Physical chemistry is the study of macroscopic, and particulate phenomena in chemical systems in terms of the principles, practices, and concepts of physics such as motion, energy, force, time, thermodynamics, quantum chemistry, statistical mechanics, analytical dynamics and chemical equilibrium.

Physical Chemistry, in contrast to chemical physics, is predominantly (but not always) a macroscopic or supra-molecular science, as the majority of the principles on which it was founded relate to the bulk rather than the molecular/atomic structure alone (for example, chemical equilibrium and colloids). (Source: wikipedia)

This is the full course of Physical chemistry where the following topics have been discussed in a very comprehensive way.

⭐ Table of Contents ⭐

  • ⌨️ (0:00:00) Course Introduction
  • ⌨️ (0:06:22) Concentrations
  • ⌨️ (0:11:58) Properties of gases introduction
  • ⌨️ (0:15:29) The ideal gas law
  • ⌨️ (0:26:10) Ideal gas (continue)
  • ⌨️ (0:33:56) Dalton’s Law
  • ⌨️ (0:39:58) Real gases
  • ⌨️ (0:50:44) Gas law examples
  • ⌨️ (1:00:40) Internal energy
  • ⌨️ (1:10:59) Expansion work
  • ⌨️ (1:22:34) Heat
  • ⌨️ (1:28:28) First law of thermodynamics
  • ⌨️ (1:39:39) Enthalpy introduction
  • ⌨️ (1:43:46) Difference between H and U
  • ⌨️ (1:55:06) Heat capacity at constant pressure
  • ⌨️ (2:03:20) Hess’ law
  • ⌨️ (2:11:59) Hess’ law application
  • ⌨️ (2:22:06) Kirchhoff’s law
  • ⌨️ (2:29:18) Adiabatic behaviour
  • ⌨️ (2:41:47) Adiabatic expansion work
  • ⌨️ (2:48:52) Heat engines
  • ⌨️ (2:57:27) Total carnot work
  • ⌨️ (3:07:48) Heat engine efficiency
  • ⌨️ (3:11:30) Microstates and macrostates
  • ⌨️ (3:21:54) Partition function
  • ⌨️ (3:30:18) Partition function examples
  • ⌨️ (3:37:55) Calculating U from partition
  • ⌨️ (3:48:13) Entropy
  • ⌨️ (3:56:34) Change in entropy example
  • ⌨️ (4:09:55) Residual entropies and the third law
  • ⌨️ (4:18:09) Absolute entropy and Spontaneity
  • ⌨️ (4:27:46) Free energies
  • ⌨️ (4:35:12) The gibbs free energy
  • ⌨️ (4:45:48) Phase Diagrams
  • ⌨️ (4:52:32) Building phase diagrams
  • ⌨️ (5:00:43) The clapeyron equation
  • ⌨️ (5:03:30) The clapeyron equation examples
  • ⌨️ (5:18:29) The clausius Clapeyron equation
  • ⌨️ (5:29:07) Chemical potential
  • ⌨️ (5:35:57) The mixing of gases
  • ⌨️ (5:48:32) Raoult’s law
  • ⌨️ (6:02:08) Real solution
  • ⌨️ (6:12:13) Dilute solution
  • ⌨️ (6:18:56) Colligative properties
  • ⌨️ (6:27:26) Fractional distillation
  • ⌨️ (6:37:35) Freezing point depression
  • ⌨️ (6:48:50) Osmosis
  • ⌨️ (6:56:44) Chemical potential and equilibrium
  • ⌨️ (7:04:07) The equilibrium constant
  • ⌨️ (7:10:46) Equilibrium concentrations
  • ⌨️ (7:21:11) Le chatelier and temperature
  • ⌨️ (7:36:07) Le chatelier and pressure
  • ⌨️ (7:45:18) Ions in solution
  • ⌨️ (7:54:48) Debye-Huckel law
  • ⌨️ (8:02:22) Salting in and salting out
  • ⌨️ (8:15:12) Salting in example
  • ⌨️ (8:25:33) Salting out example
  • ⌨️ (8:35:59) Acid equilibrium review
  • ⌨️ (8:45:33) Real acid equilibrium
  • ⌨️ (8:54:36) The pH of real acid solutions
  • ⌨️ (9:02:12) Buffers
  • ⌨️ (9:11:12) Rate law expressions
  • ⌨️ (9:23:51) 2nd order type 2 integrated rate
  • ⌨️ (9:34:18) 2nd order type 2 (continue)
  • ⌨️ (9:42:54) Strategies to determine order
  • ⌨️ (9:53:02) Half life
  • ⌨️ (9:59:55) The arrhenius Equation
  • ⌨️ (10:12:00) The Arrhenius equation example
  • ⌨️ (10:20:46) The approach to equilibrium
  • ⌨️ (10:34:55) The approach to equilibrium (continue…)
  • ⌨️ (10:46:47) Link between K and rate constants
  • ⌨️ (10:56:39) Equilibrium shift setup
  • ⌨️ (11:06:13) Time constant, tau
  • ⌨️ (11:16:13) Quantifying tau and concentrations
  • ⌨️ (11:23:26) Consecutive chemical reaction
  • ⌨️ (11:26:48) Multi step integrated Rate laws
  • ⌨️ (11:41:39) Multi-step integrated rate laws (continue…)
  • ⌨️ (11:51:24) Intermediate max and rate det step

#developer

Physical Chemistry
3.85 GEEK