Introduction

Although the field of deep learning is evolving extremely fast, unique research with the potential to get us closer to Artificial General Intelligence (AGI) is rare and hard to find. One exception to this rule can be found in the field of meta-learning. Recently, meta-learning has also been applied to Reinforcement Learning (RL) with some success. The paper “Discovering Reinforcement Learning Agents” by Oh et al. from DeepMind provides a new and refreshing look at the application of meta-learning to RL.

**Traditionally, RL relied on hand-crafted algorithms **such as Temporal Difference learning (TD-learning) and Monte Carlo learning, various Policy Gradient methods, or combinations thereof such as Actor-Critic models. These RL algorithms are usually finely adjusted to train models for a very specific task such as playing Go or Dota. One reason for this is that multiple hyperparameters such as the discount factor γ and the bootstrapping parameter λ need to be tuned for stable training. Furthermore, the very update rules as well as the choice of predictors such as value functions need to be chosen diligently to ensure good performance of the model. The entire process has to be performed manually and is often tedious and time-consuming.

DeepMind is trying to change this with their latest publication. In the paper, the authors propose a new meta-learning approach that discovers the learning objective as well as the exploration procedure by interacting with a set of simple environments. They call the approach the Learned Policy Gradient (LPG). The most appealing result of the paper is that the algorithm is able to effectively generalize to more complex environments, suggesting the potential to discover novel RL frameworks purely by interaction.

In this post, I will try to explain the paper in detail and provide additional explanation where I had problems with understanding. Hereby, I will stay close to the structure of the paper in order to allow you to find the relevant parts in the original text if you want to get additional details. Let’s dive in!

#meta-learning #reinforcement-learning #machine-learning #ai #deep-learning #deep learning

Paper Summary: Discovering Reinforcement Learning Agents
1.40 GEEK