessableViews([subView1, subView2])
.start()
// stop
contentsView.windless.end()
}
}
If you use Storyboard or xib, you only need to set the isWindlessable
flag to true for the views you want to show as fake in the view inspector of the view, and you do not have to pass the view through the setupWindlessableViews
method.
import Windless
class ViewController: UIViewController {
@IBOutlet weak var contentsView: UIView!
override func viewDidLoad() {
super.viewDidLoad()
contentsView.windless.start()
}
}
Depending on the lineHeight
value and the spacing
value, UILabel and UITextView will reconstruct the layout when the windless animation runs.
public protocol CanBeMultipleLines {
var lineHeight: CGFloat { get set }
var spacing: CGFloat { get set }
}
There are several customizable options in Windless.
public class WindlessConfiguration {
/// The direction of windless animation. Defaults to rightDiagonal.
public var direction: WindlessDirection = .rightDiagonal
/// The speed of windless animation. Defaults to 1.
public var speed: Float = 1
/// The duration of the fade used when windless begins. Defaults to 0.
public var beginTime: CFTimeInterval = 0
/// The time interval windless in seconds. Defaults to 4.
public var duration: CFTimeInterval = 4
/// The time interval between windless in seconds. Defaults to 2.
public var pauseDuration: CFTimeInterval = 2
/// gradient animation timingFunction default easeOut
public var timingFuction: CAMediaTimingFunction = .easeOut
/// gradient layer center color default .lightGray
public var animationLayerColor: UIColor = .lightGray
/// Mask layer background color default .groupTableViewBackground
public var animationBackgroundColor: UIColor = .groupTableViewBackground
/// The opacity of the content while it is windless. Defaults to 0.8.
public var animationLayerOpacity: CGFloat = 0.8
}
To set the options, use the apply method as shown below.
import Windless
class ViewController: UIViewController {
@IBOutlet weak var contentsView: UIView!
override func viewDidLoad() {
super.viewDidLoad()
contentsView.windless
.apply {
$0.beginTime = 1
$0.pauseDuration = 2
$0.duration = 3
$0.animationLayerOpacity = 0.5
}
.start()
}
}
If you want to know more detailed usage, please refer to Example.
The isWindlessable
value determines how the loading view looks. The images below show how the loading screen will look according to the isWindlessable
value.
isWindlessable
= 🌀
Author: ParkGwangBeom
Source Code: https://github.com/ParkGwangBeom/Windless
License: MIT license
1672799439
In this PyTorch tutorial we will learn about How to Create A Logistic Regression Classifier in PyTorch. Logistic regression is a type of regression that predicts the probability of an event. It is used for classification problems and has many applications in the fields of machine learning, artificial intelligence, and data mining.
The formula of logistic regression is to apply a sigmoid function to the output of a linear function. This article discusses how you can build a logistic regression classifier. While previously you have been working on a single-varable dataset, here we’ll be using a popular MNIST dataset to train and test our model. After going through this article, you’ll learn:
Let’s get started.
This tutorial is in four parts; they are
nn.Module
You will train and test a logistic regression model with MNIST dataset. This dataset contains 6000 images for training and 10000 images for testing the out-of-sample performance.
The MNIST dataset is so popular that it is part of PyTorch. Here is how you can load the training and testing samples of the MNIST dataset in PyTorch.
import torch
import torchvision.transforms as transforms
from torchvision import datasets
# loading training data
train_dataset = datasets.MNIST(root='./data',
train=True,
transform=transforms.ToTensor(),
download=True)
#loading test data
test_dataset = datasets.MNIST(root='./data',
train=False,
transform=transforms.ToTensor())
The dataset will be downloaded and extracted to the directory as below.
Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to ./data/MNIST/raw/train-images-idx3-ubyte.gz
0%| | 0/9912422 [00:00<?, ?it/s]
Extracting ./data/MNIST/raw/train-images-idx3-ubyte.gz to ./data/MNIST/raw
Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz to ./data/MNIST/raw/train-labels-idx1-ubyte.gz
0%| | 0/28881 [00:00<?, ?it/s]
Extracting ./data/MNIST/raw/train-labels-idx1-ubyte.gz to ./data/MNIST/raw
Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz to ./data/MNIST/raw/t10k-images-idx3-ubyte.gz
0%| | 0/1648877 [00:00<?, ?it/s]
Extracting ./data/MNIST/raw/t10k-images-idx3-ubyte.gz to ./data/MNIST/raw
Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to ./data/MNIST/raw/t10k-labels-idx1-ubyte.gz
0%| | 0/4542 [00:00<?, ?it/s]
Extracting ./data/MNIST/raw/t10k-labels-idx1-ubyte.gz to ./data/MNIST/raw
Let’s verify number of training and testing samples in the dataset.
print("number of training samples: " + str(len(train_dataset)) + "\n" +
"number of testing samples: " + str(len(test_dataset)))
It prints
number of training samples: 60000
number of testing samples: 10000
Each sample in the dataset is a pair of image and label. To inspect the data type and size of the first element in the training data, you can use type()
and size()
methods.
print("datatype of the 1st training sample: ", train_dataset[0][0].type())
print("size of the 1st training sample: ", train_dataset[0][0].size())
This prints
datatype of the 1st training sample: torch.FloatTensor
size of the 1st training sample: torch.Size([1, 28, 28])
You can access samples from a dataset using list indexing. The first sample in the dataset is a FloatTensor
and it is a 28×28-pixel image in grayscale (i.e., one channel), hence the size [1, 28, 28]
.
Now, let’s check the labels of the first two samples in the training set.
# check the label of first two training sample
print("label of the first taining sample: ", train_dataset[0][1])
print("label of the second taining sample: ", train_dataset[1][1])
This shows
label of the first taining sample: 5
label of the second taining sample: 0
From the above, you can see that the first two images in the training set represent “5” and “0”. Let’s show these two images to confirm.
img_5 = train_dataset[0][0].numpy().reshape(28, 28)
plt.imshow(img_5, cmap='gray')
plt.show()
img_0 = train_dataset[1][0].numpy().reshape(28, 28)
plt.imshow(img_0, cmap='gray')
plt.show()
You should see these two digits:
Usually, you do not use the dataset directly in training but through a DataLoader
class. This allows you to read data in batches, not samples.
In the following, data is loaded into a DataLoader
with batch size at 32.
...
from torch.utils.data import DataLoader
# load train and test data samples into dataloader
batach_size = 32
train_loader = DataLoader(dataset=train_dataset, batch_size=batach_size, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=batach_size, shuffle=False)
nn.Module
Let’s build the model class with nn.Module
for our logistic regression model. This class is similar to that in the previous posts but the numbers of input and output are configurable.
# build custom module for logistic regression
class LogisticRegression(torch.nn.Module):
# build the constructor
def __init__(self, n_inputs, n_outputs):
super(LogisticRegression, self).__init__()
self.linear = torch.nn.Linear(n_inputs, n_outputs)
# make predictions
def forward(self, x):
y_pred = torch.sigmoid(self.linear(x))
return y_pred
This model will take a 28×28-pixel image of handwritten digits as input and classify them into one of the 10 output classes of digits 0 to 9. So, here is how you can instantiate the model.
# instantiate the model
n_inputs = 28*28 # makes a 1D vector of 784
n_outputs = 10
log_regr = LogisticRegression(n_inputs, n_outputs)
You will train this model with stochastic gradient descent as the optimizer with learning rate 0.001 and cross-entropy as the loss metric.
Then, the model is trained for 50 epochs. Note that you have use view()
method to flatten the image matrices into rows to fit the same of the logistic regression model input.
...
# defining the optimizer
optimizer = torch.optim.SGD(log_regr.parameters(), lr=0.001)
# defining Cross-Entropy loss
criterion = torch.nn.CrossEntropyLoss()
epochs = 50
Loss = []
acc = []
for epoch in range(epochs):
for i, (images, labels) in enumerate(train_loader):
optimizer.zero_grad()
outputs = log_regr(images.view(-1, 28*28))
loss = criterion(outputs, labels)
# Loss.append(loss.item())
loss.backward()
optimizer.step()
Loss.append(loss.item())
correct = 0
for images, labels in test_loader:
outputs = log_regr(images.view(-1, 28*28))
_, predicted = torch.max(outputs.data, 1)
correct += (predicted == labels).sum()
accuracy = 100 * (correct.item()) / len(test_dataset)
acc.append(accuracy)
print('Epoch: {}. Loss: {}. Accuracy: {}'.format(epoch, loss.item(), accuracy))
During training, you should see the progress like the following:
Epoch: 0. Loss: 2.211054563522339. Accuracy: 61.63
Epoch: 1. Loss: 2.1178536415100098. Accuracy: 74.81
Epoch: 2. Loss: 2.0735440254211426. Accuracy: 78.47
Epoch: 3. Loss: 2.040225028991699. Accuracy: 80.17
Epoch: 4. Loss: 1.9637292623519897. Accuracy: 81.05
Epoch: 5. Loss: 2.000900983810425. Accuracy: 81.44
...
Epoch: 45. Loss: 1.6549798250198364. Accuracy: 86.3
Epoch: 46. Loss: 1.7053509950637817. Accuracy: 86.31
Epoch: 47. Loss: 1.7396119832992554. Accuracy: 86.36
Epoch: 48. Loss: 1.6963073015213013. Accuracy: 86.37
Epoch: 49. Loss: 1.6838685274124146. Accuracy: 86.46
You have achieved an accuracy of around 86% by training the model for only 50 epochs. Accuracy can be improved further if the model is trained longer.
Let’s visualize how the graphs for loss and accuracy look like. The following is the loss:
plt.plot(Loss)
plt.xlabel("no. of epochs")
plt.ylabel("total loss")
plt.title("Loss")
plt.show()
And this is for accuracy:
plt.plot(acc)
plt.xlabel("no. of epochs")
plt.ylabel("total accuracy")
plt.title("Accuracy")
plt.show()
Putting everything together, the following is the complete code:
import torch
import torchvision.transforms as transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
# loading training data
train_dataset = datasets.MNIST(root='./data',
train=True,
transform=transforms.ToTensor(),
download=True)
# loading test data
test_dataset = datasets.MNIST(root='./data',
train=False,
transform=transforms.ToTensor())
print("number of training samples: " + str(len(train_dataset)) + "\n" +
"number of testing samples: " + str(len(test_dataset)))
print("datatype of the 1st training sample: ", train_dataset[0][0].type())
print("size of the 1st training sample: ", train_dataset[0][0].size())
# check the label of first two training sample
print("label of the first taining sample: ", train_dataset[0][1])
print("label of the second taining sample: ", train_dataset[1][1])
img_5 = train_dataset[0][0].numpy().reshape(28, 28)
plt.imshow(img_5, cmap='gray')
plt.show()
img_0 = train_dataset[1][0].numpy().reshape(28, 28)
plt.imshow(img_0, cmap='gray')
plt.show()
# load train and test data samples into dataloader
batach_size = 32
train_loader = DataLoader(dataset=train_dataset, batch_size=batach_size, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=batach_size, shuffle=False)
# build custom module for logistic regression
class LogisticRegression(torch.nn.Module):
# build the constructor
def __init__(self, n_inputs, n_outputs):
super().__init__()
self.linear = torch.nn.Linear(n_inputs, n_outputs)
# make predictions
def forward(self, x):
y_pred = torch.sigmoid(self.linear(x))
return y_pred
# instantiate the model
n_inputs = 28*28 # makes a 1D vector of 784
n_outputs = 10
log_regr = LogisticRegression(n_inputs, n_outputs)
# defining the optimizer
optimizer = torch.optim.SGD(log_regr.parameters(), lr=0.001)
# defining Cross-Entropy loss
criterion = torch.nn.CrossEntropyLoss()
epochs = 50
Loss = []
acc = []
for epoch in range(epochs):
for i, (images, labels) in enumerate(train_loader):
optimizer.zero_grad()
outputs = log_regr(images.view(-1, 28*28))
loss = criterion(outputs, labels)
# Loss.append(loss.item())
loss.backward()
optimizer.step()
Loss.append(loss.item())
correct = 0
for images, labels in test_loader:
outputs = log_regr(images.view(-1, 28*28))
_, predicted = torch.max(outputs.data, 1)
correct += (predicted == labels).sum()
accuracy = 100 * (correct.item()) / len(test_dataset)
acc.append(accuracy)
print('Epoch: {}. Loss: {}. Accuracy: {}'.format(epoch, loss.item(), accuracy))
plt.plot(Loss)
plt.xlabel("no. of epochs")
plt.ylabel("total loss")
plt.title("Loss")
plt.show()
plt.plot(acc)
plt.xlabel("no. of epochs")
plt.ylabel("total accuracy")
plt.title("Accuracy")
plt.show()
In this tutorial, you learned how to build a multi-class logistic regression classifier in PyTorch. Particularly, you learned.
Original article sourced at: https://machinelearningmastery.com
1666950180
A protocol to enable UIViewController
s or UIView
s to present placeholder views based on content, loading, error or empty states.
In a networked application a view controller or custom view typically has the following states that need to be communicated to the user:
As trivial as this flow may sound, there are a lot of cases that result in a rather large decision tree.
StatefulViewController
is a concrete implementation of this particular decision tree. (If you want to create your own modified version, you might be interested in the state machine that is used to show and hide views.)
Current Swift compatibility breakdown:
Swift Version | Framework Version |
---|---|
3.0 | 3.x |
2.3 | 2.x |
2.2 | 1.x |
This guide describes the use of the
StatefulViewController
protocol onUIViewController
. However, you can also adopt theStatefulViewController
protocol on anyUIViewController
subclass, such asUITableViewController
orUICollectionViewController
, as well as your customUIView
subclasses.
First, make sure your view controller adopts to the StatefulViewController
protocol.
class MyViewController: UIViewController, StatefulViewController {
// ...
}
Then, configure the loadingView
, emptyView
and errorView
properties (provided by the StatefulViewController
protocol) in viewDidLoad
.
override func viewDidLoad() {
super.viewDidLoad()
// Setup placeholder views
loadingView = // UIView
emptyView = // UIView
errorView = // UIView
}
In addition, call the setupInitialViewState()
method in viewWillAppear:
in order to setup the initial state of the controller.
override func viewWillAppear(animated: Bool) {
super.viewWillAppear(animated)
setupInitialViewState()
}
After that, simply tell the view controller whenever content is loading and StatefulViewController
will take care of showing and hiding the correct loading, error and empty view for you.
override func viewWillAppear(animated: Bool) {
super.viewWillAppear(animated)
loadDeliciousWines()
}
func loadDeliciousWines() {
startLoading()
let url = NSURL(string: "http://example.com/api")
let session = NSURLSession.sharedSession()
session.dataTaskWithURL(url) { (let data, let response, let error) in
endLoading(error: error)
}.resume()
}
StatefulViewController calls the hasContent
method to check if there is any content to display. If you do not override this method in your own class, StatefulViewController
will always assume that there is content to display.
func hasContent() -> Bool {
return datasourceArray.count > 0
}
Optionally, you might also be interested to respond to an error even if content is already shown. StatefulViewController
will not show its errorView
in this case, because there is already content that can be shown.
To e.g. show a custom alert or other unobtrusive error message, use handleErrorWhenContentAvailable:
to manually present the error to the user.
func handleErrorWhenContentAvailable(error: ErrorType) {
let alertController = UIAlertController(title: "Ooops", message: "Something went wrong.", preferredStyle: .Alert)
alertController.addAction(UIAlertAction(title: "OK", style: .Default, handler: nil))
presentViewController(alertController, animated: true, completion: nil)
}
Per default, StatefulViewController presents all configured placeholder views fullscreen (i.e. with 0 insets from top, bottom, left & right from the superview). In case a placeholder view should have custom insets the configured placeholderview may conform to the StatefulPlaceholderView
protocol and override the placeholderViewInsets
method to return custom edge insets.
class MyPlaceholderView: UIView, StatefulPlaceholderView {
func placeholderViewInsets() -> UIEdgeInsets {
return UIEdgeInsets(top: 20, left: 20, bottom: 20, right: 20)
}
}
Note: The following section is only intended for those, who want to create a stateful controller that differs from the flow described above.
You can also use the underlying view state machine to create a similar implementation for your custom flow of showing/hiding views.
let stateMachine = ViewStateMachine(view: view)
// Add states
stateMachine["loading"] = loadingView
stateMachine["other"] = otherView
// Transition to state
stateMachine.transitionToState(.View("loading"), animated: true) {
println("finished switching to loading view")
}
// Hide all views
stateMachine.transitionToState(.None, animated: true) {
println("all views hidden now")
}
Add the following line to your Cartfile.
github "aschuch/StatefulViewController" ~> 3.0
Then run carthage update
.
Add the following line to your Podfile.
pod "StatefulViewController", "~> 3.0"
Then run pod install
with CocoaPods 0.36 or newer.
Just drag and drop the two .swift
files in the StatefulViewController
folder into your project.
Open the Xcode project and press ⌘-U
to run the tests.
Alternatively, all tests can be run from the terminal using xctool.
xctool -scheme StatefulViewControllerTests -sdk iphonesimulator test
Feel free to get in touch.
Author: Aschuch
Source Code: https://github.com/aschuch/StatefulViewController
License: MIT license
1666797900
To run the example project, clone the repo, and run pod install
from the Example directory first.
HGPlaceholders is available through CocoaPods. To install it, simply add the following line to your Podfile:
pod 'HGPlaceholders'
HGPlaceholders is also available through Carthage. To install it, simply add the following line to your Cartfile:
github "HamzaGhazouani/HGPlaceholders"
tableView.showLoadingPlaceholder()
or collectionView.showLoadingPlaceholder()
tableView.showNoResultsPlaceholder()
or collectionView.showNoResultsPlaceholder()
tableView.showErrorPlaceholder()
or collectionView.showErrorPlaceholder()
tableView.showNoConnectionPlaceholder()
or collectionView.showNoConnectionPlaceholder()
If you want to change only images, just set them in your asset with this names (the framework check firstly in the main bundle):
The framework contains different defaults placeholders:
tableView.placeholdersProvider = .basic
or collectionView.placeholdersProvider = .basic
tableView.placeholdersProvider = .default
or collectionView.placeholdersProvider = .default
tableView.placeholdersProvider = .default2
or collectionView.placeholdersProvider = .default2
tableView.placeholdersProvider = .halloween
or collectionView.placeholdersProvider = .halloween
// for fun :)`
If you want to change the default palceholders for all table views in your project:
class ProjectNameTableView: TableView {
override func customSetup() {
placeholdersProvider = .basic
}
}
class ProjectNameCollectionView: CollectionView {
override func customSetup() {
placeholdersProvider = .basic
}
}
You can also add new placeholders fully customizable, you should keep in mind that the view will take table view frame, and placeholder can have only one action, please check the example project
static var summer: PlaceholdersProvider {
var commonStyle = PlaceholderStyle()
commonStyle.backgroundColor = UIColor(red: 1.0, green: 236.0/255, blue: 209.0/255.0, alpha: 1.0)
commonStyle.actionBackgroundColor = .black
commonStyle.actionTitleColor = .white
commonStyle.titleColor = .black
commonStyle.isAnimated = false
commonStyle.titleFont = UIFont(name: "AvenirNextCondensed-HeavyItalic", size: 19)!
commonStyle.subtitleFont = UIFont(name: "AvenirNextCondensed-Italic", size: 19)!
commonStyle.actionTitleFont = UIFont(name: "AvenirNextCondensed-Heavy", size: 19)!
var loadingStyle = commonStyle
loadingStyle.actionBackgroundColor = .clear
loadingStyle.actionTitleColor = .gray
var loadingData: PlaceholderData = .loading
loadingData.image = #imageLiteral(resourceName: "summer-hat")
let loading = Placeholder(data: loadingData, style: loadingStyle, key: .loadingKey)
var errorData: PlaceholderData = .error
errorData.image = #imageLiteral(resourceName: "summer-ball")
let error = Placeholder(data: errorData, style: commonStyle, key: .errorKey)
var noResultsData: PlaceholderData = .noResults
noResultsData.image = #imageLiteral(resourceName: "summer-cocktail")
let noResults = Placeholder(data: noResultsData, style: commonStyle, key: .noResultsKey)
var noConnectionData: PlaceholderData = .noConnection
noConnectionData.image = #imageLiteral(resourceName: "summer-beach-slippers")
let noConnection = Placeholder(data: noConnectionData, style: commonStyle, key: .noConnectionKey)
let placeholdersProvider = PlaceholdersProvider(loading: loading, error: error, noResults: noResults, noConnection: noConnection)
let xibPlaceholder = Placeholder(cellIdentifier: "CustomPlaceholderCell", key: PlaceholderKey.custom(key: "XIB"))
placeholdersProvider.add(placeholders: xibPlaceholder)
return placeholdersProvider
}
private static var starWarsPlaceholder: Placeholder {
var starwarsStyle = PlaceholderStyle()
starwarsStyle.backgroundColor = .black
starwarsStyle.actionBackgroundColor = .clear
starwarsStyle.actionTitleColor = .white
starwarsStyle.titleColor = .white
starwarsStyle.isAnimated = false
var starwarsData = PlaceholderData()
starwarsData.title = NSLocalizedString("\"This is a new day, a\nnew beginning\"", comment: "")
starwarsData.subtitle = NSLocalizedString("Star Wars", comment: "")
starwarsData.image = #imageLiteral(resourceName: "star_wars")
starwarsData.action = NSLocalizedString("OK!", comment: "")
let placeholder = Placeholder(data: starwarsData, style: starwarsStyle, key: PlaceholderKey.custom(key: "starWars"))
return placeholder
}
let provider = PlaceholdersProvider.summer
provider.addPlaceholders(MyUtilityClass.starWarsPlaceholder)
Full documentation is available on CocoaDocs.
You can also install documentation locally using jazzy.
Author: HamzaGhazouani
Source Code: https://github.com/HamzaGhazouani/HGPlaceholders
License: MIT license
1665798300
Today almost all apps have async processes, such as API requests, long running processes, etc. While the processes are working, usually developers place a loading view to show users that something is going on.
SkeletonView has been conceived to address this need, an elegant way to show users that something is happening and also prepare them for which contents are waiting.
Enjoy it! 🙂
pod 'SkeletonView'
github "Juanpe/SkeletonView"
dependencies: [
.package(url: "https://github.com/Juanpe/SkeletonView.git", from: "1.7.0")
]
📣 IMPORTANT!
Since version 1.30.0,
SkeletonView
supports XCFrameworks, so if you want to install it as a XCFramework, please use this repo instead.
Only 3 steps needed to use SkeletonView
:
1️⃣ Import SkeletonView in proper place.
import SkeletonView
2️⃣ Now, set which views will be skeletonables
. You achieve this in two ways:
Using code:
avatarImageView.isSkeletonable = true
Using IB/Storyboards:
3️⃣ Once you've set the views, you can show the skeleton. To do so, you have 4 choices:
(1) view.showSkeleton() // Solid
(2) view.showGradientSkeleton() // Gradient
(3) view.showAnimatedSkeleton() // Solid animated
(4) view.showAnimatedGradientSkeleton() // Gradient animated
Preview
Solid | Gradient | Solid Animated | Gradient Animated |
![]() | ![]() | ![]() | ![]() |
📣 IMPORTANT!
SkeletonView
is recursive, so if you want show the skeleton in all skeletonable views, you only need to call the show method in the main container view. For example, withUIViewControllers
.
SkeletonView
is compatible with UITableView
and UICollectionView
.
UITableView
If you want to show the skeleton in a UITableView
, you need to conform to SkeletonTableViewDataSource
protocol.
public protocol SkeletonTableViewDataSource: UITableViewDataSource {
func numSections(in collectionSkeletonView: UITableView) -> Int // Default: 1
func collectionSkeletonView(_ skeletonView: UITableView, numberOfRowsInSection section: Int) -> Int
func collectionSkeletonView(_ skeletonView: UITableView, cellIdentifierForRowAt indexPath: IndexPath) -> ReusableCellIdentifier
func collectionSkeletonView(_ skeletonView: UITableView, skeletonCellForRowAt indexPath: IndexPath) -> UITableViewCell? // Default: nil
func collectionSkeletonView(_ skeletonView: UITableView, prepareCellForSkeleton cell: UITableViewCell, at indexPath: IndexPath)
}
As you can see, this protocol inherits from UITableViewDataSource
, so you can replace this protocol with the skeleton protocol.
This protocol has a default implementation for some methods. For example, the number of rows for each section is calculated in runtime:
func collectionSkeletonView(_ skeletonView: UITableView, numberOfRowsInSection section: Int) -> Int
// Default:
// It calculates how many cells need to populate whole tableview
📣 IMPORTANT!
If you return
UITableView.automaticNumberOfSkeletonRows
in the above method, it acts like the default behavior (i.e. it calculates how many cells needed to populate the whole tableview).
There is only one method you need to implement to let Skeleton know the cell identifier. This method doesn't have default implementation:
func collectionSkeletonView(_ skeletonView: UITableView, cellIdentifierForRowAt indexPath: IndexPath) -> ReusableCellIdentifier {
return "CellIdentifier"
}
By default, the library dequeues the cells from each indexPath, but you can also do this if you want to make some changes before the skeleton appears:
func collectionSkeletonView(_ skeletonView: UITableView, skeletonCellForRowAt indexPath: IndexPath) -> UITableViewCell? {
let cell = skeletonView.dequeueReusableCell(withIdentifier: "CellIdentifier", for: indexPath) as? Cell
cell?.textField.isHidden = indexPath.row == 0
return cell
}
If you prefer to leave the deque part to the library you can configure the cell using this method:
func collectionSkeletonView(_ skeletonView: UITableView, prepareCellForSkeleton cell: UITableViewCell, at indexPath: IndexPath) {
let cell = cell as? Cell
cell?.textField.isHidden = indexPath.row == 0
}
Besides, you can skeletonize both the headers and footers. You need to conform to SkeletonTableViewDelegate
protocol.
public protocol SkeletonTableViewDelegate: UITableViewDelegate {
func collectionSkeletonView(_ skeletonView: UITableView, identifierForHeaderInSection section: Int) -> ReusableHeaderFooterIdentifier? // default: nil
func collectionSkeletonView(_ skeletonView: UITableView, identifierForFooterInSection section: Int) -> ReusableHeaderFooterIdentifier? // default: nil
}
📣 IMPORTANT!
1️⃣ If you are using resizable cells (
tableView.rowHeight = UITableViewAutomaticDimension
), it's mandatory define theestimatedRowHeight
.2️⃣ When you add elements in a
UITableViewCell
you should add it tocontentView
and not to the cell directly.self.contentView.addSubview(titleLabel) ✅ self.addSubview(titleLabel) ❌
UICollectionView
For UICollectionView
, you need to conform to SkeletonCollectionViewDataSource
protocol.
public protocol SkeletonCollectionViewDataSource: UICollectionViewDataSource {
func numSections(in collectionSkeletonView: UICollectionView) -> Int // default: 1
func collectionSkeletonView(_ skeletonView: UICollectionView, numberOfItemsInSection section: Int) -> Int
func collectionSkeletonView(_ skeletonView: UICollectionView, cellIdentifierForItemAt indexPath: IndexPath) -> ReusableCellIdentifier
func collectionSkeletonView(_ skeletonView: UICollectionView, supplementaryViewIdentifierOfKind: String, at indexPath: IndexPath) -> ReusableCellIdentifier? // default: nil
func collectionSkeletonView(_ skeletonView: UICollectionView, skeletonCellForItemAt indexPath: IndexPath) -> UICollectionViewCell? // default: nil
func collectionSkeletonView(_ skeletonView: UICollectionView, prepareCellForSkeleton cell: UICollectionViewCell, at indexPath: IndexPath)
func collectionSkeletonView(_ skeletonView: UICollectionView, prepareViewForSkeleton view: UICollectionReusableView, at indexPath: IndexPath)
}
The rest of the process is the same as UITableView
When using elements with text, SkeletonView
draws lines to simulate text.
You can set some properties for multilines elements.
Property | Type | Default | Preview |
---|---|---|---|
lastLineFillPercent | CGFloat | 70 | ![]() |
linesCornerRadius | Int | 0 | ![]() |
skeletonLineSpacing | CGFloat | 10 | ![]() |
skeletonPaddingInsets | UIEdgeInsets | .zero | ![]() |
skeletonTextLineHeight | SkeletonTextLineHeight | .fixed(15) | ![]() |
skeletonTextNumberOfLines | SkeletonTextNumberOfLines | .inherited | ![]() |
To modify the percent or radius using code, set the properties:
descriptionTextView.lastLineFillPercent = 50
descriptionTextView.linesCornerRadius = 5
Or, if you prefer use IB/Storyboard:
How to define the number of lines?
By default, the number of lines is the same as the value of the numberOfLines
property. And, if it's set to zero, it'll calculate how many lines are needed to populate the whole skeleton and draw it.
However, if you want to set a specific number of skeleton lines you can do it by setting the skeletonTextNumberOfLines
property. This property has two possible values, inherited
which returns numberOfLines
value and custom(Int)
which returns the specific number of lines specified as the associated value.
For example:
label.skeletonTextNumberOfLines = 3 // .custom(3)
⚠️ DEPRECATED!
useFontLineHeight has been deprecated. You can use skeletonTextLineHeight instead:
descriptionTextView.skeletonTextLineHeight = .relativeToFont
📣 IMPORTANT!
Please note that for views without multiple lines, the single line will be considered as the last line.
The skeletons have a default appearance. So, when you don't specify the color, gradient or multilines properties, SkeletonView
uses the default values.
Default values:
UIColor
.skeletonDefault
(same as .clouds
but adaptive to dark mode)SkeletonGradient(baseColor: .skeletonDefault)
CGFloat
CGFloat
Int
Int
CGFloat
(IBInspectable) (Make your skeleton view with corner)To get these default values you can use SkeletonAppearance.default
. Using this property you can set the values as well:
SkeletonAppearance.default.multilineHeight = 20
SkeletonAppearance.default.tintColor = .green
⚠️ DEPRECATED!
useFontLineHeight has been deprecated. You can use textLineHeight instead:
SkeletonAppearance.default.textLineHeight = .relativeToFont
You can decide which color the skeleton is tinted with. You only need to pass as a parameter the color or gradient you want.
Using solid colors
view.showSkeleton(usingColor: UIColor.gray) // Solid
// or
view.showSkeleton(usingColor: UIColor(red: 25.0, green: 30.0, blue: 255.0, alpha: 1.0))
Using gradients
let gradient = SkeletonGradient(baseColor: UIColor.midnightBlue)
view.showGradientSkeleton(usingGradient: gradient) // Gradient
Besides, SkeletonView features 20 flat colors 🤙🏼
UIColor.turquoise, UIColor.greenSea, UIColor.sunFlower, UIColor.flatOrange ...
Image captured from website https://flatuicolors.com
SkeletonView has two built-in animations, pulse for solid skeletons and sliding for gradients.
Besides, if you want to do your own skeleton animation, it's really easy.
Skeleton provides the showAnimatedSkeleton
function which has a SkeletonLayerAnimation
closure where you can define your custom animation.
public typealias SkeletonLayerAnimation = (CALayer) -> CAAnimation
You can call the function like this:
view.showAnimatedSkeleton { (layer) -> CAAnimation in
let animation = CAAnimation()
// Customize here your animation
return animation
}
It's available SkeletonAnimationBuilder
. It's a builder to make SkeletonLayerAnimation
.
Today, you can create sliding animations for gradients, deciding the direction and setting the duration of the animation (default = 1.5s).
// func makeSlidingAnimation(withDirection direction: GradientDirection, duration: CFTimeInterval = 1.5) -> SkeletonLayerAnimation
let animation = SkeletonAnimationBuilder().makeSlidingAnimation(withDirection: .leftToRight)
view.showAnimatedGradientSkeleton(usingGradient: gradient, animation: animation)
GradientDirection
is an enum, with theses cases:
Direction Preview .leftRight .rightLeft .topBottom .bottomTop .topLeftBottomRight .bottomRightTopLeft 😉 TRICK!
Exist another way to create sliding animations, just using this shortcut:
let animation = GradientDirection.leftToRight.slidingAnimation()
SkeletonView has built-in transitions to show or hide the skeletons in a smoother way 🤙
To use the transition, simply add the transition
parameter to your showSkeleton()
or hideSkeleton()
function with the transition time, like this:
view.showSkeleton(transition: .crossDissolve(0.25)) //Show skeleton cross dissolve transition with 0.25 seconds fade time
view.hideSkeleton(transition: .crossDissolve(0.25)) //Hide skeleton cross dissolve transition with 0.25 seconds fade time
The default value is crossDissolve(0.25)
Preview
None | Cross dissolve |
![]() | ![]() |
Hierarchy
Since SkeletonView
is recursive, and we want skeleton to be very efficient, we want to stop recursion as soon as possible. For this reason, you must set the container view as Skeletonable
, because Skeleton will stop looking for skeletonable
subviews as soon as a view is not Skeletonable, breaking then the recursion.
Because an image is worth a thousand words:
In this example we have a UIViewController
with a ContainerView
and a UITableView
. When the view is ready, we show the skeleton using this method:
view.showSkeleton()
isSkeletonable
= ☠️
Configuration Result Skeleton views layout
Sometimes skeleton layout may not fit your layout because the parent view bounds have changed. For example, rotating the device.
You can relayout the skeleton views like so:
override func viewDidLayoutSubviews() {
view.layoutSkeletonIfNeeded()
}
📣 IMPORTANT!
You shouldn't call this method. From version 1.8.1 you don't need to call this method, the library does automatically. So, you can use this method ONLY in the cases when you need to update the layout of the skeleton manually.
Update skeleton
You can change the skeleton configuration at any time like its colour, animation, etc. with the following methods:
(1) view.updateSkeleton() // Solid
(2) view.updateGradientSkeleton() // Gradient
(3) view.updateAnimatedSkeleton() // Solid animated
(4) view.updateAnimatedGradientSkeleton() // Gradient animated
Hiding views when the animation starts
Sometimes you wanna hide some view when the animation starts, so there is a quick property that you can use to make this happen:
view.isHiddenWhenSkeletonIsActive = true // This works only when isSkeletonable = true
Don't modify user interaction when the skeleton is active
By default, the user interaction is disabled for skeletonized items, but if you don't want to modify the user interaction indicator when skeleton is active, you can use the isUserInteractionDisabledWhenSkeletonIsActive
property:
view.isUserInteractionDisabledWhenSkeletonIsActive = false // The view will be active when the skeleton will be active.
Don't use the font line height for the skeleton lines in labels
False to disable skeleton to auto-adjust to font height for a UILabel
or UITextView
. By default, the skeleton lines height is auto-adjusted to font height to more accurately reflect the text in the label rect rather than using the bounding box.
label.useFontLineHeight = false
Delayed show skeleton
You can delay the presentation of the skeleton if the views update quickly.
func showSkeleton(usingColor: UIColor,
animated: Bool,
delay: TimeInterval,
transition: SkeletonTransitionStyle)
func showGradientSkeleton(usingGradient: SkeletonGradient,
animated: Bool,
delay: TimeInterval,
transition: SkeletonTransitionStyle)
Debug
To facilitate the debug tasks when something is not working fine. SkeletonView
has some new tools.
First, UIView
has available a property with his skeleton info:
var sk.skeletonTreeDescription: String
Besides, you can activate the new debug mode. You just add the environment variable SKELETON_DEBUG
and activate it.
Then, when the skeleton appears, you can see the view hierarchy in the Xcode console.
{
"type" : "UIView", // UITableView, UILabel...
"isSkeletonable" : true,
"reference" : "0x000000014751ce30",
"children" : [
{
"type" : "UIView",
"isSkeletonable" : true,
"children" : [ ... ],
"reference" : "0x000000014751cfa0"
}
]
}
Supported OS & SDK Versions
This is an open source project, so feel free to contribute. How?
See all contributors
For more information, please read the contributing guidelines.
Author: Juanpe
Source Code: https://github.com/Juanpe/SkeletonView
License: MIT license
1665105327
This video by simplilearn is based on Data analytics using R programming. Data Analytics with R is the most sought profile in the current IT industry especially in the business analytics and data analytics segment. R programming language has a wide spectrum of tools, libraries and function that simplify the tedious task of processing, and reporting the data.
Exploratory Data Analysis or EDA is a statistical approach or technique for analyzing data sets in order to summarize their important and main characteristics generally by using some visual aids. The EDA approach can be used to gather knowledge about the following aspects of data:
EDA is an iterative approach that includes:
In R Language, we are going to perform EDA under two broad classifications:
Before we start working with EDA, we must perform the data inspection properly. Here in our analysis, we will be using the loafercreek from the soilDB package in R. We are going to inspect our data in order to find all the typos and blatant errors. Further EDA can be used to determine and identify the outliers and perform the required statistical analysis. For performing the EDA, we will have to install and load the following packages:
We can install these packages from the R console using the install.packages() command and load them into our R Script by using the library() command. We will now see how to inspect our data and remove the typos and blatant errors.
To ensure that we are dealing with the right information we need a clear view of your data at every stage of the transformation process. Data Inspection is the act of viewing data for verification and debugging purposes, before, during, or after a translation. Now let’s see how to inspect and remove the errors and typos from the data.
Example:
# Data Inspection in EDA
# loading the required packages
library(aqp)
library(soilDB)
# Load from the loafercreek dataset
data("loafercreek")
# Construct generalized horizon designations
n < - c("A", "BAt", "Bt1", "Bt2", "Cr", "R")
# REGEX rules
p < - c("A", "BA|AB", "Bt|Bw", "Bt3|Bt4|2B|C",
"Cr", "R")
# Compute genhz labels and
# add to loafercreek dataset
loafercreek$genhz < - generalize.hz(
loafercreek$hzname,
n, p)
# Extract the horizon table
h < - horizons(loafercreek)
# Examine the matching of pairing of
# the genhz label to the hznames
table(h$genhz, h$hzname)
vars < - c("genhz", "clay", "total_frags_pct",
"phfield", "effclass")
summary(h[, vars])
sort(unique(h$hzname))
h$hzname < - ifelse(h$hzname == "BT",
"Bt", h$hzname)
Output:
> table(h$genhz, h$hzname)
2BCt 2Bt1 2Bt2 2Bt3 2Bt4 2Bt5 2CB 2CBt 2Cr 2Crt 2R A A1 A2 AB ABt Ad Ap B BA BAt BC BCt Bt Bt1 Bt2 Bt3 Bt4 Bw Bw1 Bw2 Bw3 C
A 0 0 0 0 0 0 0 0 0 0 0 97 7 7 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
BAt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 31 8 0 0 0 0 0 0 0 0 0 0 0 0
Bt1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 8 94 89 0 0 10 2 2 1 0
Bt2 1 2 7 8 6 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 5 16 0 0 0 47 8 0 0 0 0 6
Cr 0 0 0 0 0 0 0 0 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
not-used 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CBt Cd Cr Cr/R Crt H1 Oi R Rt
A 0 0 0 0 0 0 0 0 0
BAt 0 0 0 0 0 0 0 0 0
Bt1 0 0 0 0 0 0 0 0 0
Bt2 6 1 0 0 0 0 0 0 0
Cr 0 0 49 0 20 0 0 0 0
R 0 0 0 1 0 0 0 41 1
not-used 0 0 0 0 0 1 24 0 0
> summary(h[, vars])
genhz clay total_frags_pct phfield effclass
A :113 Min. :10.00 Min. : 0.00 Min. :4.90 very slight: 0
BAt : 40 1st Qu.:18.00 1st Qu.: 0.00 1st Qu.:6.00 slight : 0
Bt1 :208 Median :22.00 Median : 5.00 Median :6.30 strong : 0
Bt2 :116 Mean :23.67 Mean :14.18 Mean :6.18 violent : 0
Cr : 75 3rd Qu.:28.00 3rd Qu.:20.00 3rd Qu.:6.50 none : 86
R : 48 Max. :60.00 Max. :95.00 Max. :7.00 NA's :540
not-used: 26 NA's :173 NA's :381
> sort(unique(h$hzname))
[1] "2BCt" "2Bt1" "2Bt2" "2Bt3" "2Bt4" "2Bt5" "2CB" "2CBt" "2Cr" "2Crt" "2R" "A" "A1" "A2" "AB" "ABt" "Ad" "Ap" "B"
[20] "BA" "BAt" "BC" "BCt" "Bt" "Bt1" "Bt2" "Bt3" "Bt4" "Bw" "Bw1" "Bw2" "Bw3" "C" "CBt" "Cd" "Cr" "Cr/R" "Crt"
[39] "H1" "Oi" "R" "Rt"
Now proceed with the EDA.
For Descriptive Statistics in order to perform EDA in R, we will divide all the functions into the following categories:
We will try to determine the mid-point values using the functions under the Measures of Central tendency. Under this section, we will be calculating the mean, median, mode, and frequencies.
Example 1: Now see the measures of central tendency in this example.
# EDA
# Descriptive Statistics
# Measures of Central Tendency
#loading the required packages
library(aqp)
library(soilDB)
# Load from the loafercreek dataset
data("loafercreek")
# Construct generalized horizon designations
n <- c("A", "BAt", "Bt1", "Bt2", "Cr", "R")
# REGEX rules
p <- c("A", "BA|AB", "Bt|Bw", "Bt3|Bt4|2B|C",
"Cr", "R")
# Compute genhz labels and
# add to loafercreek dataset
loafercreek$genhz <- generalize.hz(
loafercreek$hzname,
n, p)
# Extract the horizon table
h <- horizons(loafercreek)
# Examine the matching of pairing
# of the genhz label to the hznames
table(h$genhz, h$hzname)
vars <- c("genhz", "clay", "total_frags_pct",
"phfield", "effclass")
summary(h[, vars])
sort(unique(h$hzname))
h$hzname <- ifelse(h$hzname == "BT",
"Bt", h$hzname)
# first remove missing values
# and create a new vector
clay <- na.exclude(h$clay)
mean(clay)
median(clay)
sort(table(round(h$clay)),
decreasing = TRUE)[1]
table(h$genhz)
# append the table with
# row and column sums
addmargins(table(h$genhz,
h$texcl))
# calculate the proportions
# relative to the rows, margin = 1
# calculates for rows, margin = 2 calculates
# for columns, margin = NULL calculates
# for total observations
round(prop.table(table(h$genhz, h$texture_class),
margin = 1) * 100)
knitr::kable(addmargins(table(h$genhz, h$texcl)))
aggregate(clay ~ genhz, data = h, mean)
aggregate(clay ~ genhz, data = h, median)
aggregate(clay ~ genhz, data = h, summary)
Output:
> mean(clay)
[1] 23.6713
> median(clay)
[1] 22
> sort(table(round(h$clay)), decreasing = TRUE)[1]
25
41
> table(h$genhz)
A BAt Bt1 Bt2 Cr R not-used
113 40 208 116 75 48 26
> addmargins(table(h$genhz, h$texcl))
cos s fs vfs lcos ls lfs lvfs cosl sl fsl vfsl l sil si scl cl sicl sc sic c Sum
A 0 0 0 0 0 0 0 0 0 6 0 0 78 27 0 0 0 0 0 0 0 111
BAt 0 0 0 0 0 0 0 0 0 1 0 0 31 4 0 0 2 1 0 0 0 39
Bt1 0 0 0 0 0 0 0 0 0 1 0 0 125 20 0 4 46 5 0 1 2 204
Bt2 0 0 0 0 0 0 0 0 0 0 0 0 28 5 0 5 52 3 0 1 16 110
Cr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
not-used 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
Sum 0 0 0 0 0 0 0 0 0 8 0 0 262 56 0 9 101 9 0 2 19 466
> round(prop.table(table(h$genhz, h$texture_class), margin = 1) * 100)
br c cb cl gr l pg scl sic sicl sil sl spm
A 0 0 0 0 0 70 0 0 0 0 24 5 0
BAt 0 0 0 5 0 79 0 0 0 3 10 3 0
Bt1 0 1 0 23 0 61 0 2 0 2 10 0 0
Bt2 0 14 1 46 2 25 1 4 1 3 4 0 0
Cr 98 2 0 0 0 0 0 0 0 0 0 0 0
R 100 0 0 0 0 0 0 0 0 0 0 0 0
not-used 0 0 0 4 0 0 0 0 0 0 0 0 96
> knitr::kable(addmargins(table(h$genhz, h$texcl)))
| | cos| s| fs| vfs| lcos| ls| lfs| lvfs| cosl| sl| fsl| vfsl| l| sil| si| scl| cl| sicl| sc| sic| c| Sum|
|:--------|---:|--:|--:|---:|----:|--:|---:|----:|----:|--:|---:|----:|---:|---:|--:|---:|---:|----:|--:|---:|--:|---:|
|A | 0| 0| 0| 0| 0| 0| 0| 0| 0| 6| 0| 0| 78| 27| 0| 0| 0| 0| 0| 0| 0| 111|
|BAt | 0| 0| 0| 0| 0| 0| 0| 0| 0| 1| 0| 0| 31| 4| 0| 0| 2| 1| 0| 0| 0| 39|
|Bt1 | 0| 0| 0| 0| 0| 0| 0| 0| 0| 1| 0| 0| 125| 20| 0| 4| 46| 5| 0| 1| 2| 204|
|Bt2 | 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 28| 5| 0| 5| 52| 3| 0| 1| 16| 110|
|Cr | 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 1| 1|
|R | 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0|
|not-used | 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| 1| 0| 0| 0| 0| 1|
|Sum | 0| 0| 0| 0| 0| 0| 0| 0| 0| 8| 0| 0| 262| 56| 0| 9| 101| 9| 0| 2| 19| 466|
> aggregate(clay ~ genhz, data = h, mean)
genhz clay
1 A 16.23113
2 BAt 19.53889
3 Bt1 24.14221
4 Bt2 31.35045
5 Cr 15.00000
> aggregate(clay ~ genhz, data = h, median)
genhz clay
1 A 16.0
2 BAt 19.5
3 Bt1 24.0
4 Bt2 30.0
5 Cr 15.0
> aggregate(clay ~ genhz, data = h, summary)
genhz clay.Min. clay.1st Qu. clay.Median clay.Mean clay.3rd Qu. clay.Max.
1 A 10.00000 14.00000 16.00000 16.23113 18.00000 25.00000
2 BAt 14.00000 17.00000 19.50000 19.53889 20.00000 28.00000
3 Bt1 12.00000 20.00000 24.00000 24.14221 28.00000 51.40000
4 Bt2 10.00000 26.00000 30.00000 31.35045 35.00000 60.00000
5 Cr 15.00000 15.00000 15.00000 15.00000 15.00000 15.00000
Now we will see the functions under Measures of Dispersion. In this category, we are going to determine the spread values around the mid-point. Here we are going to calculate the variance, standard deviation, range, inter-quartile range, coefficient of variance, and quartiles.
Example 2:
We shall see the measures of dispersion in this example.
# EDA
# Descriptive Statistics
# Measures of Dispersion
# loading the packages
library(aqp)
library(soilDB)
# Load from the loafercreek dataset
data("loafercreek")
# Construct generalized horizon designations
n <- c("A", "BAt", "Bt1", "Bt2", "Cr", "R")
# REGEX rules
p <- c("A", "BA|AB", "Bt|Bw", "Bt3|Bt4|2B|C",
"Cr", "R")
# Compute genhz labels and add
# to loafercreek dataset
loafercreek$genhz <- generalize.hz(
loafercreek$hzname,
n, p)
# Extract the horizon table
h <- horizons(loafercreek)
# Examine the matching of pairing of
# the genhz label to the hznames
table(h$genhz, h$hzname)
vars <- c("genhz", "clay", "total_frags_pct",
"phfield", "effclass")
summary(h[, vars])
sort(unique(h$hzname))
h$hzname <- ifelse(h$hzname == "BT",
"Bt", h$hzname)
# first remove missing values
# and create a new vector
clay <- na.exclude(h$clay)
var(h$clay, na.rm=TRUE)
sd(h$clay, na.rm = TRUE)
cv <- sd(clay) / mean(clay) * 100
cv
quantile(clay)
range(clay)
IQR(clay)
Output:
> var(h$clay, na.rm=TRUE)
[1] 64.89187
> sd(h$clay, na.rm = TRUE)
[1] 8.055549
> cv
[1] 34.03087
> quantile(clay)
0% 25% 50% 75% 100%
10 18 22 28 60
> range(clay)
[1] 10 60
> IQR(clay)
[1] 10
Now we will work on Correlation. In this part, all the calculated correlation coefficient values of all variables in tabulated as the Correlation Matrix. This gives us a quantitative measure in order to guide our decision-making process.
Example 3:
We shall now see the correlation in this example.
# EDA
# Descriptive Statistics
# Correlation
# loading the required packages
library(aqp)
library(soilDB)
# Load from the loafercreek dataset
data("loafercreek")
# Construct generalized horizon designations
n <- c("A", "BAt", "Bt1", "Bt2", "Cr", "R")
# REGEX rules
p <- c("A", "BA|AB", "Bt|Bw", "Bt3|Bt4|2B|C",
"Cr", "R")
# Compute genhz labels and add
# to loafercreek dataset
loafercreek$genhz <- generalize.hz(
loafercreek$hzname,
n, p)
# Extract the horizon table
h <- horizons(loafercreek)
# Examine the matching of pairing
# of the genhz label to the hznames
table(h$genhz, h$hzname)
vars <- c("genhz", "clay", "total_frags_pct",
"phfield", "effclass")
summary(h[, vars])
sort(unique(h$hzname))
h$hzname <- ifelse(h$hzname == "BT",
"Bt", h$hzname)
# first remove missing values
# and create a new vector
clay <- na.exclude(h$clay)
# Compute the middle horizon depth
h$hzdepm <- (h$hzdepb + h$hzdept) / 2
vars <- c("hzdepm", "clay", "sand",
"total_frags_pct", "phfield")
round(cor(h[, vars], use = "complete.obs"), 2)
Output:
hzdepm clay sand total_frags_pct phfield
hzdepm 1.00 0.59 -0.08 0.50 -0.03
clay 0.59 1.00 -0.17 0.28 0.13
sand -0.08 -0.17 1.00 -0.05 0.12
total_frags_pct 0.50 0.28 -0.05 1.00 -0.16
phfield -0.03 0.13 0.12 -0.16 1.00
Hence, the above three classifications deal with the Descriptive statistics part of EDA. Now we shall move on to the Graphical Method of representing EDA.
Since we have already checked our data for missing values, blatant errors, and typos, we can now examine our data graphically in order to perform EDA. We will see the graphical representation under the following categories:
Under the Distribution, we shall examine our data using the bar plot, Histogram, Density curve, box plots, and QQplot.
Example 1:
We shall see how distribution graphs can be used to examine data in EDA in this example.
# EDA Graphical Method Distributions
# loading the required packages
library("ggplot2")
library(aqp)
library(soilDB)
# Load from the loafercreek dataset
data("loafercreek")
# Construct generalized horizon designations
n <- c("A", "BAt", "Bt1", "Bt2", "Cr", "R")
# REGEX rules
p <- c("A", "BA|AB", "Bt|Bw", "Bt3|Bt4|2B|C",
"Cr", "R")
# Compute genhz labels and add
# to loafercreek dataset
loafercreek$genhz <- generalize.hz(
loafercreek$hzname, n, p)
# Extract the horizon table
h <- horizons(loafercreek)
# Examine the matching of pairing
# of the genhz label to the hznames
table(h$genhz, h$hzname)
vars <- c("genhz", "clay", "total_frags_pct",
"phfield", "effclass")
summary(h[, vars])
sort(unique(h$hzname))
h$hzname <- ifelse(h$hzname == "BT",
"Bt", h$hzname)
# graphs
# bar plot
ggplot(h, aes(x = texcl)) +geom_bar()
# histogram
ggplot(h, aes(x = clay)) +
geom_histogram(bins = nclass.Sturges(h$clay))
# density curve
ggplot(h, aes(x = clay)) + geom_density()
# box plot
ggplot(h, (aes(x = genhz, y = clay))) +
geom_boxplot()
# QQ Plot for Clay
ggplot(h, aes(sample = clay)) +
geom_qq() +
geom_qq_line()
Output:
Now we will move on to the Scatter and Line plot. In this category, we are going to see two types of plotting,- scatter plot and line plot. Plotting points of one interval or ratio variable against variable are known as a scatter plot.
Example 2:
We shall now see how to use scatter and line plots to examine our data.
# EDA
# Graphical Method
# Scatter and Line plot
# loading the required packages
library("ggplot2")
library(aqp)
library(soilDB)
# Load from the loafercreek dataset
data("loafercreek")
# Construct generalized horizon designations
n <- c("A", "BAt", "Bt1", "Bt2", "Cr", "R")
# REGEX rules
p <- c("A", "BA|AB", "Bt|Bw", "Bt3|Bt4|2B|C",
"Cr", "R")
# Compute genhz labels and add
# to loafercreek dataset
loafercreek$genhz <- generalize.hz(
loafercreek$hzname, n, p)
# Extract the horizon table
h <- horizons(loafercreek)
# Examine the matching of pairing
# of the genhz label to the hznames
table(h$genhz, h$hzname)
vars <- c("genhz", "clay", "total_frags_pct",
"phfield", "effclass")
summary(h[, vars])
sort(unique(h$hzname))
h$hzname <- ifelse(h$hzname == "BT",
"Bt", h$hzname)
# graph
# scatter plot
ggplot(h, aes(x = clay, y = hzdepm)) +
geom_point() +
ylim(100, 0)
# line plot
ggplot(h, aes(y = clay, x = hzdepm,
group = peiid)) +
geom_line() + coord_flip() + xlim(100, 0)
Output:
#dataanalysis #r
1663003440
In today's post we will learn about 8 Best Libraries for Module or loading system with JavaScript.
Module Systems provide a way to manage dependencies in JavaScript.
In vanilla client-side JavaScript development, dependencies are implicit: they need to be defined manually, sometimes they need to be also defined in certain order.
Node.js Modules is an extension to CommonJS Modules (1.1).
Asynchronous Module Definition (AMD) is the most popular for client-side code.
Universal Module Definition (UMD) is a set of boilerplate recipes that attempt to bridge the differences between AMD and Node.js.
Table of contents:
This repo assumes some other repos are checked out as siblings to this repo:
git clone https://github.com/requirejs/text.git
git clone https://github.com/requirejs/i18n.git
git clone https://github.com/requirejs/domReady.git
git clone https://github.com/requirejs/requirejs.git
So when the above clones are done, the directory structure should look like:
You will need to be connected to the internet because the JSONP and remoteUrls tests access the internet to complete their tests.
Serve the directory with these 4 siblings from a web server. It can be a local web server.
Open requirejs/tests/index.html in all the browsers, click the arrow button to run all the tests.
If you're new to browserify, check out the browserify handbook and the resources on browserify.org.
example
Whip up a file, main.js
with some require()
s in it. You can use relative paths like './foo.js'
and '../lib/bar.js'
or module paths like 'gamma'
that will search node_modules/
using node's module lookup algorithm.
var foo = require('./foo.js');
var bar = require('../lib/bar.js');
var gamma = require('gamma');
var elem = document.getElementById('result');
var x = foo(100) + bar('baz');
elem.textContent = gamma(x);
Export functionality by assigning onto module.exports
or exports
:
module.exports = function (n) { return n * 111 }
Now just use the browserify
command to build a bundle starting at main.js
:
$ browserify main.js > bundle.js
All of the modules that main.js
needs are included in the bundle.js
from a recursive walk of the require()
graph using required.
To use this bundle, just toss a <script src="bundle.js"></script>
into your html!
install
With npm do:
npm install browserify
Sea.js is a module loader for the web. It is designed to change the way that you organize JavaScript. With Sea.js, it is pleasure to build scalable web applications.
The official site: https://seajs.github.io/seajs/
If you have any questions, please feel free to ask through New Issue.
Make sure the problem you're addressing is reproducible. Use http://jsbin.com/ or http://jsfiddle.net/ to provide a test page. Indicate what browsers the issue can be reproduced in. What version of Sea.js is the issue reproducible in. Is it reproducible after updating to the latest version?
Responsive Design, Feature Detections, and Resource Loading
LazyLoad is a tiny (only 966 bytes minified and gzipped), dependency-free JavaScript utility that makes it super easy to load external JavaScript and CSS files on demand.
Whenever possible, LazyLoad will automatically load resources in parallel while ensuring execution order when you specify an array of URLs to load. In browsers that don't preserve the execution order of asynchronously-loaded scripts, LazyLoad will safely load the scripts sequentially.
Using LazyLoad is simple. Just call the appropriate method -- css()
to load CSS, js()
to load JavaScript -- and pass in a URL or array of URLs to load. You can also provide a callback function if you'd like to be notified when the resources have finished loading, as well as an argument to pass to the callback and a context in which to execute the callback.
// Load a single JavaScript file and execute a callback when it finishes.
LazyLoad.js('http://example.com/foo.js', function () {
alert('foo.js has been loaded');
});
// Load multiple JS files and execute a callback when they've all finished.
LazyLoad.js(['foo.js', 'bar.js', 'baz.js'], function () {
alert('all files have been loaded');
});
// Load a CSS file and pass an argument to the callback function.
LazyLoad.css('foo.css', function (arg) {
alert(arg);
}, 'foo.css has been loaded');
// Load a CSS file and execute the callback in a different scope.
LazyLoad.css('foo.css', function () {
alert(this.foo); // displays 'bar'
}, null, {foo: 'bar'});
Other browsers may work, but haven't been tested. It's a safe bet that anything based on a recent version of Gecko or WebKit will probably work.
old school - blocks CSS, Images, AND JS!
<script src="jquery.js"></script>
<script src="my-jquery-plugin.js"></script>
<script src="my-app-that-uses-plugin.js"></script>
middle school - loads as non-blocking, but has multiple dependents
$script('jquery.js', function () {
$script('my-jquery-plugin.js', function () {
$script('my-app-that-uses-plugin.js')
})
})
new school - loads as non-blocking, and ALL js files load asynchronously
// load jquery and plugin at the same time. name it 'bundle'
$script(['jquery.js', 'my-jquery-plugin.js'], 'bundle')
// load your usage
$script('my-app-that-uses-plugin.js')
/*--- in my-jquery-plugin.js ---*/
$script.ready('bundle', function() {
// jquery & plugin (this file) are both ready
// plugin code...
})
/*--- in my-app-that-uses-plugin.js ---*/
$script.ready('bundle', function() {
// use your plugin :)
})
The systemjs-examples repo contains a variety of examples demonstrating how to use SystemJS.
npm install systemjs
You can load System.register modules with a script element in your HTML:
<script src="system.js"></script>
<script type="systemjs-module" src="/js/main.js"></script>
<script type="systemjs-module" src="import:name-of-module"></script>
You can also dynamically load modules at any time with System.import()
:
System.import('/js/main.js');
where main.js
is a module available in the System.register module format.
For an example of a bundling workflow, see the Rollup Code Splitting starter project - https://github.com/rollup/rollup-starter-code-splitting.
Note that when building System modules you typically want to ensure anonymous System.register statements like:
System.register([], function () { ... });
are emitted, as these can be loaded in a way that behaves the same as normal ES modules, and not named register statements like:
System.register('name', [], function () { ... });
While these can be supported with the named register extension, this approach is typically not recommended for modern modules workflows.
<script src="lodjs.js"></script>
$ bower install lodjs
$ bower install git://github.com/yanhaijing/lodjs.git
We use lodJS's global function define to define a module, for example, in mod.js, we have the following code:
define(function () {
return 123;
});
The use method in lodJS uses a module. The following code can use the module defined above:
lodjs.use('mod', function (mod) {
console.log(mod);// Outputs 123
});
For more examples, please see the directory of demo.
Thank you for following this article.
1662064800
TODO: Put a short description of the package here that helps potential users know whether this package might be useful for them.
TODO: List what your package can do. Maybe include images, gifs, or videos.
TODO: List prerequisites and provide or point to information on how to start using the package.
TODO: Include short and useful examples for package users. Add longer examples to /example
folder.
const like = 'sample';
TODO: Tell users more about the package: where to find more information, how to contribute to the package, how to file issues, what response they can expect from the package authors, and more.
Run this command:
With Flutter:
$ flutter pub add center_loading
This will add a line like this to your package's pubspec.yaml (and run an implicit flutter pub get
):
dependencies:
center_loading: ^0.0.3
Alternatively, your editor might support flutter pub get
. Check the docs for your editor to learn more.
Now in your Dart code, you can use:
import 'package:center_loading/center_loading.dart';
Author: ftognetto
Source Code: https://github.com/ftognetto/center_loading
License: MIT license