Given an array arr[] of N integers, the task is to find the smallest subarray **brr[] **of size at least 2 such that by performing repeating operation on the array **brr[] **gives the original array arr[]. Print “-1” if it is not possible to find such subarray.

repeating operation on an array is to append all the current element of the array to the same array again.

For Example, if an array arr[] = {1, 2} then on repeating operation array becomes **{1, 2, 1, 2}**.

Examples:

Input:_ arr[] = {1, 2, 3, 3, 1, 2, 3, 3}_

Output:_ {1, 2, 3, 3}_

Explanation:

{1, 2, 3, 3} is the smallest subarray which when repeated 2 times gives the original array {1, 2, 3, 3, 1, 2, 3, 3}

Input:_ arr[] = {1, 1, 6, 1, 1, 7}_

Output:_ -1_

Explanation:

There doesn’t exist any subarray.

Naive Approach: The idea is to generate all possible subarrays of length at least 2 and check whether repeating those subarrays gives the original array or not.

Time Complexity:_ O(N3)_

Auxiliary Space:_ O(N)_

Efficient Approach: The above approach can be optimized by observing the fact that the resultant subarray **brr[] **must start from the 1st index of the original array to generate **arr[] **on repeating. Therefore, generate only those subarrays which start from the 1st index and have a length of at least 2 and check whether repeating those subarrays gives the original array or not. Below are the steps:

  1. Create an auxiliary array brr[] and insert the first two elements of the original array into it as the resulting array must be of at least two in size.
  2. Traverse over the possible length of subarray [2, N/2 + 1] and check if the array brr[] of length i on repeating gives the original array arr[] or not.
  3. If yes then print this subarray and break the loop.
  4. Otherwise, insert the current element into the subarray and check again.
  5. Repeat the above steps until all the subarrays are checked.
  6. Print “-1” if the array brr[] is not found.

Below is the implementation of the above approach:

  • C++

// C++ program for the above approach

#include <iostream>

#include <vector>

**using** **namespace** std;

// Function to print the array

**void** printArray(vector<``**int**``>& brr)

{

**for** (``**auto**``& it : brr) {

cout << it << ' '``;

}

}

// Function to find the smallest subarray

**void** RepeatingSubarray(``**int** arr[], **int** N)

{

// Corner Case

**if** (N < 2) {

cout << "-1"``;

}

// Initialize the auxiliary subarray

vector<``**int**``> brr;

// Push the first 2 elements into

// the subarray brr[]

brr.push_back(arr[0]);

brr.push_back(arr[1]);

// Iterate over the length of

// subarray

**for** (``**int** i = 2; i < N / 2 + 1; i++) {

// If array can be divided into

// subarray of i equal length

**if** (N % i == 0) {

**bool** a = **false**``;

**int** n = brr.size();

**int** j = i;

// Check if on repeating the

// current subarray gives the

// original array or not

**while** (j < N) {

**int** K = j % i;

**if** (arr[j] == brr[K]) {

j++;

}

**else** {

a = **true**``;

**break**``;

}

}

// Subarray found

**if** (!a && j == N) {

printArray(brr);

**return**``;

}

}

// Add current element into

// subarray

brr.push_back(arr[i]);

}

// No subarray found

cout << "-1"``;

**return**``;

}

// Driver Code

**int** main()

{

**int** arr[] = { 1, 2, 2, 1, 2,

2, 1, 2, 2 };

**int** N = **sizeof**``(arr) / **sizeof**``(arr[0]);

// Function call

RepeatingSubarray(arr, N);

**return** 0;

}

Output:

1 2 2

Time Complexity:_ O(N2)_

Auxiliary Space:_ O(N)_

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

#arrays #greedy #mathematical #subarray

Smallest subarray which upon repetition gives the original array
1.80 GEEK