TensorFlow

TensorFlow

TensorFlow is an open-source software library for dataflow programming across a range of tasks. It is a symbolic math library, and is also used for machine learning applications such as neural networks.
Joel  Hawkins

Joel Hawkins

1686148596

Neural Network Text Classification with Python and TensorFlow

Python TensorFlow for Machine Learning – Neural Network Text Classification Tutorial

This course will give you an introduction to machine learning concepts and neural network implementation using Python and TensorFlow. Kylie Ying explains basic concepts, such as classification, regression, training/validation/test datasets, loss functions, neural networks, and model training. She then demonstrates how to implement a feedforward neural network to predict whether someone has diabetes, as well as two different neural net architectures to classify wine reviews.

⭐️ Course Contents ⭐️
⌨️ (0:00:00) Introduction
⌨️ (0:00:34) Colab intro (importing wine dataset)
⌨️ (0:07:48) What is machine learning?
⌨️ (0:14:00) Features (inputs)
⌨️ (0:20:22) Outputs (predictions)
⌨️ (0:25:05) Anatomy of a dataset
⌨️ (0:30:22) Assessing performance
⌨️ (0:35:01) Neural nets
⌨️ (0:48:50) Tensorflow
⌨️ (0:50:45) Colab (feedforward network using diabetes dataset)
⌨️ (1:21:15) Recurrent neural networks
⌨️ (1:26:20) Colab (text classification networks using wine dataset)

⭐️ Resources ⭐️
💻 Datasets: https://drive.google.com/drive/folders/1YnxDqNIqM2Xr1Dlgv5pYsE6dYJ9MGxcM?usp=sharing 
💻 Feedforward NN colab notebook: https://colab.research.google.com/drive/1UxmeNX_MaIO0ni26cg9H6mtJcRFafWiR?usp=sharing 
💻 Wine review colab notebook: https://colab.research.google.com/drive/1yO7EgCYSN3KW8hzDTz809nzNmacjBBXX?usp=sharing

#python #tensorflow #datascience #machinelearning #deeplearning #ai #artificialintelligence #programming #developer #morioh #softwaredeveloper #computerscience 

Neural Network Text Classification with Python and TensorFlow

Handwritten Digit Recognition with Python | Neural Network Python Project

Today we use Tensorflow to build a neural network, which we then use to recognize images of handwritten digits that we created ourselves. Whether you're new to machine learning or an experienced developer, follow along with this tutorial and get started with handwriting recognition today!

📁 GitHub: https://github.com/NeuralNine

🎵 Outro Music From: https://www.bensound.com/

Subscribe : https://www.youtube.com/channel/UC8wZnXYK_CGKlBcZp-GxYPA

#python #machinelearning #tensorflow 

Handwritten Digit Recognition with Python | Neural Network Python Project
Gunar  Thies

Gunar Thies

1686107826

Machine Learning – Full Course for Absolute Beginners

Machine Learning for Everybody – Full Course

Learn Machine Learning in a way that is accessible to absolute beginners. You will learn the basics of Machine Learning and how to use TensorFlow to implement many different concepts.

⭐️ Contents ⭐️
⌨️ (0:00:00) Intro
⌨️ (0:00:58) Data/Colab Intro
⌨️ (0:08:45) Intro to Machine Learning
⌨️ (0:12:26) Features
⌨️ (0:17:23) Classification/Regression
⌨️ (0:19:57) Training Model
⌨️ (0:30:57) Preparing Data
⌨️ (0:44:43) K-Nearest Neighbors
⌨️ (0:52:42) KNN Implementation
⌨️ (1:08:43) Naive Bayes
⌨️ (1:17:30) Naive Bayes Implementation
⌨️ (1:19:22) Logistic Regression
⌨️ (1:27:56) Log Regression Implementation
⌨️ (1:29:13) Support Vector Machine
⌨️ (1:37:54) SVM Implementation
⌨️ (1:39:44) Neural Networks
⌨️ (1:47:57) Tensorflow
⌨️ (1:49:50) Classification NN using Tensorflow
⌨️ (2:10:12) Linear Regression
⌨️ (2:34:54) Lin Regression Implementation
⌨️ (2:57:44) Lin Regression using a Neuron
⌨️ (3:00:15) Regression NN using Tensorflow
⌨️ (3:13:13) K-Means Clustering
⌨️ (3:23:46) Principal Component Analysis
⌨️ (3:33:54) K-Means and PCA Implementations

⭐️ Code and Resources ⭐️
🔗 Supervised learning (classification/MAGIC): https://colab.research.google.com/drive/16w3TDn_tAku17mum98EWTmjaLHAJcsk0?usp=sharing 
🔗 Supervised learning (regression/bikes): https://colab.research.google.com/drive/1m3oQ9b0oYOT-DXEy0JCdgWPLGllHMb4V?usp=sharing 
🔗 Unsupervised learning (seeds): https://colab.research.google.com/drive/1zw_6ZnFPCCh6mWDAd_VBMZB4VkC3ys2q?usp=sharing 
🔗 Dataets (add a note that for the bikes dataset, they may have to open the downloaded csv file and remove special characters) 
🔗 MAGIC dataset: https://archive.ics.uci.edu/ml/datasets/MAGIC+Gamma+Telescope 
🔗 Bikes dataset: https://archive.ics.uci.edu/ml/datasets/Seoul+Bike+Sharing+Demand 
🔗 Seeds/wheat dataset: https://archive.ics.uci.edu/ml/datasets/seeds

#tensorflow #python #datascience #machinelearning #deeplearning #ai #artificialintelligence #programming #developer #morioh #softwaredeveloper #computerscience 

Machine Learning – Full Course for Absolute Beginners
Royce  Reinger

Royce Reinger

1686077040

Onnx: Open Standard for Machine Learning interoperability

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types. Currently we focus on the capabilities needed for inferencing (scoring).

ONNX is widely supported and can be found in many frameworks, tools, and hardware. Enabling interoperability between different frameworks and streamlining the path from research to production helps increase the speed of innovation in the AI community. We invite the community to join us and further evolve ONNX.

Installation

Official Python packages

ONNX released packages are published in PyPi.

pip install onnx

ONNX weekly packages are published in PyPI to enable experimentation and early testing.

vcpkg packages

onnx is in the maintenance list of vcpkg, you can easily use vcpkg to build and install it.

git clone https://github.com/microsoft/vcpkg.git
cd vcpkg
./bootstrap-vcpkg.bat # For powershell
./bootstrap-vcpkg.sh # For bash
./vcpkg install onnx

Conda packages

A binary build of ONNX is available from Conda, in conda-forge:

conda install -c conda-forge onnx

Build ONNX from Source

Before building from source uninstall any existing versions of onnx pip uninstall onnx.

c++17 or higher C++ compiler version is required to build ONNX from source on Windows. For other platforms, please use C++14 or higher versions.

Generally speaking, you need to install protobuf C/C++ libraries and tools before proceeding forward. Then depending on how you installed protobuf, you need to set environment variable CMAKE_ARGS to "-DONNX_USE_PROTOBUF_SHARED_LIBS=ON" or "-DONNX_USE_PROTOBUF_SHARED_LIBS=OFF". For example, you may need to run the following command:

Linux:

export CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

Windows:

set CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"

The ON/OFF depends on what kind of protobuf library you have. Shared libraries are files ending with *.dll/*.so/*.dylib. Static libraries are files ending with *.a/*.lib. This option depends on how you get your protobuf library and how it was built. And it is default OFF. You don't need to run the commands above if you'd prefer to use a static protobuf library.

Windows

If you are building ONNX from source, it is recommended that you also build Protobuf locally as a static library. The version distributed with conda-forge is a DLL, but ONNX expects it to be a static library. Building protobuf locally also lets you control the version of protobuf. The tested and recommended version is 3.20.2.

The instructions in this README assume you are using Visual Studio. It is recommended that you run all the commands from a shell started from "x64 Native Tools Command Prompt for VS 2019" and keep the build system generator for cmake (e.g., cmake -G "Visual Studio 16 2019") consistent while building protobuf as well as ONNX.

You can get protobuf by running the following commands:

git clone https://github.com/protocolbuffers/protobuf.git
cd protobuf
git checkout v3.20.2
cd cmake
cmake -G "Visual Studio 16 2019" -A x64 -DCMAKE_INSTALL_PREFIX=<protobuf_install_dir> -Dprotobuf_MSVC_STATIC_RUNTIME=OFF -Dprotobuf_BUILD_SHARED_LIBS=OFF -Dprotobuf_BUILD_TESTS=OFF -Dprotobuf_BUILD_EXAMPLES=OFF .
msbuild protobuf.sln /m /p:Configuration=Release
msbuild INSTALL.vcxproj /p:Configuration=Release

Then it will be built as a static library and installed to . Please add the bin directory(which contains protoc.exe) to your PATH.

set PATH=<protobuf_install_dir>/bin;%PATH%

Please note: if your protobuf_install_dir contains spaces, do not add quotation marks around it.

Alternative: if you don't want to change your PATH, you can set ONNX_PROTOC_EXECUTABLE instead.

set CMAKE_ARGS=-DONNX_PROTOC_EXECUTABLE=<full_path_to_protoc.exe>

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e .

Linux

First, you need to install protobuf. The minimum Protobuf compiler (protoc) version required by ONNX is 3.6.1. Please note that old protoc versions might not work with CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON.

Ubuntu 20.04 (and newer) users may choose to install protobuf via

apt-get install python3-pip python3-dev libprotobuf-dev protobuf-compiler

In this case, it is required to add -DONNX_USE_PROTOBUF_SHARED_LIBS=ON to CMAKE_ARGS in the ONNX build step.

A more general way is to build and install it from source. See the instructions below for more details.

Installing Protobuf from source

Debian/Ubuntu:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v3.20.2
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

CentOS/RHEL/Fedora:

  git clone https://github.com/protocolbuffers/protobuf.git
  cd protobuf
  git checkout v3.20.2
  git submodule update --init --recursive
  mkdir build_source && cd build_source
  cmake ../cmake  -DCMAKE_INSTALL_LIBDIR=lib64 -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
  make -j$(nproc)
  make install

Here "-DCMAKE_POSITION_INDEPENDENT_CODE=ON" is crucial. By default static libraries are built without "-fPIC" flag, they are not position independent code. But shared libraries must be position independent code. Python C/C++ extensions(like ONNX) are shared libraries. So if a static library was not built with "-fPIC", it can't be linked to such a shared library.

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# Optional: prefer lite proto
export CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e .

Mac

export NUM_CORES=`sysctl -n hw.ncpu`
brew update
brew install autoconf && brew install automake
wget https://github.com/protocolbuffers/protobuf/releases/download/v3.20.2/protobuf-cpp-3.20.2.tar.gz
tar -xvf protobuf-cpp-3.20.2.tar.gz
cd protobuf-3.20.2
mkdir build_source && cd build_source
cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
make -j${NUM_CORES}
make install

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:

git clone --recursive https://github.com/onnx/onnx.git
cd onnx
# Optional: prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e .

Verify Installation

After installation, run

python -c "import onnx"

to verify it works.

Common Build Options

For full list refer to CMakeLists.txt

Environment variables

  • USE_MSVC_STATIC_RUNTIME should be 1 or 0, not ON or OFF. When set to 1 onnx links statically to runtime library.

Default: USE_MSVC_STATIC_RUNTIME=0

  • DEBUG should be 0 or 1. When set to 1 onnx is built in debug mode. or debug versions of the dependencies, you need to open the CMakeLists file and append a letter d at the end of the package name lines. For example, NAMES protobuf-lite would become NAMES protobuf-lited.

Default: Debug=0

CMake variables

  • ONNX_USE_PROTOBUF_SHARED_LIBS should be ON or OFF.

Default: ONNX_USE_PROTOBUF_SHARED_LIBS=OFF USE_MSVC_STATIC_RUNTIME=0 ONNX_USE_PROTOBUF_SHARED_LIBS determines how onnx links to protobuf libraries.

When set to ON - onnx will dynamically link to protobuf shared libs, PROTOBUF_USE_DLLS will be defined as described here, Protobuf_USE_STATIC_LIBS will be set to OFF and USE_MSVC_STATIC_RUNTIME must be 0.

When set to OFF - onnx will link statically to protobuf, and Protobuf_USE_STATIC_LIBS will be set to ON (to force the use of the static libraries) and USE_MSVC_STATIC_RUNTIME can be 0 or 1.

ONNX_USE_LITE_PROTO should be ON or OFF. When set to ON onnx uses lite protobuf instead of full protobuf.

Default: ONNX_USE_LITE_PROTO=OFF

  • ONNX_WERROR should be ON or OFF. When set to ON warnings are treated as errors.

Default: ONNX_WERROR=OFF in local builds, ON in CI and release pipelines.

Common Errors

Note: the import onnx command does not work from the source checkout directory; in this case you'll see ModuleNotFoundError: No module named 'onnx.onnx_cpp2py_export'. Change into another directory to fix this error.

If you run into any issues while building Protobuf as a static library, please ensure that shared Protobuf libraries, like libprotobuf, are not installed on your device or in the conda environment. If these shared libraries exist, either remove them to build Protobuf from source as a static library, or skip the Protobuf build from source to use the shared version directly.

If you run into any issues while building ONNX from source, and your error message reads, Could not find pythonXX.lib, ensure that you have consistent Python versions for common commands, such as python and pip. Clean all existing build files and rebuild ONNX again.

Testing

ONNX uses pytest as test driver. In order to run tests, you will first need to install pytest:

pip install pytest nbval

After installing pytest, use the following command to run tests.

pytest

Development

Check out the contributor guide for instructions.


Use ONNX

Learn about the ONNX spec

Programming utilities for working with ONNX Graphs

Contribute

ONNX is a community project and the open governance model is described here. We encourage you to join the effort and contribute feedback, ideas, and code. You can participate in the Special Interest Groups and Working Groups to shape the future of ONNX.

Check out our contribution guide to get started.

If you think some operator should be added to ONNX specification, please read this document.

Community meetings

The schedules of the regular meetings of the Steering Committee, the working groups and the SIGs can be found here

Community Meetups are held at least once a year. Content from previous community meetups are at:

Discuss

We encourage you to open Issues, or use Slack (If you have not joined yet, please use this link to join the group) for more real-time discussion.

Follow Us

Stay up to date with the latest ONNX news. [Facebook] [Twitter]

Roadmap

A roadmap process takes place every year. More details can be found here


Download Details:

Author: onnx
Source Code: https://github.com/onnx/onnx 
License: Apache-2.0 license

#machinelearning #tensorflow #deeplearning #neuralnetwork 

Onnx: Open Standard for Machine Learning interoperability
Code  Camp

Code Camp

1686062364

Deep Learning for Computer Vision with TensorFlow – Full Course

Deep Learning for Computer Vision with TensorFlow – Complete Course

Learn the basics of computer vision with deep learning and how to implement the algorithms using Tensorflow.

⭐️ Contents ⭐️

Introduction
⌨️ (0:00:00) Welcome
⌨️ (0:05:54) Prerequisite
⌨️ (0:06:11) What we shall Learn

Tensors and Variables
⌨️ (0:12:12) Basics
⌨️ (0:19:26) Initialization and Casting
⌨️ (1:07:31) Indexing
⌨️ (1:16:15) Maths Operations
⌨️ (1:55:02) Linear Algebra Operations
⌨️ (2:56:21) Common TensorFlow Functions
⌨️ (3:50:15) Ragged Tensors
⌨️ (4:01:41) Sparse Tensors
⌨️ (4:04:23) String Tensors
⌨️ (4:07:45) Variables

Building Neural Networks with TensorFlow [Car Price Prediction]
⌨️ (4:14:52) Task Understanding
⌨️ (4:19:47) Data Preparation
⌨️ (4:54:47) Linear Regression Model
⌨️ (5:10:18) Error Sanctioning
⌨️ (5:24:53) Training and Optimization
⌨️ (5:41:22) Performance Measurement
⌨️ (5:44:18) Validation and Testing
⌨️ (6:04:30) Corrective Measures

Building Convolutional Neural Networks with TensorFlow [Malaria Diagnosis]
⌨️ (6:28:50) Task Understanding
⌨️ (6:37:40) Data Preparation
⌨️ (6:57:40) Data Visualization
⌨️ (7:00:20) Data Processing
⌨️ (7:08:50) How and Why ConvNets Work
⌨️ (7:56:15) Building Convnets with TensorFlow
⌨️ (8:02:39) Binary Crossentropy Loss
⌨️ (8:10:15) Training Convnets
⌨️ (8:23:33) Model Evaluation and Testing
⌨️ (8:29:15) Loading and Saving Models to Google Drive

Building More Advanced Models in Teno Convolutional Neural Networks with TensorFlow [Malaria Diagnosis]
⌨️ (8:47:10) Functional API
⌨️ (9:03:48) Model Subclassing
⌨️ (9:19:05) Custom Layers

Evaluating Classification Models [Malaria Diagnosis]
⌨️ (9:36:45) Precision, Recall and Accuracy
⌨️ (10:00:35) Confusion Matrix
⌨️ (10:10:10) ROC Plots

Improving Model Performance [Malaria Diagnosis]
⌨️ (10:18:10) TensorFlow Callbacks
⌨️ (10:43:55) Learning Rate Scheduling
⌨️ (11:01:25) Model Checkpointing
⌨️ (11:09:25) Mitigating Overfitting and Underfitting

Data Augmentation [Malaria Diagnosis]
⌨️ (11:38:50) Augmentation with tf.image and Keras Layers
⌨️ (12:38:00) Mixup Augmentation
⌨️ (12:56:35) Cutmix Augmentation
⌨️ (13:38:30) Data Augmentation with Albumentations

Advanced TensorFlow Topics [Malaria Diagnosis]
⌨️ (13:58:35) Custom Loss and Metrics
⌨️ (14:18:30) Eager and Graph Modes
⌨️ (14:31:23) Custom Training Loops

Tensorboard Integration [Malaria Diagnosis]
⌨️ (14:57:00) Data Logging
⌨️ (15:29:00) View Model Graphs
⌨️ (15:31:45) Hyperparameter Tuning
⌨️ (15:52:40) Profiling and Visualizations

MLOps with Weights and Biases [Malaria Diagnosis]
⌨️ (16:00:35) Experiment Tracking
⌨️ (16:55:02) Hyperparameter Tuning
⌨️ (17:17:15) Dataset Versioning
⌨️ (18:00:23) Model Versioning

Human Emotions Detection
⌨️ (18:16:55) Data Preparation
⌨️ (18:45:38) Modeling and Training
⌨️ (19:36:42) Data Augmentation
⌨️ (19:54:30) TensorFlow Records

Modern Convolutional Neural Networks [Human Emotions Detection]
⌨️ (20:31:25) AlexNet
⌨️ (20:48:35) VGGNet
⌨️ (20:59:50) ResNet
⌨️ (21:34:07) Coding ResNet from Scratch
⌨️ (21:56:17) MobileNet
⌨️ (22:20:43) EfficientNet

Transfer Learning [Human Emotions Detection]
⌨️ (22:38:15) Feature Extraction
⌨️ (23:02:25) Finetuning

Understanding the Blackbox [Human Emotions Detection]
⌨️ (23:15:33) Visualizing Intermediate Layers
⌨️ (23:36:20) Gradcam method

Transformers in Vision [Human Emotions Detection]
⌨️ (23:57:35) Understanding ViTs
⌨️ (24:51:17) Building ViTs from Scratch
⌨️ (25:42:39) FineTuning Huggingface ViT
⌨️ (26:05:52) Model Evaluation with Wandb

Model Deployment [Human Emotions Detection]
⌨️ (26:27:13) Converting TensorFlow Model to Onnx format
⌨️ (26:52:26) Understanding Quantization
⌨️ (27:13:08) Practical Quantization of Onnx Model
⌨️ (27:22:01) Quantization Aware Training
⌨️ (27:39:55) Conversion to TensorFlow Lite
⌨️ (27:58:28) How APIs work
⌨️ (28:18:28) Building an API with FastAPI
⌨️ (29:39:10) Deploying API to the Cloud
⌨️ (29:51:35) Load Testing with Locust

Object Detection with YOLO
⌨️ (30:05:29) Introduction to Object Detection
⌨️ (30:11:39) Understanding YOLO Algorithm
⌨️ (31:15:17) Dataset Preparation
⌨️ (31:58:27) YOLO Loss
⌨️ (33:02:58) Data Augmentation
⌨️ (33:27:33) Testing

Image Generation
⌨️ (33:59:28) Introduction to Image Generation
⌨️ (34:03:18) Understanding Variational Autoencoders
⌨️ (34:20:46) VAE Training and Digit Generation
⌨️ (35:06:05) Latent Space Visualization
⌨️ (35:21:36) How GANs work
⌨️ (35:43:30) The GAN Loss
⌨️ (36:01:38) Improving GAN Training
⌨️ (36:25:02) Face Generation with GANs

Conclusion
⌨️ (37:15:45) What's Next

Link to Code: https://colab.research.google.com/drive/18u1KDx-9683iZNPxSDZ6dOv9319ZuEC_

#tensorflow #python #computervision #opencv #algorithms #datascience #machinelearning #deeplearning #ai #artificialintelligence #programming #developer #morioh #softwaredeveloper #computerscience 

Deep Learning for Computer Vision with TensorFlow – Full Course
Royce  Reinger

Royce Reinger

1686060600

Datasets: The Largest Hub Of Ready-to-use Datasets for ML Models

🤗 Datasets is a lightweight library providing two main features:

  • one-line dataloaders for many public datasets: one-liners to download and pre-process any of the number of datasets major public datasets (image datasets, audio datasets, text datasets in 467 languages and dialects, etc.) provided on the HuggingFace Datasets Hub. With a simple command like squad_dataset = load_dataset("squad"), get any of these datasets ready to use in a dataloader for training/evaluating a ML model (Numpy/Pandas/PyTorch/TensorFlow/JAX),
  • efficient data pre-processing: simple, fast and reproducible data pre-processing for the public datasets as well as your own local datasets in CSV, JSON, text, PNG, JPEG, WAV, MP3, Parquet, etc. With simple commands like processed_dataset = dataset.map(process_example), efficiently prepare the dataset for inspection and ML model evaluation and training.

🤗 Datasets is designed to let the community easily add and share new datasets.

🤗 Datasets has many additional interesting features:

  • Thrive on large datasets: 🤗 Datasets naturally frees the user from RAM memory limitation, all datasets are memory-mapped using an efficient zero-serialization cost backend (Apache Arrow).
  • Smart caching: never wait for your data to process several times.
  • Lightweight and fast with a transparent and pythonic API (multi-processing/caching/memory-mapping).
  • Built-in interoperability with NumPy, pandas, PyTorch, Tensorflow 2 and JAX.
  • Native support for audio and image data
  • Enable streaming mode to save disk space and start iterating over the dataset immediately.

🤗 Datasets originated from a fork of the awesome TensorFlow Datasets and the HuggingFace team want to deeply thank the TensorFlow Datasets team for building this amazing library. More details on the differences between 🤗 Datasets and tfds can be found in the section Main differences between 🤗 Datasets and tfds.

Installation

With pip

🤗 Datasets can be installed from PyPi and has to be installed in a virtual environment (venv or conda for instance)

pip install datasets

With conda

🤗 Datasets can be installed using conda as follows:

conda install -c huggingface -c conda-forge datasets

Follow the installation pages of TensorFlow and PyTorch to see how to install them with conda.

For more details on installation, check the installation page in the documentation: https://huggingface.co/docs/datasets/installation

Installation to use with PyTorch/TensorFlow/pandas

If you plan to use 🤗 Datasets with PyTorch (1.0+), TensorFlow (2.2+) or pandas, you should also install PyTorch, TensorFlow or pandas.

For more details on using the library with NumPy, pandas, PyTorch or TensorFlow, check the quick start page in the documentation: https://huggingface.co/docs/datasets/quickstart

Usage

🤗 Datasets is made to be very simple to use. The main methods are:

  • datasets.list_datasets() to list the available datasets
  • datasets.load_dataset(dataset_name, **kwargs) to instantiate a dataset

This library can be used for text/image/audio/etc. datasets. Here is an example to load a text dataset:

Here is a quick example:

from datasets import list_datasets, load_dataset

# Print all the available datasets
print(list_datasets())

# Load a dataset and print the first example in the training set
squad_dataset = load_dataset('squad')
print(squad_dataset['train'][0])

# Process the dataset - add a column with the length of the context texts
dataset_with_length = squad_dataset.map(lambda x: {"length": len(x["context"])})

# Process the dataset - tokenize the context texts (using a tokenizer from the 🤗 Transformers library)
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('bert-base-cased')

tokenized_dataset = squad_dataset.map(lambda x: tokenizer(x['context']), batched=True)

If your dataset is bigger than your disk or if you don't want to wait to download the data, you can use streaming:

# If you want to use the dataset immediately and efficiently stream the data as you iterate over the dataset
image_dataset = load_dataset('cifar100', streaming=True)
for example in image_dataset["train"]:
    break

For more details on using the library, check the quick start page in the documentation: https://huggingface.co/docs/datasets/quickstart.html and the specific pages on:

Another introduction to 🤗 Datasets is the tutorial on Google Colab here: Open In Colab

Add a new dataset to the Hub

We have a very detailed step-by-step guide to add a new dataset to the number of datasets datasets already provided on the HuggingFace Datasets Hub.

You can find:

Main differences between 🤗 Datasets and tfds

If you are familiar with the great TensorFlow Datasets, here are the main differences between 🤗 Datasets and tfds:

  • the scripts in 🤗 Datasets are not provided within the library but are queried, downloaded/cached and dynamically loaded upon request
  • 🤗 Datasets also provides evaluation metrics in a similar fashion to the datasets, i.e. as dynamically installed scripts with a unified API. This gives access to the pair of a benchmark dataset and a benchmark metric for instance for benchmarks like SQuAD or GLUE.
  • the backend serialization of 🤗 Datasets is based on Apache Arrow instead of TF Records and leverage python dataclasses for info and features with some diverging features (we mostly don't do encoding and store the raw data as much as possible in the backend serialization cache).
  • the user-facing dataset object of 🤗 Datasets is not a tf.data.Dataset but a built-in framework-agnostic dataset class with methods inspired by what we like in tf.data (like a map() method). It basically wraps a memory-mapped Arrow table cache.

Disclaimers

Similar to TensorFlow Datasets, 🤗 Datasets is a utility library that downloads and prepares public datasets. We do not host or distribute most of these datasets, vouch for their quality or fairness, or claim that you have license to use them. It is your responsibility to determine whether you have permission to use the dataset under the dataset's license.

Moreover 🤗 Datasets may run Python code defined by the dataset authors to parse certain data formats or structures. For security reasons, we ask users to:

  • check the dataset scripts they're going to run beforehand and
  • pin the revision of the repositories they use.

If you're a dataset owner and wish to update any part of it (description, citation, license, etc.), or do not want your dataset to be included in the Hugging Face Hub, please get in touch by opening a discussion or a pull request in the Community tab of the dataset page. Thanks for your contribution to the ML community!

BibTeX

If you want to cite our 🤗 Datasets library, you can use our paper:

@inproceedings{lhoest-etal-2021-datasets,
    title = "Datasets: A Community Library for Natural Language Processing",
    author = "Lhoest, Quentin  and
      Villanova del Moral, Albert  and
      Jernite, Yacine  and
      Thakur, Abhishek  and
      von Platen, Patrick  and
      Patil, Suraj  and
      Chaumond, Julien  and
      Drame, Mariama  and
      Plu, Julien  and
      Tunstall, Lewis  and
      Davison, Joe  and
      {\v{S}}a{\v{s}}ko, Mario  and
      Chhablani, Gunjan  and
      Malik, Bhavitvya  and
      Brandeis, Simon  and
      Le Scao, Teven  and
      Sanh, Victor  and
      Xu, Canwen  and
      Patry, Nicolas  and
      McMillan-Major, Angelina  and
      Schmid, Philipp  and
      Gugger, Sylvain  and
      Delangue, Cl{\'e}ment  and
      Matussi{\`e}re, Th{\'e}o  and
      Debut, Lysandre  and
      Bekman, Stas  and
      Cistac, Pierric  and
      Goehringer, Thibault  and
      Mustar, Victor  and
      Lagunas, Fran{\c{c}}ois  and
      Rush, Alexander  and
      Wolf, Thomas",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
    month = nov,
    year = "2021",
    address = "Online and Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.emnlp-demo.21",
    pages = "175--184",
    abstract = "The scale, variety, and quantity of publicly-available NLP datasets has grown rapidly as researchers propose new tasks, larger models, and novel benchmarks. Datasets is a community library for contemporary NLP designed to support this ecosystem. Datasets aims to standardize end-user interfaces, versioning, and documentation, while providing a lightweight front-end that behaves similarly for small datasets as for internet-scale corpora. The design of the library incorporates a distributed, community-driven approach to adding datasets and documenting usage. After a year of development, the library now includes more than 650 unique datasets, has more than 250 contributors, and has helped support a variety of novel cross-dataset research projects and shared tasks. The library is available at https://github.com/huggingface/datasets.",
    eprint={2109.02846},
    archivePrefix={arXiv},
    primaryClass={cs.CL},
}

If you need to cite a specific version of our 🤗 Datasets library for reproducibility, you can use the corresponding version Zenodo DOI from this list.


🎓 Documentation 🕹 Colab tutorial

🔎 Find a dataset in the Hub 🌟 Add a new dataset to the Hub


Download Details:

Author: Huggingface
Source Code: https://github.com/huggingface/datasets 
License: Apache-2.0 license

#machinelearning #nlp #computervision #deeplearning #tensorflow #numpy 

Datasets: The Largest Hub Of Ready-to-use Datasets for ML Models
Royce  Reinger

Royce Reinger

1685992620

Ray: A Unified Framework for Scaling AI & Python Apps

Ray is a unified framework for scaling AI and Python applications. Ray consists of a core distributed runtime and a toolkit of libraries (Ray AIR) for simplifying ML compute:

Learn more about Ray AIR and its libraries:

  • Data: Scalable Datasets for ML
  • Train: Distributed Training
  • Tune: Scalable Hyperparameter Tuning
  • RLlib: Scalable Reinforcement Learning
  • Serve: Scalable and Programmable Serving

Or more about Ray Core and its key abstractions:

  • Tasks: Stateless functions executed in the cluster.
  • Actors: Stateful worker processes created in the cluster.
  • Objects: Immutable values accessible across the cluster.

Monitor and debug Ray applications and clusters using the Ray dashboard.

Ray runs on any machine, cluster, cloud provider, and Kubernetes, and features a growing ecosystem of community integrations.

Install Ray with: pip install ray. For nightly wheels, see the Installation page.

Why Ray?

Today's ML workloads are increasingly compute-intensive. As convenient as they are, single-node development environments such as your laptop cannot scale to meet these demands.

Ray is a unified way to scale Python and AI applications from a laptop to a cluster.

With Ray, you can seamlessly scale the same code from a laptop to a cluster. Ray is designed to be general-purpose, meaning that it can performantly run any kind of workload. If your application is written in Python, you can scale it with Ray, no other infrastructure required.

More Information

Older documents:

Getting Involved

PlatformPurposeEstimated Response TimeSupport Level
Discourse ForumFor discussions about development and questions about usage.< 1 dayCommunity
GitHub IssuesFor reporting bugs and filing feature requests.< 2 daysRay OSS Team
SlackFor collaborating with other Ray users.< 2 daysCommunity
StackOverflowFor asking questions about how to use Ray.3-5 daysCommunity
Meetup GroupFor learning about Ray projects and best practices.MonthlyRay DevRel
TwitterFor staying up-to-date on new features.DailyRay DevRel

Download Details:

Author: Ray-project
Source Code: https://github.com/ray-project/ray 
License: Apache-2.0 license

#machinelearning #python #java #datascience #tensorflow 

Ray: A Unified Framework for Scaling AI & Python Apps
Royce  Reinger

Royce Reinger

1685984760

Photoprism: AI-Powered Photos App for the Decentralized Web

PhotoPrism: Browse Your Life in Pictures


PhotoPrism® is an AI-Powered Photos App for the Decentralized Web. It makes use of the latest technologies to tag and find pictures automatically without getting in your way. You can run it at home, on a private server, or in the cloud.

To get a first impression, you are welcome to play with our public demo. Be careful not to upload any private pictures.

Feature Overview

Our mission is to provide the most user- and privacy-friendly solution to keep your pictures organized and accessible. That's why PhotoPrism was built from the ground up to run wherever you need it, without compromising freedom, privacy, or functionality:

Being completely self-funded and independent, we can promise you that we will never sell your data and that we will always be transparent about our software and services. Your data will never be shared with Google, Amazon, Microsoft or Apple unless you intentionally upload files to one of their services. 🔒

Getting Started

Step-by-step installation instructions for our self-hosted community edition can be found on docs.photoprism.app - all you need is a Web browser and Docker to run the server. It is available for Mac, Linux, and Windows.

The stable version and development preview have been built into a single multi-arch image for 64-bit AMD, Intel, and ARM processors. That means, Raspberry Pi 3 / 4 owners can pull from the same repository, enjoy the exact same functionality, and can follow the regular installation instructions after going through a short list of requirements.

Existing users are advised to update their docker-compose.yml config based on our examples available at dl.photoprism.app/docker.

Support Our Mission 💎

PhotoPrism is 100% self-funded and independent. Your continued support helps us provide more features to the public, release regular updates, and remain independent!

Our members enjoy additional features, including access to interactive world maps, and can join our private chat room to connect with our team. We currently have the following membership options:

  • You can sign up directly on our website and pay with credit card or SEPA through Stripe, so you don't need to link an external account and can easily upgrade or downgrade at any time
  • Alternatively, Patreon also supports PayPal, additional currencies, and lets you choose between monthly and annual billing for all tiers

If you currently support us through GitHub Sponsors, you can also register on our website and use the Activate GitHub Sponsors Membership button to link your account. For details on this and how to link your Patreon account, see our Activation Guide.

You are welcome to contact us for change requests, membership questions, and business partnerships.

View Membership FAQ ›Sign Up ›

Why Your Support Matters

  • Your continued support helps us provide regular updates and remain independent, so we can fulfill our mission and protect your privacy
  • Sustained funding is key to quickly releasing new features requested by you and other community members
  • Being self-funded and independent, we can personally promise you that we will never sell your data and that we will always be transparent about our software and services

Please also leave a star on GitHub if you like this project. It provides additional motivation to keep going.

A big thank you to all current and past sponsors, whose generous support has been and continues to be essential to the success of the project!

View Sponsors ›View Credits ›

Getting Support

Visit docs.photoprism.app/user-guide to learn how to sync, organize, and share your pictures. If you need help installing our software at home, you can join us on Reddit, ask in our Community Chat, or post your question in GitHub Discussions.

Common problems can be quickly diagnosed and solved using the Troubleshooting Checklists in Getting Started. Eligible members are also welcome to email us for technical support and personalized advice.

Upcoming Features and Enhancements

Our Project Roadmap shows what tasks are in progress and what features will be implemented next. You are invited to give ideas you like a thumbs-up, so we know what's most popular.

Be aware that we have a zero-bug policy and do our best to help users when they need support or have other questions. This comes at a price though, as we can't give exact release dates for new features. Our team receives many more requests than can be implemented, so we want to emphasize that we are in no way obligated to implement the features, enhancements, or other changes you request. We do, however, appreciate your feedback and carefully consider all requests.

Because sustained funding is key to quickly releasing new features, we encourage you to support our mission by signing up as a sponsor or purchasing a commercial license. Ultimately, that's what's best for the product and the community.

GitHub Issues ⚠️

We kindly ask you not to report bugs via GitHub Issues unless you are certain to have found a fully reproducible and previously unreported issue that must be fixed directly in the app. Thank you for your careful consideration!

  • When reporting a problem, always include the software versions you are using and other information about your environment such as browser, browser plugins, operating system, storage type, memory size, and processor
  • Note that all issue subscribers receive an email notification from GitHub whenever a new comment is added, so these should only be used for sharing important information and not for discussions, questions or expressing personal opinions
  • Contact us or a community member if you need help, it could be a local configuration problem, or a misunderstanding in how the software works
  • This gives our team the opportunity to improve the docs and provide best-in-class support to you, instead of handling unclear/duplicate bug reports or triggering a flood of notifications by responding to comments

Connect with the Community

Follow us on Twitter and join the Community Chat to get regular updates, connect with other users, and discuss your ideas. Our Code of Conduct explains the "dos and don’ts" when interacting with other community members.

Feel free to contact us at hello@photoprism.app with anything that is on your mind. We appreciate your feedback! Due to the high volume of emails we receive, our team may be unable to get back to you immediately. We do our best to respond within five business days or less.

Every Contribution Makes a Difference

We welcome contributions of any kind, including blog posts, tutorials, testing, writing documentation, and pull requests. Our Developer Guide contains all the information necessary for you to get started.


PhotoPrism® is a registered trademark. By using the software and services we provide, you agree to our Terms of Service, Privacy Policy, and Code of Conduct. Docs are available under the CC BY-NC-SA 4.0 License; additional terms may apply.


Download Details:

Author: Photoprism
Source Code: https://github.com/photoprism/photoprism 
License: View license

#machinelearning #AI #golang #tensorflow 

Photoprism: AI-Powered Photos App for the Decentralized Web
Royce  Reinger

Royce Reinger

1685965169

TensorFlow Tutorial & Examples for Beginners (support TF v1 & v2)

TensorFlow Examples

This tutorial was designed for easily diving into TensorFlow, through examples. For readability, it includes both notebooks and source codes with explanation, for both TF v1 & v2.

It is suitable for beginners who want to find clear and concise examples about TensorFlow. Besides the traditional 'raw' TensorFlow implementations, you can also find the latest TensorFlow API practices (such as layers, estimator, dataset, ...).

Tutorial index

0 - Prerequisite

1 - Introduction

  • Hello World (notebook). Very simple example to learn how to print "hello world" using TensorFlow 2.0+.
  • Basic Operations (notebook). A simple example that cover TensorFlow 2.0+ basic operations.

2 - Basic Models

  • Linear Regression (notebook). Implement a Linear Regression with TensorFlow 2.0+.
  • Logistic Regression (notebook). Implement a Logistic Regression with TensorFlow 2.0+.
  • Word2Vec (Word Embedding) (notebook). Build a Word Embedding Model (Word2Vec) from Wikipedia data, with TensorFlow 2.0+.
  • GBDT (Gradient Boosted Decision Trees) (notebooks). Implement a Gradient Boosted Decision Trees with TensorFlow 2.0+ to predict house value using Boston Housing dataset.

3 - Neural Networks

Supervised

  • Simple Neural Network (notebook). Use TensorFlow 2.0 'layers' and 'model' API to build a simple neural network to classify MNIST digits dataset.
  • Simple Neural Network (low-level) (notebook). Raw implementation of a simple neural network to classify MNIST digits dataset.
  • Convolutional Neural Network (notebook). Use TensorFlow 2.0+ 'layers' and 'model' API to build a convolutional neural network to classify MNIST digits dataset.
  • Convolutional Neural Network (low-level) (notebook). Raw implementation of a convolutional neural network to classify MNIST digits dataset.
  • Recurrent Neural Network (LSTM) (notebook). Build a recurrent neural network (LSTM) to classify MNIST digits dataset, using TensorFlow 2.0 'layers' and 'model' API.
  • Bi-directional Recurrent Neural Network (LSTM) (notebook). Build a bi-directional recurrent neural network (LSTM) to classify MNIST digits dataset, using TensorFlow 2.0+ 'layers' and 'model' API.
  • Dynamic Recurrent Neural Network (LSTM) (notebook). Build a recurrent neural network (LSTM) that performs dynamic calculation to classify sequences of variable length, using TensorFlow 2.0+ 'layers' and 'model' API.

Unsupervised

  • Auto-Encoder (notebook). Build an auto-encoder to encode an image to a lower dimension and re-construct it.
  • DCGAN (Deep Convolutional Generative Adversarial Networks) (notebook). Build a Deep Convolutional Generative Adversarial Network (DCGAN) to generate images from noise.

4 - Utilities

  • Save and Restore a model (notebook). Save and Restore a model with TensorFlow 2.0+.
  • Build Custom Layers & Modules (notebook). Learn how to build your own layers / modules and integrate them into TensorFlow 2.0+ Models.
  • Tensorboard (notebook). Track and visualize neural network computation graph, metrics, weights and more using TensorFlow 2.0+ tensorboard.

5 - Data Management

  • Load and Parse data (notebook). Build efficient data pipeline with TensorFlow 2.0 (Numpy arrays, Images, CSV files, custom data, ...).
  • Build and Load TFRecords (notebook). Convert data into TFRecords format, and load them with TensorFlow 2.0+.
  • Image Transformation (i.e. Image Augmentation) (notebook). Apply various image augmentation techniques with TensorFlow 2.0+, to generate distorted images for training.

6 - Hardware

  • Multi-GPU Training (notebook). Train a convolutional neural network with multiple GPUs on CIFAR-10 dataset.

TensorFlow v1

The tutorial index for TF v1 is available here: TensorFlow v1.15 Examples. Or see below for a list of the examples.

Dataset

Some examples require MNIST dataset for training and testing. Don't worry, this dataset will automatically be downloaded when running examples. MNIST is a database of handwritten digits, for a quick description of that dataset, you can check this notebook.

Official Website: http://yann.lecun.com/exdb/mnist/.

Installation

To download all the examples, simply clone this repository:

git clone https://github.com/aymericdamien/TensorFlow-Examples

To run them, you also need the latest version of TensorFlow. To install it:

pip install tensorflow

or (with GPU support):

pip install tensorflow_gpu

For more details about TensorFlow installation, you can check TensorFlow Installation Guide

TensorFlow v1 Examples - Index

The tutorial index for TF v1 is available here: TensorFlow v1.15 Examples.

0 - Prerequisite

1 - Introduction

  • Hello World (notebook) (code). Very simple example to learn how to print "hello world" using TensorFlow.
  • Basic Operations (notebook) (code). A simple example that cover TensorFlow basic operations.
  • TensorFlow Eager API basics (notebook) (code). Get started with TensorFlow's Eager API.

2 - Basic Models

  • Linear Regression (notebook) (code). Implement a Linear Regression with TensorFlow.
  • Linear Regression (eager api) (notebook) (code). Implement a Linear Regression using TensorFlow's Eager API.
  • Logistic Regression (notebook) (code). Implement a Logistic Regression with TensorFlow.
  • Logistic Regression (eager api) (notebook) (code). Implement a Logistic Regression using TensorFlow's Eager API.
  • Nearest Neighbor (notebook) (code). Implement Nearest Neighbor algorithm with TensorFlow.
  • K-Means (notebook) (code). Build a K-Means classifier with TensorFlow.
  • Random Forest (notebook) (code). Build a Random Forest classifier with TensorFlow.
  • Gradient Boosted Decision Tree (GBDT) (notebook) (code). Build a Gradient Boosted Decision Tree (GBDT) with TensorFlow.
  • Word2Vec (Word Embedding) (notebook) (code). Build a Word Embedding Model (Word2Vec) from Wikipedia data, with TensorFlow.

3 - Neural Networks

Supervised

  • Simple Neural Network (notebook) (code). Build a simple neural network (a.k.a Multi-layer Perceptron) to classify MNIST digits dataset. Raw TensorFlow implementation.
  • Simple Neural Network (tf.layers/estimator api) (notebook) (code). Use TensorFlow 'layers' and 'estimator' API to build a simple neural network (a.k.a Multi-layer Perceptron) to classify MNIST digits dataset.
  • Simple Neural Network (eager api) (notebook) (code). Use TensorFlow Eager API to build a simple neural network (a.k.a Multi-layer Perceptron) to classify MNIST digits dataset.
  • Convolutional Neural Network (notebook) (code). Build a convolutional neural network to classify MNIST digits dataset. Raw TensorFlow implementation.
  • Convolutional Neural Network (tf.layers/estimator api) (notebook) (code). Use TensorFlow 'layers' and 'estimator' API to build a convolutional neural network to classify MNIST digits dataset.
  • Recurrent Neural Network (LSTM) (notebook) (code). Build a recurrent neural network (LSTM) to classify MNIST digits dataset.
  • Bi-directional Recurrent Neural Network (LSTM) (notebook) (code). Build a bi-directional recurrent neural network (LSTM) to classify MNIST digits dataset.
  • Dynamic Recurrent Neural Network (LSTM) (notebook) (code). Build a recurrent neural network (LSTM) that performs dynamic calculation to classify sequences of different length.

Unsupervised

  • Auto-Encoder (notebook) (code). Build an auto-encoder to encode an image to a lower dimension and re-construct it.
  • Variational Auto-Encoder (notebook) (code). Build a variational auto-encoder (VAE), to encode and generate images from noise.
  • GAN (Generative Adversarial Networks) (notebook) (code). Build a Generative Adversarial Network (GAN) to generate images from noise.
  • DCGAN (Deep Convolutional Generative Adversarial Networks) (notebook) (code). Build a Deep Convolutional Generative Adversarial Network (DCGAN) to generate images from noise.

4 - Utilities

  • Save and Restore a model (notebook) (code). Save and Restore a model with TensorFlow.
  • Tensorboard - Graph and loss visualization (notebook) (code). Use Tensorboard to visualize the computation Graph and plot the loss.
  • Tensorboard - Advanced visualization (notebook) (code). Going deeper into Tensorboard; visualize the variables, gradients, and more...

5 - Data Management

  • Build an image dataset (notebook) (code). Build your own images dataset with TensorFlow data queues, from image folders or a dataset file.
  • TensorFlow Dataset API (notebook) (code). Introducing TensorFlow Dataset API for optimizing the input data pipeline.
  • Load and Parse data (notebook). Build efficient data pipeline (Numpy arrays, Images, CSV files, custom data, ...).
  • Build and Load TFRecords (notebook). Convert data into TFRecords format, and load them.
  • Image Transformation (i.e. Image Augmentation) (notebook). Apply various image augmentation techniques, to generate distorted images for training.

6 - Multi GPU

  • Basic Operations on multi-GPU (notebook) (code). A simple example to introduce multi-GPU in TensorFlow.
  • Train a Neural Network on multi-GPU (notebook) (code). A clear and simple TensorFlow implementation to train a convolutional neural network on multiple GPUs.

More Examples

The following examples are coming from TFLearn, a library that provides a simplified interface for TensorFlow. You can have a look, there are many examples and pre-built operations and layers.

Tutorials

  • TFLearn Quickstart. Learn the basics of TFLearn through a concrete machine learning task. Build and train a deep neural network classifier.

Examples


Update (05/16/2020): Moving all default examples to TF2. For TF v1 examples: check here.


Download Details:

Author: Aymericdamien
Source Code: https://github.com/aymericdamien/TensorFlow-Examples 
License: View license

#machinelearning #python #tensorflow #deeplearning 

TensorFlow Tutorial & Examples for Beginners (support TF v1 & v2)
Royce  Reinger

Royce Reinger

1685945880

Keras: Deep Learning for Humans

Keras: Deep Learning for humans

This repository hosts the development of the Keras library. 

About Keras

Keras is a deep learning API written in Python, running on top of the machine learning platform TensorFlow. It was developed with a focus on enabling fast experimentation and providing a delightful developer experience.

The purpose of Keras is to give an unfair advantage to any developer looking to ship ML-powered apps.

Keras is:

  • Simple -- but not simplistic. Keras reduces developer cognitive load to free you to focus on the parts of the problem that really matter. Keras focuses on ease of use, debugging speed, code elegance & conciseness, maintainability, and deployability (via TFServing, TFLite, TF.js).
  • Flexible -- Keras adopts the principle of progressive disclosure of complexity: simple workflows should be quick and easy, while arbitrarily advanced workflows should be possible via a clear path that builds upon what you've already learned.
  • Powerful -- Keras provides industry-strength performance and scalability: it is used by organizations and companies including NASA, YouTube, and Waymo. That's right -- your YouTube recommendations are powered by Keras, and so is the world's most advanced driverless vehicle.

Keras & TensorFlow 2

TensorFlow 2 is an end-to-end, open-source machine learning platform. You can think of it as an infrastructure layer for differentiable programming. It combines four key abilities:

  • Efficiently executing low-level tensor operations on CPU, GPU, or TPU.
  • Computing the gradient of arbitrary differentiable expressions.
  • Scaling computation to many devices, such as clusters of hundreds of GPUs.
  • Exporting programs ("graphs") to external runtimes such as servers, browsers, mobile and embedded devices.

Keras is the high-level API of TensorFlow 2: an approachable, highly-productive interface for solving machine learning problems, with a focus on modern deep learning. It provides essential abstractions and building blocks for developing and shipping machine learning solutions with high iteration velocity.

Keras empowers engineers and researchers to take full advantage of the scalability and cross-platform capabilities of TensorFlow 2: you can run Keras on TPU or on large clusters of GPUs, and you can export your Keras models to run in the browser or on a mobile device.


First contact with Keras

The core data structures of Keras are layers and models. The simplest type of model is the Sequential model, a linear stack of layers. For more complex architectures, you should use the Keras functional API, which allows you to build arbitrary graphs of layers or write models entirely from scratch via subclassing.

Here is the Sequential model:

from tensorflow.keras.models import Sequential

model = Sequential()

Stacking layers is as easy as .add():

from tensorflow.keras.layers import Dense

model.add(Dense(units=64, activation='relu'))
model.add(Dense(units=10, activation='softmax'))

Once your model looks good, configure its learning process with .compile():

model.compile(loss='categorical_crossentropy',
              optimizer='sgd',
              metrics=['accuracy'])

If you need to, you can further configure your optimizer. The Keras philosophy is to keep simple things simple, while allowing the user to be fully in control when they need to (the ultimate control being the easy extensibility of the source code via subclassing).

model.compile(loss=tf.keras.losses.categorical_crossentropy,
              optimizer=tf.keras.optimizers.SGD(
                  learning_rate=0.01, momentum=0.9, nesterov=True))

You can now iterate on your training data in batches:

# x_train and y_train are Numpy arrays.
model.fit(x_train, y_train, epochs=5, batch_size=32)

Evaluate your test loss and metrics in one line:

loss_and_metrics = model.evaluate(x_test, y_test, batch_size=128)

Or generate predictions on new data:

classes = model.predict(x_test, batch_size=128)

What you just saw is the most elementary way to use Keras.

However, Keras is also a highly-flexible framework suitable to iterate on state-of-the-art research ideas. Keras follows the principle of progressive disclosure of complexity: it makes it easy to get started, yet it makes it possible to handle arbitrarily advanced use cases, only requiring incremental learning at each step.

In much the same way that you were able to train & evaluate a simple neural network above in a few lines, you can use Keras to quickly develop new training procedures or exotic model architectures. Here's a low-level training loop example, combining Keras functionality with the TensorFlow GradientTape:

import tensorflow as tf

# Prepare an optimizer.
optimizer = tf.keras.optimizers.Adam()
# Prepare a loss function.
loss_fn = tf.keras.losses.kl_divergence

# Iterate over the batches of a dataset.
for inputs, targets in dataset:
    # Open a GradientTape.
    with tf.GradientTape() as tape:
        # Forward pass.
        predictions = model(inputs)
        # Compute the loss value for this batch.
        loss_value = loss_fn(targets, predictions)

    # Get gradients of loss wrt the weights.
    gradients = tape.gradient(loss_value, model.trainable_weights)
    # Update the weights of the model.
    optimizer.apply_gradients(zip(gradients, model.trainable_weights))

For more in-depth tutorials about Keras, you can check out:


Installation

Keras comes packaged with TensorFlow 2 as tensorflow.keras. To start using Keras, simply install TensorFlow 2. You can then import Keras as follows:

from tensorflow import keras

Release and compatibility

Keras has nightly releases (keras-nightly on PyPI) and stable releases (keras on PyPI). The nightly Keras releases are usually compatible with the corresponding version of the tf-nightly releases (e.g. keras-nightly==2.7.0.dev2021100607 should be used with tf-nightly==2.7.0.dev2021100607). We don't maintain backward compatibility for nightly releases. For stable releases, each Keras version maps to a specific stable version of TensorFlow.

The table below shows the compatibility version mapping between TensorFlow versions and Keras versions.

All the release branches can be found on GitHub.

All the release binaries can be found on Pypi.


Support

You can ask questions and join the development discussion:


Opening an issue

You can also post bug reports and feature requests (only) in GitHub issues.


Opening a PR

We welcome contributions! Before opening a PR, please read our contributor guide, and the API design guideline.


Read the documentation at keras.io.


Download Details:

Author: Keras-team
Source Code: https://github.com/keras-team/keras 
License: Apache-2.0 license

#machinelearning #python #datascience #deeplearning #tensorflow 

Keras: Deep Learning for Humans
Royce  Reinger

Royce Reinger

1685938080

State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX

Transformers

State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow


🤗 Transformers provides thousands of pretrained models to perform tasks on different modalities such as text, vision, and audio.

These models can be applied on:

  • 📝 Text, for tasks like text classification, information extraction, question answering, summarization, translation, text generation, in over 100 languages.
  • 🖼️ Images, for tasks like image classification, object detection, and segmentation.
  • 🗣️ Audio, for tasks like speech recognition and audio classification.

Transformer models can also perform tasks on several modalities combined, such as table question answering, optical character recognition, information extraction from scanned documents, video classification, and visual question answering.

🤗 Transformers provides APIs to quickly download and use those pretrained models on a given text, fine-tune them on your own datasets and then share them with the community on our model hub. At the same time, each python module defining an architecture is fully standalone and can be modified to enable quick research experiments.

🤗 Transformers is backed by the three most popular deep learning libraries — Jax, PyTorch and TensorFlow — with a seamless integration between them. It's straightforward to train your models with one before loading them for inference with the other.

Quick tour

To immediately use a model on a given input (text, image, audio, ...), we provide the pipeline API. Pipelines group together a pretrained model with the preprocessing that was used during that model's training. Here is how to quickly use a pipeline to classify positive versus negative texts:

>>> from transformers import pipeline

# Allocate a pipeline for sentiment-analysis
>>> classifier = pipeline('sentiment-analysis')
>>> classifier('We are very happy to introduce pipeline to the transformers repository.')
[{'label': 'POSITIVE', 'score': 0.9996980428695679}]

The second line of code downloads and caches the pretrained model used by the pipeline, while the third evaluates it on the given text. Here the answer is "positive" with a confidence of 99.97%.

Many tasks have a pre-trained pipeline ready to go, in NLP but also in computer vision and speech. For example, we can easily extract detected objects in an image:

>>> import requests
>>> from PIL import Image
>>> from transformers import pipeline

# Download an image with cute cats
>>> url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png"
>>> image_data = requests.get(url, stream=True).raw
>>> image = Image.open(image_data)

# Allocate a pipeline for object detection
>>> object_detector = pipeline('object-detection')
>>> object_detector(image)
[{'score': 0.9982201457023621,
  'label': 'remote',
  'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
 {'score': 0.9960021376609802,
  'label': 'remote',
  'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
 {'score': 0.9954745173454285,
  'label': 'couch',
  'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
 {'score': 0.9988006353378296,
  'label': 'cat',
  'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
 {'score': 0.9986783862113953,
  'label': 'cat',
  'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}]

Here we get a list of objects detected in the image, with a box surrounding the object and a confidence score. Here is the original image on the left, with the predictions displayed on the right:

You can learn more about the tasks supported by the pipeline API in this tutorial.

In addition to pipeline, to download and use any of the pretrained models on your given task, all it takes is three lines of code. Here is the PyTorch version:

>>> from transformers import AutoTokenizer, AutoModel

>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = AutoModel.from_pretrained("bert-base-uncased")

>>> inputs = tokenizer("Hello world!", return_tensors="pt")
>>> outputs = model(**inputs)

And here is the equivalent code for TensorFlow:

>>> from transformers import AutoTokenizer, TFAutoModel

>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = TFAutoModel.from_pretrained("bert-base-uncased")

>>> inputs = tokenizer("Hello world!", return_tensors="tf")
>>> outputs = model(**inputs)

The tokenizer is responsible for all the preprocessing the pretrained model expects, and can be called directly on a single string (as in the above examples) or a list. It will output a dictionary that you can use in downstream code or simply directly pass to your model using the ** argument unpacking operator.

The model itself is a regular Pytorch nn.Module or a TensorFlow tf.keras.Model (depending on your backend) which you can use as usual. This tutorial explains how to integrate such a model into a classic PyTorch or TensorFlow training loop, or how to use our Trainer API to quickly fine-tune on a new dataset.

Why should I use transformers?

Easy-to-use state-of-the-art models:

  • High performance on natural language understanding & generation, computer vision, and audio tasks.
  • Low barrier to entry for educators and practitioners.
  • Few user-facing abstractions with just three classes to learn.
  • A unified API for using all our pretrained models.

Lower compute costs, smaller carbon footprint:

  • Researchers can share trained models instead of always retraining.
  • Practitioners can reduce compute time and production costs.
  • Dozens of architectures with over 60,000 pretrained models across all modalities.

Choose the right framework for every part of a model's lifetime:

  • Train state-of-the-art models in 3 lines of code.
  • Move a single model between TF2.0/PyTorch/JAX frameworks at will.
  • Seamlessly pick the right framework for training, evaluation and production.

Easily customize a model or an example to your needs:

  • We provide examples for each architecture to reproduce the results published by its original authors.
  • Model internals are exposed as consistently as possible.
  • Model files can be used independently of the library for quick experiments.

Why shouldn't I use transformers?

  • This library is not a modular toolbox of building blocks for neural nets. The code in the model files is not refactored with additional abstractions on purpose, so that researchers can quickly iterate on each of the models without diving into additional abstractions/files.
  • The training API is not intended to work on any model but is optimized to work with the models provided by the library. For generic machine learning loops, you should use another library (possibly, Accelerate).
  • While we strive to present as many use cases as possible, the scripts in our examples folder are just that: examples. It is expected that they won't work out-of-the box on your specific problem and that you will be required to change a few lines of code to adapt them to your needs.

Installation

With pip

This repository is tested on Python 3.6+, Flax 0.3.2+, PyTorch 1.3.1+ and TensorFlow 2.3+.

You should install 🤗 Transformers in a virtual environment. If you're unfamiliar with Python virtual environments, check out the user guide.

First, create a virtual environment with the version of Python you're going to use and activate it.

Then, you will need to install at least one of Flax, PyTorch or TensorFlow. Please refer to TensorFlow installation page, PyTorch installation page and/or Flax and Jax installation pages regarding the specific installation command for your platform.

When one of those backends has been installed, 🤗 Transformers can be installed using pip as follows:

pip install transformers

If you'd like to play with the examples or need the bleeding edge of the code and can't wait for a new release, you must install the library from source.

With conda

Since Transformers version v4.0.0, we now have a conda channel: huggingface.

🤗 Transformers can be installed using conda as follows:

conda install -c huggingface transformers

Follow the installation pages of Flax, PyTorch or TensorFlow to see how to install them with conda.

NOTE: On Windows, you may be prompted to activate Developer Mode in order to benefit from caching. If this is not an option for you, please let us know in this issue.

Model architectures

All the model checkpoints provided by 🤗 Transformers are seamlessly integrated from the huggingface.co model hub where they are uploaded directly by users and organizations.

Current number of checkpoints:

🤗 Transformers currently provides the following architectures (see here for a high-level summary of each them):

  1. ALBERT (from Google Research and the Toyota Technological Institute at Chicago) released with the paper ALBERT: A Lite BERT for Self-supervised Learning of Language Representations, by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
  2. ALIGN (from Google Research) released with the paper Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision by Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.
  3. AltCLIP (from BAAI) released with the paper AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell.
  4. Audio Spectrogram Transformer (from MIT) released with the paper AST: Audio Spectrogram Transformer by Yuan Gong, Yu-An Chung, James Glass.
  5. Autoformer (from Tsinghua University) released with the paper Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
  6. BART (from Facebook) released with the paper BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
  7. BARThez (from École polytechnique) released with the paper BARThez: a Skilled Pretrained French Sequence-to-Sequence Model by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
  8. BARTpho (from VinAI Research) released with the paper BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
  9. BEiT (from Microsoft) released with the paper BEiT: BERT Pre-Training of Image Transformers by Hangbo Bao, Li Dong, Furu Wei.
  10. BERT (from Google) released with the paper BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
  11. BERT For Sequence Generation (from Google) released with the paper Leveraging Pre-trained Checkpoints for Sequence Generation Tasks by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
  12. BERTweet (from VinAI Research) released with the paper BERTweet: A pre-trained language model for English Tweets by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen.
  13. BigBird-Pegasus (from Google Research) released with the paper Big Bird: Transformers for Longer Sequences by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
  14. BigBird-RoBERTa (from Google Research) released with the paper Big Bird: Transformers for Longer Sequences by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
  15. BioGpt (from Microsoft Research AI4Science) released with the paper BioGPT: generative pre-trained transformer for biomedical text generation and mining by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu.
  16. BiT (from Google AI) released with the paper Big Transfer (BiT): General Visual Representation Learning by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby.
  17. Blenderbot (from Facebook) released with the paper Recipes for building an open-domain chatbot by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
  18. BlenderbotSmall (from Facebook) released with the paper Recipes for building an open-domain chatbot by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
  19. BLIP (from Salesforce) released with the paper BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi.
  20. BLIP-2 (from Salesforce) released with the paper BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models by Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi.
  21. BLOOM (from BigScience workshop) released by the BigScience Workshop.
  22. BORT (from Alexa) released with the paper Optimal Subarchitecture Extraction For BERT by Adrian de Wynter and Daniel J. Perry.
  23. BridgeTower (from Harbin Institute of Technology/Microsoft Research Asia/Intel Labs) released with the paper BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
  24. ByT5 (from Google Research) released with the paper ByT5: Towards a token-free future with pre-trained byte-to-byte models by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
  25. CamemBERT (from Inria/Facebook/Sorbonne) released with the paper CamemBERT: a Tasty French Language Model by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
  26. CANINE (from Google Research) released with the paper CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
  27. Chinese-CLIP (from OFA-Sys) released with the paper Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese by An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou.
  28. CLAP (from LAION-AI) released with the paper Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation by Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov.
  29. CLIP (from OpenAI) released with the paper Learning Transferable Visual Models From Natural Language Supervision by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
  30. CLIPSeg (from University of Göttingen) released with the paper Image Segmentation Using Text and Image Prompts by Timo Lüddecke and Alexander Ecker.
  31. CodeGen (from Salesforce) released with the paper A Conversational Paradigm for Program Synthesis by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
  32. Conditional DETR (from Microsoft Research Asia) released with the paper Conditional DETR for Fast Training Convergence by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang.
  33. ConvBERT (from YituTech) released with the paper ConvBERT: Improving BERT with Span-based Dynamic Convolution by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
  34. ConvNeXT (from Facebook AI) released with the paper A ConvNet for the 2020s by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
  35. ConvNeXTV2 (from Facebook AI) released with the paper ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie.
  36. CPM (from Tsinghua University) released with the paper CPM: A Large-scale Generative Chinese Pre-trained Language Model by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
  37. CPM-Ant (from OpenBMB) released by the OpenBMB.
  38. CTRL (from Salesforce) released with the paper CTRL: A Conditional Transformer Language Model for Controllable Generation by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
  39. CvT (from Microsoft) released with the paper CvT: Introducing Convolutions to Vision Transformers by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
  40. Data2Vec (from Facebook) released with the paper Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
  41. DeBERTa (from Microsoft) released with the paper DeBERTa: Decoding-enhanced BERT with Disentangled Attention by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
  42. DeBERTa-v2 (from Microsoft) released with the paper DeBERTa: Decoding-enhanced BERT with Disentangled Attention by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
  43. Decision Transformer (from Berkeley/Facebook/Google) released with the paper Decision Transformer: Reinforcement Learning via Sequence Modeling by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
  44. Deformable DETR (from SenseTime Research) released with the paper Deformable DETR: Deformable Transformers for End-to-End Object Detection by Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai.
  45. DeiT (from Facebook) released with the paper Training data-efficient image transformers & distillation through attention by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
  46. DePlot (from Google AI) released with the paper DePlot: One-shot visual language reasoning by plot-to-table translation by Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun.
  47. DETA (from The University of Texas at Austin) released with the paper NMS Strikes Back by Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl.
  48. DETR (from Facebook) released with the paper End-to-End Object Detection with Transformers by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
  49. DialoGPT (from Microsoft Research) released with the paper DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
  50. DiNAT (from SHI Labs) released with the paper Dilated Neighborhood Attention Transformer by Ali Hassani and Humphrey Shi.
  51. DistilBERT (from HuggingFace), released together with the paper DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into DistilGPT2, RoBERTa into DistilRoBERTa, Multilingual BERT into DistilmBERT and a German version of DistilBERT.
  52. DiT (from Microsoft Research) released with the paper DiT: Self-supervised Pre-training for Document Image Transformer by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
  53. Donut (from NAVER), released together with the paper OCR-free Document Understanding Transformer by Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park.
  54. DPR (from Facebook) released with the paper Dense Passage Retrieval for Open-Domain Question Answering by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
  55. DPT (from Intel Labs) released with the paper Vision Transformers for Dense Prediction by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun.
  56. EfficientFormer (from Snap Research) released with the paper EfficientFormer: Vision Transformers at MobileNetSpeed by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren.
  57. EfficientNet (from Google Brain) released with the paper EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks by Mingxing Tan, Quoc V. Le.
  58. ELECTRA (from Google Research/Stanford University) released with the paper ELECTRA: Pre-training text encoders as discriminators rather than generators by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
  59. EncoderDecoder (from Google Research) released with the paper Leveraging Pre-trained Checkpoints for Sequence Generation Tasks by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
  60. ERNIE (from Baidu) released with the paper ERNIE: Enhanced Representation through Knowledge Integration by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu.
  61. ErnieM (from Baidu) released with the paper ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora by Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang.
  62. ESM (from Meta AI) are transformer protein language models. ESM-1b was released with the paper Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. ESM-1v was released with the paper Language models enable zero-shot prediction of the effects of mutations on protein function by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. ESM-2 and ESMFold were released with the paper Language models of protein sequences at the scale of evolution enable accurate structure prediction by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
  63. FLAN-T5 (from Google AI) released in the repository google-research/t5x by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
  64. FLAN-UL2 (from Google AI) released in the repository google-research/t5x by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
  65. FlauBERT (from CNRS) released with the paper FlauBERT: Unsupervised Language Model Pre-training for French by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
  66. FLAVA (from Facebook AI) released with the paper FLAVA: A Foundational Language And Vision Alignment Model by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
  67. FNet (from Google Research) released with the paper FNet: Mixing Tokens with Fourier Transforms by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
  68. FocalNet (from Microsoft Research) released with the paper Focal Modulation Networks by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao.
  69. Funnel Transformer (from CMU/Google Brain) released with the paper Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
  70. GIT (from Microsoft Research) released with the paper GIT: A Generative Image-to-text Transformer for Vision and Language by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
  71. GLPN (from KAIST) released with the paper Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
  72. GPT (from OpenAI) released with the paper Improving Language Understanding by Generative Pre-Training by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
  73. GPT Neo (from EleutherAI) released in the repository EleutherAI/gpt-neo by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
  74. GPT NeoX (from EleutherAI) released with the paper GPT-NeoX-20B: An Open-Source Autoregressive Language Model by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
  75. GPT NeoX Japanese (from ABEJA) released by Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori.
  76. GPT-2 (from OpenAI) released with the paper Language Models are Unsupervised Multitask Learners by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
  77. GPT-J (from EleutherAI) released in the repository kingoflolz/mesh-transformer-jax by Ben Wang and Aran Komatsuzaki.
  78. GPT-Sw3 (from AI-Sweden) released with the paper Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish by Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren.
  79. GPTBigCode (from BigCode) released with the paper SantaCoder: don't reach for the stars! by Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra.
  80. GPTSAN-japanese released in the repository tanreinama/GPTSAN by Toshiyuki Sakamoto(tanreinama).
  81. Graphormer (from Microsoft) released with the paper Do Transformers Really Perform Bad for Graph Representation? by Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu.
  82. GroupViT (from UCSD, NVIDIA) released with the paper GroupViT: Semantic Segmentation Emerges from Text Supervision by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
  83. Hubert (from Facebook) released with the paper HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
  84. I-BERT (from Berkeley) released with the paper I-BERT: Integer-only BERT Quantization by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
  85. ImageGPT (from OpenAI) released with the paper Generative Pretraining from Pixels by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
  86. Informer (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
  87. Jukebox (from OpenAI) released with the paper Jukebox: A Generative Model for Music by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever.
  88. LayoutLM (from Microsoft Research Asia) released with the paper LayoutLM: Pre-training of Text and Layout for Document Image Understanding by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
  89. LayoutLMv2 (from Microsoft Research Asia) released with the paper LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
  90. LayoutLMv3 (from Microsoft Research Asia) released with the paper LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
  91. LayoutXLM (from Microsoft Research Asia) released with the paper LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
  92. LED (from AllenAI) released with the paper Longformer: The Long-Document Transformer by Iz Beltagy, Matthew E. Peters, Arman Cohan.
  93. LeViT (from Meta AI) released with the paper LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
  94. LiLT (from South China University of Technology) released with the paper LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding by Jiapeng Wang, Lianwen Jin, Kai Ding.
  95. LLaMA (from The FAIR team of Meta AI) released with the paper LLaMA: Open and Efficient Foundation Language Models by Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.
  96. Longformer (from AllenAI) released with the paper Longformer: The Long-Document Transformer by Iz Beltagy, Matthew E. Peters, Arman Cohan.
  97. LongT5 (from Google AI) released with the paper LongT5: Efficient Text-To-Text Transformer for Long Sequences by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
  98. LUKE (from Studio Ousia) released with the paper LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
  99. LXMERT (from UNC Chapel Hill) released with the paper LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering by Hao Tan and Mohit Bansal.
  100. M-CTC-T (from Facebook) released with the paper Pseudo-Labeling For Massively Multilingual Speech Recognition by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
  101. M2M100 (from Facebook) released with the paper Beyond English-Centric Multilingual Machine Translation by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
  102. MarianMT Machine translation models trained using OPUS data by Jörg Tiedemann. The Marian Framework is being developed by the Microsoft Translator Team.
  103. MarkupLM (from Microsoft Research Asia) released with the paper MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding by Junlong Li, Yiheng Xu, Lei Cui, Furu Wei.
  104. Mask2Former (from FAIR and UIUC) released with the paper Masked-attention Mask Transformer for Universal Image Segmentation by Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar.
  105. MaskFormer (from Meta and UIUC) released with the paper Per-Pixel Classification is Not All You Need for Semantic Segmentation by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov.
  106. MatCha (from Google AI) released with the paper MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering by Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos.
  107. mBART (from Facebook) released with the paper Multilingual Denoising Pre-training for Neural Machine Translation by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
  108. mBART-50 (from Facebook) released with the paper Multilingual Translation with Extensible Multilingual Pretraining and Finetuning by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
  109. MEGA (from Meta/USC/CMU/SJTU) released with the paper Mega: Moving Average Equipped Gated Attention by Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer.
  110. Megatron-BERT (from NVIDIA) released with the paper Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
  111. Megatron-GPT2 (from NVIDIA) released with the paper Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
  112. MGP-STR (from Alibaba Research) released with the paper Multi-Granularity Prediction for Scene Text Recognition by Peng Wang, Cheng Da, and Cong Yao.
  113. mLUKE (from Studio Ousia) released with the paper mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
  114. MMS (from Facebook) released with the paper Scaling Speech Technology to 1,000+ Languages by Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli.
  115. MobileBERT (from CMU/Google Brain) released with the paper MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
  116. MobileNetV1 (from Google Inc.) released with the paper MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam.
  117. MobileNetV2 (from Google Inc.) released with the paper MobileNetV2: Inverted Residuals and Linear Bottlenecks by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen.
  118. MobileViT (from Apple) released with the paper MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer by Sachin Mehta and Mohammad Rastegari.
  119. MobileViTV2 (from Apple) released with the paper Separable Self-attention for Mobile Vision Transformers by Sachin Mehta and Mohammad Rastegari.
  120. MPNet (from Microsoft Research) released with the paper MPNet: Masked and Permuted Pre-training for Language Understanding by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
  121. MT5 (from Google AI) released with the paper mT5: A massively multilingual pre-trained text-to-text transformer by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
  122. MVP (from RUC AI Box) released with the paper MVP: Multi-task Supervised Pre-training for Natural Language Generation by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
  123. NAT (from SHI Labs) released with the paper Neighborhood Attention Transformer by Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi.
  124. Nezha (from Huawei Noah’s Ark Lab) released with the paper NEZHA: Neural Contextualized Representation for Chinese Language Understanding by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
  125. NLLB (from Meta) released with the paper No Language Left Behind: Scaling Human-Centered Machine Translation by the NLLB team.
  126. NLLB-MOE (from Meta) released with the paper No Language Left Behind: Scaling Human-Centered Machine Translation by the NLLB team.
  127. Nyströmformer (from the University of Wisconsin - Madison) released with the paper Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
  128. OneFormer (from SHI Labs) released with the paper OneFormer: One Transformer to Rule Universal Image Segmentation by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi.
  129. OpenLlama (from s-JoL) released in Open-Llama.
  130. OPT (from Meta AI) released with the paper OPT: Open Pre-trained Transformer Language Models by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
  131. OWL-ViT (from Google AI) released with the paper Simple Open-Vocabulary Object Detection with Vision Transformers by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
  132. Pegasus (from Google) released with the paper PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
  133. PEGASUS-X (from Google) released with the paper Investigating Efficiently Extending Transformers for Long Input Summarization by Jason Phang, Yao Zhao, and Peter J. Liu.
  134. Perceiver IO (from Deepmind) released with the paper Perceiver IO: A General Architecture for Structured Inputs & Outputs by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
  135. PhoBERT (from VinAI Research) released with the paper PhoBERT: Pre-trained language models for Vietnamese by Dat Quoc Nguyen and Anh Tuan Nguyen.
  136. Pix2Struct (from Google) released with the paper Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding by Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova.
  137. PLBart (from UCLA NLP) released with the paper Unified Pre-training for Program Understanding and Generation by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
  138. PoolFormer (from Sea AI Labs) released with the paper MetaFormer is Actually What You Need for Vision by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
  139. ProphetNet (from Microsoft Research) released with the paper ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
  140. QDQBert (from NVIDIA) released with the paper Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
  141. RAG (from Facebook) released with the paper Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
  142. REALM (from Google Research) released with the paper REALM: Retrieval-Augmented Language Model Pre-Training by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
  143. Reformer (from Google Research) released with the paper Reformer: The Efficient Transformer by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
  144. RegNet (from META Platforms) released with the paper Designing Network Design Space by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
  145. RemBERT (from Google Research) released with the paper Rethinking embedding coupling in pre-trained language models by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
  146. ResNet (from Microsoft Research) released with the paper Deep Residual Learning for Image Recognition by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
  147. RoBERTa (from Facebook), released together with the paper RoBERTa: A Robustly Optimized BERT Pretraining Approach by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
  148. RoBERTa-PreLayerNorm (from Facebook) released with the paper fairseq: A Fast, Extensible Toolkit for Sequence Modeling by Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli.
  149. RoCBert (from WeChatAI) released with the paper RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining by HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou.
  150. RoFormer (from ZhuiyiTechnology), released together with the paper RoFormer: Enhanced Transformer with Rotary Position Embedding by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
  151. RWKV (from Bo Peng), released on this repo by Bo Peng.
  152. SegFormer (from NVIDIA) released with the paper SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
  153. Segment Anything (from Meta AI) released with the paper Segment Anything by Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick.
  154. SEW (from ASAPP) released with the paper Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
  155. SEW-D (from ASAPP) released with the paper Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
  156. SpeechT5 (from Microsoft Research) released with the paper SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing by Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei.
  157. SpeechToTextTransformer (from Facebook), released together with the paper fairseq S2T: Fast Speech-to-Text Modeling with fairseq by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
  158. SpeechToTextTransformer2 (from Facebook), released together with the paper Large-Scale Self- and Semi-Supervised Learning for Speech Translation by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
  159. Splinter (from Tel Aviv University), released together with the paper Few-Shot Question Answering by Pretraining Span Selection by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
  160. SqueezeBERT (from Berkeley) released with the paper SqueezeBERT: What can computer vision teach NLP about efficient neural networks? by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
  161. SwiftFormer (from MBZUAI) released with the paper SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications by Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.
  162. Swin Transformer (from Microsoft) released with the paper Swin Transformer: Hierarchical Vision Transformer using Shifted Windows by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
  163. Swin Transformer V2 (from Microsoft) released with the paper Swin Transformer V2: Scaling Up Capacity and Resolution by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
  164. Swin2SR (from University of Würzburg) released with the paper Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration by Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte.
  165. SwitchTransformers (from Google) released with the paper Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity by William Fedus, Barret Zoph, Noam Shazeer.
  166. T5 (from Google AI) released with the paper Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
  167. T5v1.1 (from Google AI) released in the repository google-research/text-to-text-transfer-transformer by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
  168. Table Transformer (from Microsoft Research) released with the paper PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents by Brandon Smock, Rohith Pesala, Robin Abraham.
  169. TAPAS (from Google AI) released with the paper TAPAS: Weakly Supervised Table Parsing via Pre-training by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
  170. TAPEX (from Microsoft Research) released with the paper TAPEX: Table Pre-training via Learning a Neural SQL Executor by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou.
  171. Time Series Transformer (from HuggingFace).
  172. TimeSformer (from Facebook) released with the paper Is Space-Time Attention All You Need for Video Understanding? by Gedas Bertasius, Heng Wang, Lorenzo Torresani.
  173. Trajectory Transformer (from the University of California at Berkeley) released with the paper Offline Reinforcement Learning as One Big Sequence Modeling Problem by Michael Janner, Qiyang Li, Sergey Levine
  174. Transformer-XL (from Google/CMU) released with the paper Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
  175. TrOCR (from Microsoft), released together with the paper TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
  176. TVLT (from UNC Chapel Hill) released with the paper TVLT: Textless Vision-Language Transformer by Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal.
  177. UL2 (from Google Research) released with the paper Unifying Language Learning Paradigms by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
  178. UniSpeech (from Microsoft Research) released with the paper UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
  179. UniSpeechSat (from Microsoft Research) released with the paper UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
  180. UPerNet (from Peking University) released with the paper Unified Perceptual Parsing for Scene Understanding by Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun.
  181. VAN (from Tsinghua University and Nankai University) released with the paper Visual Attention Network by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
  182. VideoMAE (from Multimedia Computing Group, Nanjing University) released with the paper VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training by Zhan Tong, Yibing Song, Jue Wang, Limin Wang.
  183. ViLT (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision by Wonjae Kim, Bokyung Son, Ildoo Kim.
  184. Vision Transformer (ViT) (from Google AI) released with the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
  185. VisualBERT (from UCLA NLP) released with the paper VisualBERT: A Simple and Performant Baseline for Vision and Language by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
  186. ViT Hybrid (from Google AI) released with the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
  187. ViTMAE (from Meta AI) released with the paper Masked Autoencoders Are Scalable Vision Learners by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
  188. ViTMSN (from Meta AI) released with the paper Masked Siamese Networks for Label-Efficient Learning by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas.
  189. Wav2Vec2 (from Facebook AI) released with the paper wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
  190. Wav2Vec2-Conformer (from Facebook AI) released with the paper FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
  191. Wav2Vec2Phoneme (from Facebook AI) released with the paper Simple and Effective Zero-shot Cross-lingual Phoneme Recognition by Qiantong Xu, Alexei Baevski, Michael Auli.
  192. WavLM (from Microsoft Research) released with the paper WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
  193. Whisper (from OpenAI) released with the paper Robust Speech Recognition via Large-Scale Weak Supervision by Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever.
  194. X-CLIP (from Microsoft Research) released with the paper Expanding Language-Image Pretrained Models for General Video Recognition by Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling.
  195. X-MOD (from Meta AI) released with the paper Lifting the Curse of Multilinguality by Pre-training Modular Transformers by Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe.
  196. XGLM (From Facebook AI) released with the paper Few-shot Learning with Multilingual Language Models by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
  197. XLM (from Facebook) released together with the paper Cross-lingual Language Model Pretraining by Guillaume Lample and Alexis Conneau.
  198. XLM-ProphetNet (from Microsoft Research) released with the paper ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
  199. XLM-RoBERTa (from Facebook AI), released together with the paper Unsupervised Cross-lingual Representation Learning at Scale by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
  200. XLM-RoBERTa-XL (from Facebook AI), released together with the paper Larger-Scale Transformers for Multilingual Masked Language Modeling by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau.
  201. XLM-V (from Meta AI) released with the paper XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models by Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa.
  202. XLNet (from Google/CMU) released with the paper ​XLNet: Generalized Autoregressive Pretraining for Language Understanding by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
  203. XLS-R (from Facebook AI) released with the paper XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
  204. XLSR-Wav2Vec2 (from Facebook AI) released with the paper Unsupervised Cross-Lingual Representation Learning For Speech Recognition by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
  205. YOLOS (from Huazhong University of Science & Technology) released with the paper You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu.
  206. YOSO (from the University of Wisconsin - Madison) released with the paper You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
  207. Want to contribute a new model? We have added a detailed guide and templates to guide you in the process of adding a new model. You can find them in the templates folder of the repository. Be sure to check the contributing guidelines and contact the maintainers or open an issue to collect feedbacks before starting your PR.

To check if each model has an implementation in Flax, PyTorch or TensorFlow, or has an associated tokenizer backed by the 🤗 Tokenizers library, refer to this table.

These implementations have been tested on several datasets (see the example scripts) and should match the performance of the original implementations. You can find more details on performance in the Examples section of the documentation.

Learn more

SectionDescription
DocumentationFull API documentation and tutorials
Task summaryTasks supported by 🤗 Transformers
Preprocessing tutorialUsing the Tokenizer class to prepare data for the models
Training and fine-tuningUsing the models provided by 🤗 Transformers in a PyTorch/TensorFlow training loop and the Trainer API
Quick tour: Fine-tuning/usage scriptsExample scripts for fine-tuning models on a wide range of tasks
Model sharing and uploadingUpload and share your fine-tuned models with the community
MigrationMigrate to 🤗 Transformers from pytorch-transformers or pytorch-pretrained-bert

Citation

We now have a paper you can cite for the 🤗 Transformers library:

@inproceedings{wolf-etal-2020-transformers,
    title = "Transformers: State-of-the-Art Natural Language Processing",
    author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush",
    booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
    month = oct,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6",
    pages = "38--45"
}

Online demos

You can test most of our models directly on their pages from the model hub. We also offer private model hosting, versioning, & an inference API for public and private models.

Here are a few examples:

In Natural Language Processing:

In Computer Vision:

In Audio:

In Multimodal tasks:

Write With Transformer, built by the Hugging Face team, is the official demo of this repo’s text generation capabilities.

100 projects using Transformers

Transformers is more than a toolkit to use pretrained models: it's a community of projects built around it and the Hugging Face Hub. We want Transformers to enable developers, researchers, students, professors, engineers, and anyone else to build their dream projects.

In order to celebrate the 100,000 stars of transformers, we have decided to put the spotlight on the community, and we have created the awesome-transformers page which lists 100 incredible projects built in the vicinity of transformers.

If you own or use a project that you believe should be part of the list, please open a PR to add it!

If you are looking for custom support from the Hugging Face team

HuggingFace Expert Acceleration Program


English | 简体中文 | 繁體中文 | 한국어 | Español | 日本語 | हिन्दी


Download Details:

Author: huggingface
Source Code: https://github.com/huggingface/transformers 
License: Apache-2.0 license

#machinelearning #python #nlp #deeplearning #tensorflow 

State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX
Royce  Reinger

Royce Reinger

1685934009

Tensorflow: An Open Source Machine Learning Framework for Everyone

TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, and community resources that lets researchers push the state-of-the-art in ML and developers easily build and deploy ML-powered applications.

TensorFlow was originally developed by researchers and engineers working on the Google Brain team within Google's Machine Intelligence Research organization to conduct machine learning and deep neural networks research. The system is general enough to be applicable in a wide variety of other domains, as well.

TensorFlow provides stable Python and C++ APIs, as well as non-guaranteed backward compatible API for other languages.

Keep up-to-date with release announcements and security updates by subscribing to announce@tensorflow.org. See all the mailing lists.

Install

See the TensorFlow install guide for the pip package, to enable GPU support, use a Docker container, and build from source.

To install the current release, which includes support for CUDA-enabled GPU cards (Ubuntu and Windows):

$ pip install tensorflow

Other devices (DirectX and MacOS-metal) are supported using Device plugins.

A smaller CPU-only package is also available:

$ pip install tensorflow-cpu

To update TensorFlow to the latest version, add --upgrade flag to the above commands.

Nightly binaries are available for testing using the tf-nightly and tf-nightly-cpu packages on PyPi.

Try your first TensorFlow program

$ python
>>> import tensorflow as tf
>>> tf.add(1, 2).numpy()
3
>>> hello = tf.constant('Hello, TensorFlow!')
>>> hello.numpy()
b'Hello, TensorFlow!'

For more examples, see the TensorFlow tutorials.

Contribution guidelines

If you want to contribute to TensorFlow, be sure to review the contribution guidelines. This project adheres to TensorFlow's code of conduct. By participating, you are expected to uphold this code.

We use GitHub issues for tracking requests and bugs, please see TensorFlow Forum for general questions and discussion, and please direct specific questions to Stack Overflow.

The TensorFlow project strives to abide by generally accepted best practices in open-source software development.

Patching guidelines

Follow these steps to patch a specific version of TensorFlow, for example, to apply fixes to bugs or security vulnerabilities:

  • Clone the TensorFlow repo and switch to the corresponding branch for your desired TensorFlow version, for example, branch r2.8 for version 2.8.
  • Apply (that is, cherry pick) the desired changes and resolve any code conflicts.
  • Run TensorFlow tests and ensure they pass.
  • Build the TensorFlow pip package from source.

Continuous build status

You can find more community-supported platforms and configurations in the TensorFlow SIG Build community builds table.

Official Builds

Build TypeStatusArtifacts
Linux CPUStatusPyPI
Linux GPUStatusPyPI
Linux XLAStatusTBA
macOSStatusPyPI
Windows CPUStatusPyPI
Windows GPUStatusPyPI
AndroidStatusDownload
Raspberry Pi 0 and 1StatusPy3
Raspberry Pi 2 and 3StatusPy3
Libtensorflow MacOS CPUStatus Temporarily UnavailableNightly Binary Official GCS
Libtensorflow Linux CPUStatus Temporarily UnavailableNightly Binary Official GCS
Libtensorflow Linux GPUStatus Temporarily UnavailableNightly Binary Official GCS
Libtensorflow Windows CPUStatus Temporarily UnavailableNightly Binary Official GCS
Libtensorflow Windows GPUStatus Temporarily UnavailableNightly Binary Official GCS

Resources

Learn more about the TensorFlow community and how to contribute.

Courses

Documentation
Documentation

Download Details:

Author: Tensorflow
Source Code: https://github.com/tensorflow/tensorflow 
License: Apache-2.0 license

#tensorflow #python #machinelearning #deeplearning 

Tensorflow: An Open Source Machine Learning Framework for Everyone

How to Build a TinyML Application with TF Micro and SensiML

TinyML reduces the complexity of adding AI to the edge, enabling new applications where streaming data back to the cloud is prohibitive. Sure, we can detect audio and visual wake words or analyze sensor data for predictive maintenance on a desktop computer. TinyML allows us to take advantage of these advances in hardware to create all sorts of novel applications that simply were not possible before. At SensiML our goal is to empower developers to rapidly add AI to their own edge devices, allowing their applications to autonomously transform raw sensor data into meaningful insight.

We have taken years of lessons learned in creating products that rely on edge optimized machine learning and distilled that knowledge into a single framework, the SensiML Analytics Toolkit, which provides an end-to-end development platform spanning data collection, labeling, algorithm development, firmware generation, and testing. Building a TinyML application touches on skill sets ranging from hardware engineering, embedded programming, software engineering, machine learning, data science and domain expertise about the application you are building

#tensorflow 

How to Build a TinyML Application with TF Micro and SensiML

Best Course in Machine Learning Engineering for Production

If so, we have a new set of courses to get you going. The new specialization builds on the foundational knowledge taught in the popular specialization, DeepLearning. The new MLOps specialization kicks off with an introductory course taught by Andrew Ng, followed by courses taught by Robert Crowe and Laurence Moroney that dive into the details of getting your models out to users.
 

#tensorflow 

Best Course in Machine Learning Engineering for Production

TensorFlow Cheat Sheet: Why TensorFlow, Function & Tools

Google came out with a solution and called it TensorFlow. It is an open-source machine learning framework used to tackle and implement some tricky large-scale machine learning and neural networking models to make the job of predicting future results easier. ML models that use multi-layer neural networks are called deep learning. It was developed to boost Google’s deep neural network research and can now be seen in the advanced Google search suggestions.

Some of the changes include added support for deep learning in computer graphics and discontinuation of support for Python 2

#tensorflow 

TensorFlow Cheat Sheet: Why TensorFlow, Function & Tools