Dependency Inversion Principle in C++ is the fifth & last design principle of a series SOLID as a Rock design principles. The SOLID design principles focus on developing software that is easy to maintainable, reusable & extendable. In this article, we will see an example code with the flaw & correct it with help of DIP. We will also see guideline & benefits of DIP inclosure of the article.

By the way, If you haven’t gone through my previous articles on design principles, then below is the quick links:

  1. SRP – Single Responsibility Principle
  2. OCP – Open/Closed Principle
  3. LSP – Liskov Substitution Principle
  4. ISP – Interface Segregation Principle
  5. DIP – Dependency Inversion Principle

The code snippets you see throughout this series of articles are simplified not sophisticated. So you often see me not using keywords like override, final, public(while inheritance) just to make code compact & consumable (most of the time) in single standard screen size. I also prefer struct instead of class just to save line by not writing “public:” sometimes and also miss virtual destructor, constructor, copy constructor, prefix std::, deleting dynamic memory, intentionally. I also consider myself a pragmatic person who wants to convey an idea in the simplest way possible rather than the standard way or using Jargons.

Note:

  • If you stumbled here directly, then I would suggest you go through What is design pattern? first, even if it is trivial. I believe it will encourage you to explore more on this topic.
  • All of this code you encounter in this series of articles are compiled using C++20(though I have used Modern C++ features up to C++17 in most cases). So if you don’t have access to the latest compiler you can use https://wandbox.org/ which has preinstalled boost library as well.

Intent

1. High-level modules should not depend on low-level modules. Both should depend on abstractions.

2. Abstractions should not depend on details. Details should depend on abstractions.

  • Above lines might seem cryptic at first but don’t stick here keep going. You will get it by example.

What are the High-level & Low-level modules?

High-level modulesdescribes operations which is more abstract in nature & contain more complex logic. These modules orchestrate low-level modules in our application.

Low-level modulesdescribes implementations more specific & individual to components focusing on details & smaller parts of the application. These modules are used inside the high-level modules.

Motivation: Violating Dependency Inversion Principle

enum class Relationship { parent, child, sibling };

struct Person {
    string      m_name;
};

struct Relationships {      // Low-level <<<<<<<<<<<<-------------------------
    vector<tuple<Person, Relationship, Person>>     m_relations;

    void add_parent_and_child(const Person &parent, const Person &child) {
        m_relations.push_back({parent, Relationship::parent, child});
        m_relations.push_back({child, Relationship::child, parent});
    }
};

struct Research {           // High-level  <<<<<<<<<<<<------------------------
    Research(const Relationships &relationships) {
        for (auto &&[first, rel, second] : relationships.m_relations) {// Need C++17 here
            if (first.m_name == "John" && rel == Relationship::parent)
                cout << "John has a child called " << second.m_name << endl;
        }
    }
};

int main() {
    Person parent{"John"};
    Person child1{"Chris"};
    Person child2{"Matt"};

    Relationships relationships;
    relationships.add_parent_and_child(parent, child1);
    relationships.add_parent_and_child(parent, child2);

    Research _(relationships);

    return EXIT_SUCCESS;
}
  • When later on the container of Relationships changes from vector to set or any other container, you need to change in many places which isn’t a very good design. Even if just the name of data member i.e. Relationships::m_relations changes, you will find yourself breaking other parts of code.
  • As you can see Low-level module i.e. Relationships directly depend on High-level module i.e. Research which is essentially a violation of DIP.

Solution: Example of Dependency Inversion Principle in C++

  • Rather we should create an abstraction and bind Low-level & High-level module to that abstraction. Consider the following fix:
struct RelationshipBrowser {
    virtual vector<Person> find_all_children_of(const string &name) = 0;
};

struct Relationships : RelationshipBrowser {     // Low-level <<<<<<<<<<<<<<<------------------------
    vector<tuple<Person, Relationship, Person>>     m_relations;

    void add_parent_and_child(const Person &parent, const Person &child) {
        m_relations.push_back({parent, Relationship::parent, child});
        m_relations.push_back({child, Relationship::child, parent});
    }

    vector<Person> find_all_children_of(const string &name) {
        vector<Person> result;
        for (auto &&[first, rel, second] : m_relations) {
            if (first.name == name && rel == Relationship::parent) {
                result.push_back(second);
            }
        }
        return result;
    }
};

struct Research {                                // High-level <<<<<<<<<<<<<<<----------------------
    Research(RelationshipBrowser &browser) {
        for (auto &child : browser.find_all_children_of("John")) {
            cout << "John has a child called " << child.name << endl;
        }
    }
    //  Research(const Relationships& relationships)
    //  {
    //    auto& relations = relationships.relations;
    //    for (auto&& [first, rel, second] : relations)
    //    {
    //      if (first.name == "John" && rel == Relationship::parent)
    //      {
    //        cout << "John has a child called " << second.name << endl;
    //      }
    //    }
    //  }
};

#cpp #cplusplus #programming #computer-science #coding #solid-principles #design-patterns #codingbootcamp

SOLID Design: Dependency Inversion Principle in C++
2.05 GEEK