Both Scaled Error and Relative Error are extrinsic error measures. They depend on another reference forecast to evaluate itself, and more often than not, in practice, the reference forecast is a Naïve Forecast or a Seasonal Naïve Forecast. In addition to these errors, we will also look at measures like Percent better, cumulative Forecast Error, Tracking Signal etc.

Relative Error

When we say Relative Error, there are two main ways of calculating it and Shcherbakov et al. calls them Relative Errors and Relative Measures.

Relative Error is when we use the forecast from a reference model as a base to compare the errors and Relative Measures is when we use some forecast measure from a reference base model to calculate the errors.

Relative Error is calculated as below:

Image for post

Image for post

Image for post

Similarly Relative Measures are calculated as below:

Image for post

Image for post

where MAE is the Mean Absolute Error on the forecast and MAE is the MAE of the reference forecast. This measure can be anything really, and not just MAE.*

Relative Error is based on a reference forecast, although most commonly we use Naïve Forecast, not necessarily all the time. For instance, we can use the Relative measures if we have an existing forecast we are trying to better, or we can use the baseline forecast we define during the development cycle, etc.

One disadvantage we can see right away is that it will be undefined when the reference forecast is equal to ground truth. And this can be the case for either very stable time series or intermittent ones where we can have the same ground truth repeated, which makes the naïve forecast equal to the ground truth.

#machine-learning #timeseries #analytics #metrics #forecasting

Forecast Error Measures: Scaled, Relative, and other Errors
1.25 GEEK